
Bindel, Spring 2016 Numerical Analysis (CS 4220)

Notes for 2016-02-26

A cautionary tale

You have been dropped on a desert island with a laptop with a magic battery
of infinite life, a MATLAB license, and a complete lack of knowledge of soem
basic geometry. In particular, while you know about least squares fitting,
you have forgotten how to compute the perimeter of a square. You vaguely
feel that it ought to be related to the perimeter or side length, though, so
you set up the following model:

perimeter = α · side length + β · diagonal.

After measuring several squares, you set up a least squares system Ax = b;
with your real eyes, you know that this must look like

A =
[
s
√

2s
]
, b = 4s

where s is a vector of side lengths. The normal equations are therefore

ATA = ‖s‖2
[

1
√

2√
2 2

]
, AT b = ‖s‖2

[
4

4
√

2

]
.

This system does have a solution; the problem is that it has far more than
one. The equations are singular, but consistent. We have no data that would
lead us to prefer to write p = 4s or p = 2

√
2d or something in between. The

fitting problem is ill-posed.
We deliberately started with an extreme case, but some ill-posedness is

common in least squares problems. As a more natural example, suppose that
we measure the height, waist girth, chest girth, and weight of a large number
of people, and try to use these factors to predict some other factor such as
proclivity to heart disease. Naive linear regression – or any other naively
applied statistical estimation technique – is likely to run into trouble, as the
height, weight, and girth measurements are highly correlated. It is not that
we cannot fit a good linear model; rather, we have too many models that
are each almost as good as the others at fitting the data! We need a way to
choose between these models, and this is the point of regularization.



Bindel, Spring 2016 Numerical Analysis (CS 4220)

Bias-variance tradeoffs in the matrix setting

Least squares is often used to fit a model to be used for prediction in the
future. In learning theory, there is a notion of bias-variance decomposition
of the prediction error: the prediction error consists of a bias term due to
using a space of models that does not actually fit the data, and a term that
is related to variance in the model as a function of measurement noise on
the input. These are concepts that we can connect concretely to the type of
sensitivity analysis we have seen before, a task we turn to now.

Suppose A ∈ RM×n is a matrix of factors that we wish to use in predicting
the entries of b ∈ RM via the linear model

Ax ≈ b.

We partition A and b into the first m rows (where we have observations) and
the remaining M −m rows (where we wish to use the model for prediction):

A =

[
A1

A2

]
, b =

[
b1
be

]
If we could access all of b, we would compute x by the least square problem

Ax = b+ r, r ⊥ R(A).

In practice, we are given only A1 and b1 + e where e is a vector of random
errors, and we fit the model coefficients x̂ by solving

minimize ‖A1x̂− (b1 + e)‖2.

Our question, then: what is the least squared error in using x̂ for prediction,
and how does it compare to the best error possible? That is, what is the
relation between ‖Ax̂− b‖2 and ‖r‖2?

Note that
Ax̂− b = A(x̂− x) + r

and by the Pythagorean theorem and orthogonality of the residual,

‖Ax̂− b‖2 = ‖A(x̂− x)‖2 + ‖r‖2.

The term ‖r̂‖2 is the (squared) bias term, the part of the error that is due
to lack of power in our model. The term ‖A(x̂ − x)‖2 is the variance term,



Bindel, Spring 2016 Numerical Analysis (CS 4220)

and is associated with sensitivity of the fitting process. If we dig further into
this, we can see that

x = A†1(b1 + r1) x̂ = A†1(b1 + e),

and so
‖A(x̂− x)‖2 = ‖AA†1(e− r1)‖2

Taking norm bounds, we find

‖A(x̂− x)‖ ≤ ‖A‖‖A†1‖(‖e‖+ ‖r1)‖),

and putting everything together,

‖Ax̂− b‖ ≤ (1 + ‖A‖‖A†1‖)‖r‖+ ‖A‖‖A†1‖‖e‖.

If there were no measurement error e, we would have a quasi-optimality
bound saying that the squared error in prediction via x̂ is within a factor of
1 + ‖A‖‖A†1‖ of the best squared error available for any similar model. If we
scale the factor matrix A so that ‖A‖ is moderate in size, everything boils
down to ‖A†1‖.

When ‖A†1‖ is large, the problem of fitting to training data is ill-posed,
and the accuracy can be compromised. What can we do? As we discussed
in the last section, the problem with ill-posed problems is that they admit
many solutions of very similar quality. In order to distinguish between these
possible solutions to find a model with good predictive power, we consider
regularization: that is, we assume that the coefficient vector x is not too large
in norm, or that it is sparse. Different statistical assumptions give rise to
different regularization strategies; for the current discussion, we shall focus
on the computational properties of a few of the more common regularization
strategies without going into the details of the statistical assumptions. In
particular, we consider four strategies in turn

1. Factor selection via pivoted QR.

2. Tikhonov regularization and its solution.

3. Truncated SVD regularization.

4. `1 regularization or the lasso.



Bindel, Spring 2016 Numerical Analysis (CS 4220)

Factor selection and pivoted QR

In ill-conditioned problems, the columns of A are nearly linearly depen-
dent; we can effectively predict some columns as linear combinations of other
columns. The goal of the column pivoted QR algorithm is to find a set of
columns that are “as linearly independent as possible.” This is not such a
simple task, and so we settle for a greedy strategy: at each step, we select
the column that is least well predicted (in the sense of residual norm) by
columns already selected. This leads to the pivoted QR factorization

AΠ = QR

where Π is a permutation and the diagonal entries of R appear in descending
order (i.e. r11 ≥ r22 ≥ . . .). To decide on how many factors to keep in
the factorization, we either automatically take the first k or we dynamically
choose to take k factors where rkk is greater than some tolerance and rk+1,k+1

is not.
The pivoted QR approach has a few advantages. It yields parsimonious

models that predict from a subset of the columns of A – that is, we need to
measure fewer than n factors to produce an entry of b in a new column. It
can also be computed relatively cheaply, even for large matrices that may be
sparse.

Tikhonov

A second approach is to say that we want a model in which the coefficients
are not too large. To accomplish this, we add a penalty term to the usual
least squares problem:

minimize ‖Ax− b‖2 + λ2‖x‖2.

Equivalently, we can write

minimize

∥∥∥∥[AλI
]
x−

[
b
0

]∥∥∥∥2 ,
which leads to the regularized version of the normal equations

(ATA+ λ2I)x = AT b.



Bindel, Spring 2016 Numerical Analysis (CS 4220)

In some cases, we may want to regularize with a more general norm ‖x‖2M =
xTMx where M is symmetric and positive definite, which leads to the regu-
larized equations

(ATA+ λ2M)x = AT b.

If we know of no particular problem structure in advance, the standard choice
of M = I is a good default.

It is useful to compare the usual least squares solution to the regularized
solution via the SVD. If A = UΣV T is the economy SVD, then

xLS = V Σ−1UT b

xT ik = V f(Σ)−1UT b

where

f(σ) =
1√

σ−1 + λ2
.

This filter of the inverse singular values affects the larger singular values only
slightly, but damps the effect of very small singular values.

Truncated SVD

The Tikhonov filter reduces the effect of small singular values on the solu-
tion, but it does not eliminate that effect. By contrast, the truncated SVD
approach uses the filter

f(z) =

{
z, z > σmin

∞, otherwise.

In other words, in the truncated SVD approach, we use

x = VkΣ−1k UT
k b

where Uk and Vk represent the leading k columns of U and V , respectively,
while Σk is the diagonal matrix consisting of the k largest singular values.

`1 and the lasso

An alternative to Tikhonov regularization (based on a Euclidean norm of the
coefficient vector) is an `1 regularized problem

minimize ‖Ax− b‖2 + λ‖x‖1.



Bindel, Spring 2016 Numerical Analysis (CS 4220)

This is sometimes known as the “lasso” approach. The `1 regularized problem
has the property that the solutions tend to become sparse as λ becomes
larger. That is, the `1 regularization effectively imposes a factor selection
process like that we saw in the pivoted QR approach. Unlike the pivoted
QR approach, however, the `1 regularized solution cannot be computed by
one of the standard factorizations of numerical linear algebra. Instead, one
treats it as a more general convex optimization problem. We will discuss
some approaches to the solution of such problems later in the semester.

Tradeoffs and tactics

All four of the regularization approaches we have described are used in prac-
tice, and each has something to recommend it. The pivoted QR approach is
relatively inexpensive, and it results in a model that depends on only a few
factors. If taking the measurements to compute a prediction costs money
— or even costs storage or bandwidth for the factor data! — such a model
may be to our advantage. The Tikhonov approach is likewise inexpensive,
and has a nice Bayesian interpretation (though we didn’t talk about it). The
truncated SVD approach involves the best approximation rank k approxi-
mation to the original factor matrix, and can be interpreted as finding the k
best factors that are linear combinations of the original measurements. The
`1 approach again produces models with sparse coefficients; but unlike QR
with column pivoting, the `1 regularized solutions incorporate information
about the vector b along with the matrix A.

So which regularization approach should one use? In terms of prediction
quality, all can provide a reasonable deterrent against ill-posedness and over-
fitting due to highly correlated factors. Also, all of the methods described
have a parameter (the number of retained factors, or a penalty parameter
λ) that governs the tradeoff between how well-conditioned the fitting prob-
lem will be and the increase in bias that naturally comes from looking at a
smaller class of models. Choosing this tradeoff intelligently may be rather
more important than the specific choice of regularization strategy. A detailed
discussion of how to make this tradeoff is beyond the scope of the class; but
we will see some of the computational tricks involved in implementing specific
strategies for choosing regularization parameters before we are done.


