Fast Fingerprints for Power System Events

David Bindel

19 Oct 2016

_				
- 1- 1	-	 	-	
	av	 	 	

-

• • • • • • • • • • • •

The Computational Science & Engineering Picture

- MEMS
- Smart grids
- Networks

The Computational Science & Engineering Picture

Reminder: AC Power

Biggest Machine(s) in the World

SCADA: Supervisory Control and Data Acquisition

- Non-synchronized measurements every 2-10 seconds
- Report digital status and power flows
- Complete observability in transmission grid
- Voltages/currents inferred from power flows (state estimation)
- Topology estimation co-evolved with state estimation

Synchrophasors / Phasor Measurement Units (PMUs)

- GPS-synchronized measurements and 10-30 reports per second
- Directly report voltage and current angles/magnitudes
- Really now coming into their own
 - First commercial PMU in 1992
 - Funding from American Recovery and Reinvestment Act of 2008
 - Now enough for *partial* observability in most places
- We're still figuring out what to do with them!
 - Model free system identification approaches (PMU only)
 - Dynamic state estimation / data fusion (PMUs + SCADA)
 - Today: topology update estimation from $\mathsf{PMUs} + \mathsf{SCADA}$

イロト イポト イヨト イヨト

- Combine model-driven state estimates with PMU observations
- Goal: Identify system (topology change) events (line outages, substation change, generator trips, ...)
- Idea: Match PMU measurements $E\Delta v$ to model predictions δv_c
 - Need predictions for many possible changes c!
 - Each δv_c depends on current state constantly changing.
- How can we do this fast?

- 4 同 6 4 日 6 4 日 6

Power Flow Basics

Abstract power flow equation

$$H(v;Y)-s=0$$

In polar form:

$$\begin{bmatrix} H_{\ell} \\ H_{n+\ell} \end{bmatrix} = \sum_{h=1}^{n} |v_{\ell}||v_{h}| \begin{bmatrix} g_{\ell h} & b_{\ell h} \\ -b_{\ell h} & g_{\ell h} \end{bmatrix} \begin{bmatrix} \cos(\theta_{\ell h}) \\ \sin(\theta_{\ell h}) \end{bmatrix},$$

with $\theta_{\ell h} = \theta_{\ell} - \theta_{h}$ and
 $s = \begin{bmatrix} P_{1} & \cdots & P_{n} & Q_{1} & \cdots & Q_{n} \end{bmatrix}^{T}.$

イロト イヨト イヨト イヨト

Power Flows and PMUs

Power flow equation

$$H(v;Y)-s=0$$

- Measure Ev via PMUs ($E \in \{0, 1\}^{m \times n}$).
- Suppose Ev shifts to $Ev' = Ev + E\Delta v$.
- Goal: Map $E\Delta v$ to change in topology (e.g. ΔY).

(日) (周) (三) (三)

More detailed: breaker-level formulation

$$H(v; Y) + C\lambda - s = 0$$

 $C^T v = b$

Equations in $C^T v = b$ have the form

 $v_i - v_j = 0$ Equal voltage on bus sections $v_i = b_k$ Specified voltage at PV node

Can eliminate constraints if desired - but we don't want to!

D 'I D'	
Linud King	
Duria Diin	

Breaker, Breaker!

Breaker-level formulation

$$H(v; Y) + C\lambda - s = 0$$
$$C^{T}v = b$$

Notation:

$$x = \begin{bmatrix} v \\ \lambda \end{bmatrix}, \quad A = \begin{bmatrix} \frac{\partial H}{\partial v}(v; Y) & C \\ C^T & 0 \end{bmatrix}, \quad \overline{E} = \begin{bmatrix} E & 0 \end{bmatrix}.$$

<ロ> (日) (日) (日) (日) (日)

Consider several possible topology changes:

- Breaker closes in a substation (bus merge)
- Breaker opens in a substation (bus split)
- Load or generator trip
- Line trip

Write each as an *augmented* power flow system.

→ 3 → 4 3

Example: Breaker Opening

Add a multiplier to "delete" previous constraint in C:

$$H(v'; Y) + C\lambda' - s = 0$$
$$C^{T}v' + F\gamma - b = 0$$
$$F^{T}\lambda' = 0$$

where $F \in \{0,1\}^{n \times 2}$ indicates voltage for "breakaway" segment.

David Bindel

19 Oct 2016 14 / 33

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: Line Trip

After trip $Y' = Y + \Delta Y$. *H* linear in *Y*, so:

$$H(v'; Y) + Uw + C\lambda' - s = 0$$
$$C^{T}v' - b = 0$$
$$w - U^{T}H(v'; \Delta Y) = 0$$

where $U \in \{0,1\}^{n \times 4}$ indicates equations for end-point buses.¹

-			
	DV//d	Rine	he
	aviu	DIIIC	16

For each possible topology update (and base case):

- Compute predicted change Δv^{pred}
- Compute mismatch $\mu = \ell (E\Delta v^{\text{pred}} E\Delta v)$

Report (mismatch, update) pairs in descending order by mismatch.

Problem: Too many possible updates!

Post-update systems linearized about pre-update state look like:

$$\begin{bmatrix} A & U \\ V^T & D \end{bmatrix} \begin{bmatrix} \delta x \\ \gamma \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

For each possible update, estimate change to be $\bar{E}\delta x$.

- Core matrix A does not change with updates factor once
- Border matrix and RHS do depend on updates
- Solve bordered systems via a few solves with A

Strawman Method 1

- Save factorization of core matrix A
- For each possible topology update (and base case):
 - Get linearized predicted change $\delta v^{\rm pred}$
 - Compute mismatch $\mu = \ell (E \delta v^{\text{pred}} E \Delta v)$
- Report (mismatch, update) pairs in descending order by mismatch.

Problem: Too many possible updates! And maybe approximation error?

(日) (周) (三) (三)

Filtering

Care about some loss $\ell(E\delta x - E\Delta x)$, where

$$\begin{bmatrix} A & U \\ V^T & D \end{bmatrix} \begin{bmatrix} \delta x \\ \gamma \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

Rewrite as

$$E\delta v = \bar{E}A^{-1}(d_1 - U\gamma)$$

and

U narrow and sparse \implies $(\bar{E}A^{-1})U$ involves only a few columns of $\bar{E}A^{-1}$

3

(日) (周) (三) (三)

Partial Predictions

- Find subspace V_c containing predictions $E\delta v_c$
- Bound: subspace distance $\mu(c) \leq \text{mismatch } m(c)$
- Sort events by ascending $\mu(c)$
- Check c_1, \ldots, c_k until $\mu(c_{k+1}) \leq \min_{1 \leq j \leq k} m(c_j)$

Filter Effectiveness (IEEE 57-bus, line trips only)

Blue squares are filter scores, red squares are actual mismatches.

-		 	
L) -	22.00	in c	
	IVIL		

Test scenarios (IEEE 57-bus network)

- Three PMU deployments: everywhere, sparse, and single
- With no noise or Gaussian noise ($\sigma = 0.0017$)
 - Consistent with largest phase angle error allowed by the synchrophasor standard (0.1 degree)
- Will show behavior with bad data later

(人間) トイヨト イヨト

Line Failure Diagnosis (sparse, no noise)

Green/yellow: scores for correctly/incorrectly diagnosed tripped lines. Black crosses: scores for other lines.

David Binde	-			-		
	- 1- 1	21/	L d	ю	nc	
		av	IU.	_	III C	

19 Oct 2016 23 / 33

Example: Hard Case in IEEE 57-bus

(24,26) tripped, (26,27) chosen. Color/thickness by mismatch $^{-1/2}$. PMU locations are highlighted in blue.

-		-		
1) 21	nd.	Ru	nd	0
	/IU		пu	

• • = • • =

IEEE 57-bus: Line Failures

19 Oct 2016 25 / 33

IEEE 57-bus: Substation Reconfigurations

19 Oct 2016 26 / 33

IEEE 57-bus: Generator Trips

19 Oct 2016 27 / 33

IEEE 57-bus: Load Trips

19 Oct 2016 28 / 33

IEEE 57-bus: All Contingencies

19 Oct 2016 29 / 33

Bad Data Robustness via Huber

- Experiments so far reflect ℓ^2 loss.
- With outliers/bad data: use a more robust loss!
- We use Huber with scale parameter 1.365 · 0.0017.

→ Ξ →

IEEE 57-bus: All Contingencies

One PMU delivers 5 degree errors (sparse PMU deployment) + Gaussian noise on all readings.

	1 >	• 🗗)	C]	•	<≣>		Ð,	596
David Bindel	Argonne			19	Oct 20)16		31 / 33

Ongoing Related Efforts

- Spectroscopic event identification (Eric Lee, Nate Rogalskyj)
 - Goal: Identify state from ringdown/ambient oscillations
 - \bullet Approach: Residual + bound generation similar to FLiER
- SECURED: Synthetic regulating reserves (Eaton, CMU, ANL, LLNL)
 - Goal: Reduce regulating reserve req'ts to offset VER
 - Approach: Fast distribution-level coordinated demand response
- GridCloud (Birman, WSU)
 - Goal: Fast, reliable cloud infrastructure to communicate PMU data
 - Approach: Replication for performance and reliability

(日) (周) (三) (三)

Acknowledgements

FLiER: Practical Topology Update Detection Using Sparse PMUs. Ponce and Bindel, arXiv:1409.6644

-		-	
1.)-	wid	Bur	ndel
	aviu		luei

イロト イポト イヨト イヨ