
Bindel, Spring 2016 Numerical Analysis (CS 4220)

Notes for 2016-02-08

Introduction

For the next few lectures, we will build tools to solve linear systems. Our
main tool will be the factorization PA = LU , where P is a permutation,
L is a unit lower triangular matrix, and U is an upper triangular matrix.
As we will see, the Gaussian elimination algorithm learned in a first linear
algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we find other ways to organize the computation.

Triangular solves

Suppose that we have computed a factorization PA = LU . How can we use
this to solve a linear system of the form Ax = b? Permuting the rows of A
and b, we have

PAx = LUx = Pb,

and therefore
x = U−1L−1Pb.

So we can reduce the problem of finding x to two simpler problems:

1. Solve Ly = Pb

2. Solve Ux = y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower
triangular), and U is upper triangular, so we can solve linear systems with
L and U involving forward and backward substitution.

As a concrete example, suppose

L =

1 0 0
2 1 0
3 2 1

 , d =

1
1
3


To solve a linear system of the form Ly = d, we process each row in turn to
find the value of the corresponding entry of y:

1. Row 1: y1 = d1

Bindel, Spring 2016 Numerical Analysis (CS 4220)

2. Row 2: 2y1 + y2 = d2, or y2 = d2 − 2y1

3. Row 3: 3y1 + 2y2 + y3 = d3, or y3 = d3 − 3y1 − 2y2

More generally, the forward substitution algorithm for solving unit lower tri-
angular linear systems Ly = d looks like

y = d;
for i=2:n

y(i) = d(i)−L(1:i−1)∗y(1:i−1)
end

Similarly, there is a backward substitution algorithm for solving upper trian-
gular linear systems Ux = d

x(n) = d(n)/U(n,n);
for i=n−1:−1:1

x(i) = (d(i)−U(i+1:n)∗x(i+1:n))/U(i,i)
end

Each of these algorithms takes O(n2) time.

Gaussian elimination by example

Let’s start our discussion of LU factorization by working through these ideas
with a concrete example:

A =

1 4 7
2 5 8
3 6 10

 .
To eliminate the subdiagonal entries a21 and a31, we subtract twice the first
row from the second row, and thrice the second row from the third row:

A(1) =

1 4 7
2 5 8
3 6 10

−

0 · 1 0 · 4 0 · 7
2 · 1 2 · 4 2 · 7
3 · 1 3 · 4 3 · 7

 =

1 4 7
0 −3 −6
0 −6 −11

 .
That is, the step comes from a rank-1 update to the matrix:

A(1) = A−

0
2
3

 [1 4 7
]
.

Bindel, Spring 2016 Numerical Analysis (CS 4220)

Another way to think of this step is as a linear transformation A(1) = M1A,
where the rows of M1 describe the multiples of rows of the original matrix
that go into rows of the updated matrix:

M1 =

 1 0 0
−2 1 0
−3 0 1

 = I −

0
2
3

 [1 0 0
]

= I − τ1e
T
1 .

Similarly, in the second step of the algorithm, we subtract twice the second
row from the third row:1 4 7

0 −3 −6
0 0 1

 =

1 0 0
0 1 0
0 −2 1

1 4 7
0 −3 −6
0 −6 −11

 =

I −
0

0
2

 [0 1 0
]A(1).

More compactly: U = (I − τ2e
T
2)A(1).

Putting everything together, we have computed

U = (I − τ2e
T
2)(I − τ1e

T
1)A.

Therefore,
A = (I − τ1e

T
1)−1(I − τ2e

T
2)−1U = LU.

Now, note that

(I − τ1e
T
1)(I + τ1e

T
1) = I − τ1e

T
1 + τ1e

T
1 − τ1e

T
1 τ1e

T
1 = I,

since eT1 τ1 (the first entry of τ1) is zero. Therefore,

(I − τ1e
T
1)−1 = (I + τ1e

T
1)

Similarly,
(I − τ2e

T
2)−1 = (I + τ2e

T
2)

Thus,
L = (I + τ1e

T
1)(I + τ2e

T
2).

Now, note that because τ2 is only nonzero in the third element, eT1 τ2 = 0;
thus,

L = (I + τ1e
T
1)(I + τ2e

T
2)

= (I + τ1e
T
1 + τ2e

T
2 + τ1(e

T
1 τ2)e

T
2

= I + τ1e
T
1 + τ2e

T
2

=

1 0 0
0 1 0
0 0 1

+

0 0 0
2 0 0
3 0 0

+

0 0 0
0 0 0
0 2 0

 =

1 0 0
2 1 0
3 2 1

 .

Bindel, Spring 2016 Numerical Analysis (CS 4220)

The final factorization is

A =

1 4 7
2 5 8
3 6 10

 =

1 0 0
2 1 0
3 2 1

1 4 7
0 −3 −6
0 0 1

 = LU.

The subdiagonal elements of L are easy to read off: for j > i, lij is the
multiple of row j that we subtract from row i during elimination. This
means that it is easy to read off the subdiagonal entries of L during the
elimination process.

Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for LU fac-
torization. We will leave the issue of pivoting to a later discussion. We’ll
start with a purely loop-based implementation:

%
% Overwrites A with an upper triangular factor U, keeping track of
% multipliers in the matrix L.
%
function [L,A] = mylu(A)

n = length(A);
L = eye(n);
for j=1:n−1
for i=j+1:n

% Figure out multiple of row j to subtract from row i
L(i , j) = A(i,j)/A(j, j);

% Subtract off the appropriate multiple
A(i, j) = 0
for k=j+1:n

A(i,k) = A(i,k) − L(i,j)∗A(j,k);
end

end
end

Bindel, Spring 2016 Numerical Analysis (CS 4220)

We can write the two innermost loops more concisely in terms of a Gauss
transformation Mj = I − τje

T
j , where τj is the vector of multipliers that

appear when eliminating in column j:

%
% Overwrites A with an upper triangular factor U, keeping track of
% multipliers in the matrix L.
%
function [L,A] = mylu(A)

n = length(A);
L = eye(n);
for j=1:n−1

% Form vector of multipliers
L(j+1:n,j) = A(j+1:n,j)/A(j,j);

% Apply Gauss transformation
A(j+1:n,j) = 0;
A(j+1:n,j+1:n) = A(j+1:n,j+1:n)−L(j+1:n,j)∗A(j,j+1:n);

end

Bindel, Spring 2016 Numerical Analysis (CS 4220)

Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find A−1 using Gaussian elimination. Compare the
cost of solving a linear system by computing and multiplying by A−1

to the cost of doing Gaussian elimination and two triangular solves.

3. Consider a parallelipiped in R3 whose sides are given by the columns of
a 3-by-3 matrix A. Interpret LU factorization geometrically, thinking
of Gauss transformations as shearing operations. Using the fact that
shear transformations preserve volume, give a simple expression for tne
volume of the parallelipiped.

