
Bindel, Fall 2013 Matrix Computations (CS 6210)

Week 1: Friday, Aug 30

Logistics

1. Let me know if you’re not on CMS (e.g. if you just joined).

2. Get started with the reading (and the HW)! Today is partly out of
sequence – see GVL 11.1 for a discussion of general sparse matrices.

Nonzero structure

One important type of structure in matrices involves where there can be
nonzeros. We started talking about this last time – I called this the “graph”
structure of a matrix, in contrast to types of structure like orthogonality or
symmetry.

For example, a lower triangular L matrix satisfies lij = 0 for j > i. If we
put crosses where the can be nonzeros, we have

L =

×
× ×
× × ×
...

...
...

. . .

× × × . . . ×

 .
Similarly, an upper triangular matrix U satisfies uij = 0 for j < i. A banded
matrix has zeros outside some distance of the diagonal; that is, B is banded
with lower bandwidth p and upper bandwidth q if bij = 0 for j < i − p
and j > i + q. For example, a matrix with lower bandwidth 1 and upper
bandwidth 2 has this nonzero structure:

B =

× × ×
× × × ×
× × × ×
× × × ×

.

× × × ×
× × ×
× ×

.

Bindel, Fall 2013 Matrix Computations (CS 6210)

A banded matrix with b+ q � n is a special case of a sparse matrix in which
most of the elements are zero.

Why do we care about these matrix structures? One reason is that we can
use these structures to improve the performance of matrix multiplication. If
nnz is the number of nonzeros in a matrix, then matrix-vector multiplication
can be written to take O(nnz) time. We can also represent the matrix using
O(nnz) storage. Another reason is that some structures are easy to compute
with. For example, if we want to solve a linear system with a triangular
matrix, we can do so easily using back-substitution; and if we want the
eigenvalues of a triangular matrix, we can just read the diagonal.

General sparse matrices

What if we have relatively few nonzeros in a matrix, but they are not in a
narrow band about the origin or some other similarly regular structure? In
this case, we would usually represent the matrix by a general sparse format.
The format Matlab uses internally is compressed sparse columns. In com-
pressed sparse column format, we keep a list of the nonzero entries and their
corresponding rows, stored one column after the other; and a list of pointers
saying where the data for each column starts. For example, consider the
matrix

A =

a11 0 0 a14
0 a22 0 0
a31 0 a33 0
0 a42 0 a44

 .
In compressed sparse column form, we would have

1 2 3 4 5 6 7
entries = a11 a31 a22 a42 a33 a14 a44
rows = 1 3 2 4 3 1 4

column pointers = 1 3 6 8

The last entry in the column pointer array tells where the end of the last
column is. If you use Matlab, the details of this data structure are hidden.
To get a sparse representation of a matrix A is as simple as writing

As = sparse(A);

Bindel, Fall 2013 Matrix Computations (CS 6210)

Beyond nonzero structure

Consider the matrices whose elements are as follows.

1. a
(1)
ij = xiyj for vectors x, y ∈ Rn.

2. a
(2)
ij = xi + yj.

3. a
(3)
ij = 1 if i+ j even, 0 otherwise.

4. a
(4)
ij = δij + xiyj.

5. a
(5)
ij = µ|i−j|.

The questions:

1. How can we write a fast (O(n)) algorithm to compute v = Au for each
of these matrices?

2. Given general nonsingular B and C, can we write a fast algorithm to
multiply by Â = BAC in O(n) time (assuming some precomputation
is allowed)?

3. Given a general nonsingular B, can we write a fast multiplication al-
gorithm for Ã = B−1AB?

The first three matrices are all low-rank. The first matrix can be written
as an outer product A(1) = xyT ; the second matrix is A(2) = xeT−eyT , where
e is the vector of all ones; and the third matrix is A(3) = eodde

T
odd + eevene

T
even,

where eodd is the vector with ones in all odd-index entries and zeros elsewhere,
and eeven is the vector with ones in all even-index entries. We can write
efficient Matlab functions to multiply by each of these matrices:

% Compute v = A1*u = (x*y’)*u

function v = multA1(u,x,y)

v = x*(y’*u);

% Compute v = A2*u

function v = multA2(u,x,y)

v = x*sum(u)+y’*u;

Bindel, Fall 2013 Matrix Computations (CS 6210)

% Compute v = A3*u

function v = multA3(u);

v = zeros(length(u),1);

v(1:2:end) = sum(u(1:2:end));

v(2:2:end) = sum(u(2:2:end));

Note that all we are really using in these routines is the fact that the un-
derlying matrices are low rank. The rank is a property of the underlying
linear transformation, independent of basis; that is, rank(A) = rank(BAC)
for any nonsingular B and C. So we can still get a fast matrix multiply for
Â(1) = BA(1)C, for example, by precomputing x̂ = Bx and ŷ = CTy and
then writing Â(1) = x̂ŷT .

The fourth matrix is an identity plus a low-rank matrix: A(4) = I + xyT .
This structure is destroyed if we change bases independently for the domain
and range space (i.e., BA(4)C has no useful structure), but it is preserved
when we make the same change of basis for both the domain and range (i.e.,
B−1A(4)B = I + x̂ŷT , where x̂ = B−1x and ŷ = BTy.

The fifth matrix is much more interesting. Though the matrix does not
have lots of zeros and is not related in an obvious way to something with
low rank, there is nonetheless enough structure for us to do a fast multiply.
Writing each entry of v = A(5)u in component form, we have

vj =
n∑

i=1

µ|i−j|ui =

(
j−1∑
i=1

µj−iui

)
+

(
n∑

i=j

µi−jui

)
= rj + lj.

where rj and lj refer to the parts of the dot product to the right and left of
the main diagonal, respectively. Now notice that

r1 = 0

ln = un

rj+1 = µ(rj + uj)

lj = µlj+1 + uj.

The following Matlab code runs to compute the matrix-vector product with
A(6) in O(n) time:

% Compute v=A5*u

Bindel, Fall 2013 Matrix Computations (CS 6210)

function v = multA5(u,mu);

n = length(u);

% Run the recurrence for r forward

r = zeros(n,1);

for j = 1:n-1

r = (r+u(j)) * mu;

end

% Run the recurrence for l backward

l = zeros(n,1);

l(n) = u(n);

for j = n-1:-1:1

l(j) = l(j+1)*mu + u(j);

end

v = l+r;

There is no fast multiply for B−1A(5)B, let alone for BA(5)C.

More questions

1. Ordinary multiplication of two square matrices usually involves 2n3

floating-point operations (additions and multiplications) – see discus-
sion in the book. What is the complexity of multiplying two upper
triangular matrices?

2. Suppose A and B are upper triangular. Show that AB is triangular.

3. Suppose i, j, and aij are the row index, column index, and element
value of each nonzero in a sparse matrix A. Describe how you would
multiply A by a vector.

4. Describe an O(n) matrix-vector multiply routine for a square matrix
whose entries are

aij =

{
αiβj, i ≤ j

0, otherwise

