Lecture 16:
Dense Linear Algebra Il

David Bindel

20 Mar 2014

Review: Parallel matmul

v

Basic operation: C = C + AB

Computation: 2n® flops

Goal: 2n%/p flops per processor, minimal communication
» Two main contenders: SUMMA and Cannon

v

v

Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);
end

Parallel: Assume p = s? processors, block s x s matrices.
Fora 2 x 2 example:

[Coo C01} _ {AooBoo A00301] n [/%1310 Ao1B11]
Cio Ci4 A10Boo A10Bo1 A11Bio A11Bi1

» Processor for each (i,j) = parallel work for each k!

» Note everyone in row i uses A(/, k) at once,
and everyone in row j uses B(k, j) at once.

Parallel outer product (SUMMA)

for k = 0:s-1
for each 1 in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col

On processor (i,3), C(i,3j) += A(i,k)*B(k,J);

end

If we have tree along each row/column, then
log(s) messages per broadcast

o + Bn?/s? per message

2log(s)(as + Bn?/s) total communication
Compare to 1D ring: (p — 1)a + (1 — 1/p)?p

v

v

v

v

Note: Same ideas work with block size b < n/s

SUMMA

SUMMA

SUMMA

Parallel outer product (SUMMA)

If we have tree along each row/column, then
» log(s) messages per broadcast
» o+ Bn?/s? per message
» 2log(s)(as + pn?/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?

Reminder: Why matrix multiply?

LAPACK structure

LAPACK
A

BLAS

Build fast serial linear algebra (LAPACK) on top of BLAS 3.

Reminder: Why matrix multiply?

ScaLAPACK structure

ScaLAPACK

\PBLAS

A

LAPACK BLACS
A

BLAS MPI

ScalLAPACK builds additional layers on same idea.

Reminder: Evolution of LU

On board...

Blocked GEPP

Find pivot

Blocked GEPP

Swap pivot row

Blocked GEPP

Update within block

Blocked GEPP

Delayed update (at end of block)

Big idea

» Delayed update strategy lets us do LU fast
» Could have also delayed application of pivots

» Same idea with other one-sided factorizations (QR)
» Can get decent multi-core speedup with parallel BLAS!
... assuming n sufficiently large.

There are still some issues left over (block size? pivoting?)...

Explicit parallelization of GE

What to do:
» Decompose into work chunks

v

Assign work to threads in a balanced way

v

Orchestrate the communication and synchronization
Map which processors execute which threads

v

Possible matrix layouts

1D column blocked: bad load balance

2 2 2]
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

1
’
’
’
’
’
’
’
’

’
’
’
’
1
’
]
’
]

’
’
’
’
’
’
]
’
]

0 0 0
0 0O
0 0O
0 0O
0 0O
0 0O
0 0O
0 0O
0 0O

Possible matrix layouts

1D column cyclic: hard to use BLAS2/3

o
2
2
2
2
2
2
2
2

2 0 1
2 0 1
2 0
2 0
2 0
2 0
2 0
2 0
2 0

2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1

1
1
1
1
1
1
1
1
1

0

0
0
0
0
0
0
0
0

1

Possible matrix layouts

1D column block cyclic: block column factorization a bottleneck

17

1
’
’
’
’
’
]
’
’
’

2200
2200
2200
2200
2200
2200

1
’
’
’
’
’
]
’
’
’

1
’
’
’
]
’
]
’
’
’

0 0

0
0
0
0
0
0
0
0
0

2200
2200
2200
2200

Possible matrix layouts

Block skewed: indexing gets messy

2 2 2]
2 2 2
2 2 2

.1
1
1

1
1
1

0 0 0 1
0 0 0 1
0 0 0 1
2 22 000 1
222 000 1
2 22 000 1

1
1
1
222000
222000
222000

1

1
1
1

Possible matrix layouts

2D block cyclic:

100 17

1

0 0

2 2332233

223322 3 3

0 0

.1

0

22332233

223322 3 3

Possible matrix layouts

1D column blocked: bad load balance

1D column cyclic: hard to use BLAS2/3

1D column block cyclic: factoring column is a bottleneck
Block skewed (a la Cannon): just complicated

2D row/column block: bad load balance

2D row/column block cyclic: win!

v

v

v

v

v

v

Distributed GEPP

Find pivot (column broadcast)

Distributed GEPP

Swap pivot row within block column + broadcast pivot

Distributed GEPP

Update within block column

Distributed GEPP

A
Y

A
Y

A

S

At end of block, broadcast swap info along rows

Distributed GEPP

Apply all row swaps to other columns

Distributed GEPP

Y

Broadcast block L right

Distributed GEPP

Update remainder of block row

Distributed GEPP

Broadcast rest of block row down

Distributed GEPP

Y

Y

Broadcast rest of block col right

Distributed GEPP

Update of trailing submatrix

Cost of ScaLAPACK GEPP

Communication costs:
» Lower bound: O(n?/+/P) words, O(/P) messages
» ScalLAPACK:
» O(n?log P/+/P) words sent

» O(nlog p) messages
» Problem: reduction to find pivot in each column

» Recent research on stable variants without partial pivoting

What if you don’t care about dense Gaussian elimination?
Let’s review some ideas in a different setting...

Floyd-Warshall

Goal: Find shortest path lengths between all node pairs.
Idea: Dynamic programming! Define
d,j.k) = shortest path i to j with intermediates in {1, ..., k}.

Then (k) (k=1) (k1) y(k=1)
df) = min (o™, iV + dff V)

and d,ﬁ.”) is the desired shortest path length.

The same and different

Floyd’s algorithm for all-pairs shortest paths:

for k=1l:n
for 1 =
for J

i

Unpivoted Gaussian elimination (overwriting A):

for k=1l:n
for i = k+l:n
A(i,k) = A(i,k) / A(k,k);
for j = k+l:n
A(i,3J) = A(i,3)-A(Li,k)*A(k,]);

The same and different

v

The same: O(n®) time, O(n?) space
The same: can’t move k loop (data dependencies)

» ... at least, can’t without care!
» Different from matrix multiplication
The same: x,./(.k) = f(x,;-k_”,g (X,&kq),x,sj’-(_”))
» Same basic dependency pattern in updates!
» Similar algebraic relations satisfied

Different: Update to full matrix vs trailing submatrix

v

v

v

How far can we get?

How would we
» Write a cache-efficient (blocked) serial implementation?
» Write a message-passing parallel implementation?

The full picture could make a fun class project...

Onward!

Next up: Sparse linear algebra and iterative solvers!

