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Stability of LU and iterative refinement

Gaussian elimination with partial pivoting is almost always backward stable
in practice, but there are examples where it fails to be backward stable.
Remember that backward stability in this case means that if L̂ and Û are
the computed factors, then

P (A+ E)− L̂Û , ‖E‖ ≤ Cεmach‖A‖

where C is some modest value that depends polynomially on the size of A.
It is possible to diagnose failure of backward stability by looking at the

quantities appearing during the LU factorization. But a more useful trick is
to look at the residual error1

r = b− Ax̂.

where x̂ is an approximate solution computed from the LU factors that are
actually stored in the machine. Note that

r = A(x− x̂)

and by combining the inequalities

‖x̂− x‖ ≤ ‖A−1‖‖r‖
‖b‖ ≥ ‖A‖‖x‖

we have
‖hatx− x‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

.

Of course, if we compute the residual in ordinary floating point, we might
be concerned that the computed residual mostly consists of rounding error.
On the other hand, unlike Gaussian elimination, we have a backward error
analysis for matrix multiplication that does not suffer from the uncomfortable

1Or should it be Ax̂− b? Doesn’t really matter much, so long as I’m internally consis-
tent. In any event, we’re often concerned with the magnitude of the residual, and not the
direction.



Bindel, Spring 2015 Numerical Analysis (CS 4220)

caveat “it is backward stable except rarely, when it it isn’t.” Also, the cost
of computing the residual is O(n2), unlike the O(n3) cost to compute an
LU factorization; hence, we might be willing to pay a little to compute the
residual with extra precision.

What do we do if we have a factorization with a not-tiny backward error?
After checking the residual to see that the error is unacceptably large, we
might want a way of fixing the problem. One method for doing this is iterative
refinement, which relies on the idea that a mediocre factorization may still
provide a lot of value. The key to iterative refinement is the observation that
if x̂ is an approximate solution, then

A(x− x̂) = r,

or x = x̂ + A−1r. If we replace A−1 an approximation Â−1 that comes from
solving the system with an approximate factorization, we have the fixed point
iteration

x(k+1) = x(k) + Â−1(b− Ax(k)).

We have already looked at the analysis of fixed point iterations in 1D; here,
the analysis is not much different. Subtract the fixed point equation

x = x+ Â−1(b− Ax),

and we find
e(k+1) = (I − Â−1A)e(k).

Taking norms, we find that the rate of convergence of the iteration depends
on ‖I − Â−1A‖. In most cases, this is small enough for an approximate
factorization that iterative refinement restores backward stability of the result
in one step. Of course, just because the result is backward stable doesn’t
mean that the forward error will be small! Hence, for ill-conditioned problems
it is sometimes a good idea to use iterative refinement in which the residuals
are computed with extra precision.


