Complex Symmetric Matrices

David Bindel

UC Berkeley, CS Division

Complex Symmetric Matrices - p. 1/30

Outline

- Why complex symmetry?
- Properties of complex symmetric matrices
- Projection of complex symmetric matrices
- Structure preservation and the QEP connection

Complex symmetric matrices appear in complex analysis:

- Grunsky inequality (Horn and Johnson):
 - *f* regular analytic on unit disk, normalized
 - Define $B(z) = B(z)^T$, $A(z) = A(z)^H$ s.t. f is 1-1 iff

$$x^{H}A(z)x \ge |x^{T}B(z)x|$$

for all $x, z \in \mathbb{C}^n$ s.t. $|z_i| < 1$.

- Moment problems (Horn and Johnson)
 - Given $\{a_0, a_1, \ldots\} \in \mathbb{C}$
 - Define complex symm Hankel matrices $A_{2n} \in \mathbb{C}^{2n \times 2n}$
 - a_i are Fourier coeff for a bounded function iff for all n

$$|x^T A_{2n} x| \le c x^H x$$
 all $x \in \mathbb{C}^{2n}$

... and in data fitting and quadrature applications:

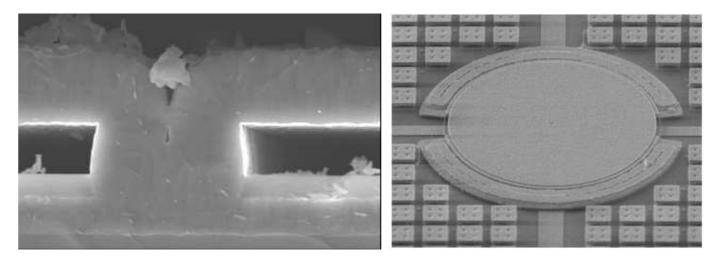
- Exponential fitting (Vandevoore; Luk and Qiao)
 - Given signals s_0, \ldots, s_n
 - Find $\{a_i\}$, $\{z_i\}$, and smallest r so

$$s_k = \sum_{i=1}^r a_i z_i^k$$

- Turns into a complex-symm tridiagonal eigenproblem
- Quadrature (Ammar, Calvetti, Reichel)
 - Real symm tridiagonal eigenproblem \implies Gauss quadrature rules (Golub-Welsch algorithm)
 - Complex-symm tridiagonal eigenproblem ⇒
 Gauss-Kronrod with complex nodes or neg weights Complex Symmetric Matrices - p. 4/30

... and in physical problems with damped resonances:

- Problems with material loss:
 - Viscoelasticity via the Correspondence Principle (e.g. Christensen)
 - EM waveguide simulation in the presence of conductors (e.g. Arbenz and Hochstenbach)
- Infinite domain models:
 - Perfectly matched layer (PML)
 - First in electromagnetics (Berengér 95)
 - Then acoustics, elasticity, etc.
 - Exterior complex scaling in quantum mechanics
 - Invented earlier than PMLs (Simon 79)
 - Same idea, little mutual awareness



My interest: damping in high-freq MEMS resonators

- Want to minimize losses in RF MEMS
- Physics isn't always well-understood
- Want to compute:
 - Damped mode shapes and frequencies
 - Reduced-order models of freq response

Damped MEMS resonances

- Material losses
 - Low intrinsic losses in silicon, diamond, germanium
 - Terrible material losses in metals
- Anchor loss
 - Elastic waves radiate from structure
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Fluid damping
 - Air is a viscous fluid ($\operatorname{Re}\ll 1$)
 - Can operate in a vacuum
 - Shown not to dominate in many RF designs

Damped MEMS resonances

Material losses

- Low intrinsic losses in silicon, diamond, germanium
- Terrible material losses in metals
- Anchor loss
 - Elastic waves radiate from structure
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Fluid damping
 - Air is a viscous fluid ($\operatorname{Re}\ll 1$)
 - Can operate in a vacuum
 - Shown not to dominate in many RF designs

Viscoelastic losses

Start with time-harmonic elasticity (weak form):

$$-\omega^2 \int_{\Omega} w \cdot \rho u \, d\Omega + \int_{\Omega} \epsilon(w) : \sigma \, d\Omega = \int_{\Gamma} w \cdot t \, d\Gamma$$

where

- \checkmark u is time-harmonic displacement ($u^0 = ue^{i\omega t}$)
- $\epsilon = (\nabla u)^s$ is time-harmonic strain
- $\sigma = C : \epsilon$ is time-harmonic stress
- \bullet t is time-harmonic surface traction

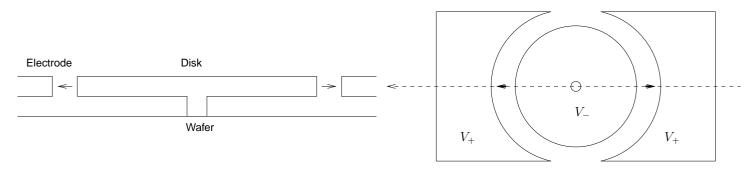
Finite element discretization is real symmetric:

$$-\omega^2 M u + K u = F$$

Viscoelastic losses

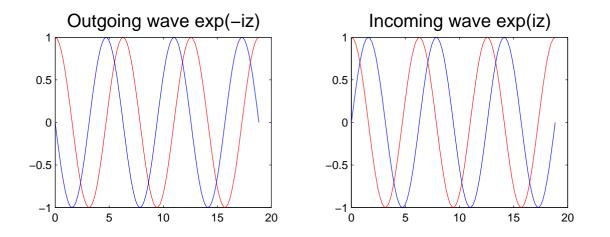
- Viscoelasticity: $\sigma = \hat{C}(\omega) : \epsilon$
 - $\hat{C}(\omega)$ = Fourier transform of relaxation kernel
 - Correspondence principle: hysteresis described through complex-valued material properties
 - Similar principle for acoustics, electromagnetics
- **Simplest case:** $\hat{C} = C + i\omega\eta I$
 - Corresponds to adding a shear viscosity η
- Finite element: $-\omega^2 M u + K(\omega)u = F$
 - $K(\omega)$ is complex symmetric
 - Simplest case: $K(\omega) = K_0 + i\omega D$

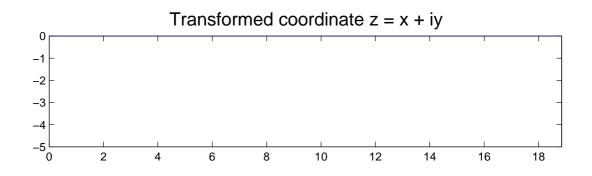
Anchor loss and PMLs

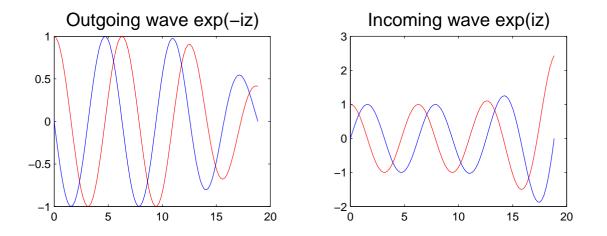


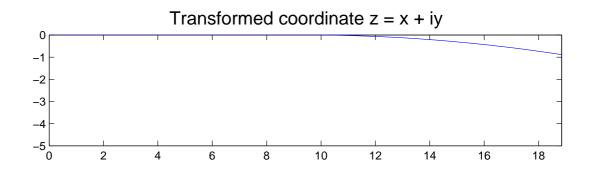
Want to model elastic radiation from resonator to substrate

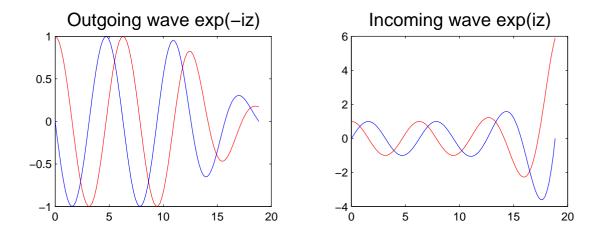
- Apply a complex coordinate transformation
- Generates a non-physical absorbing layer
- No impedance mismatch between the computational domain and the absorbing layer
- Idea works with general linear wave equations

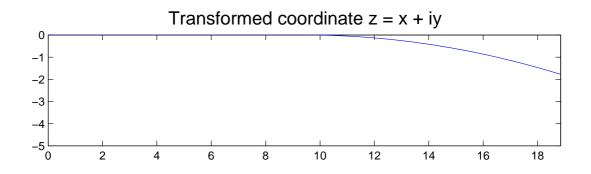


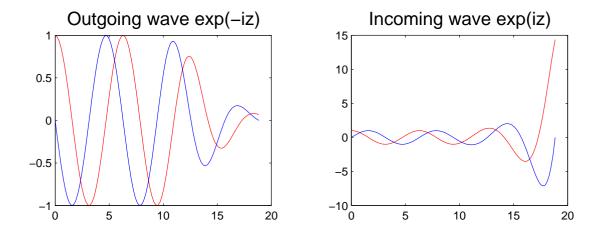


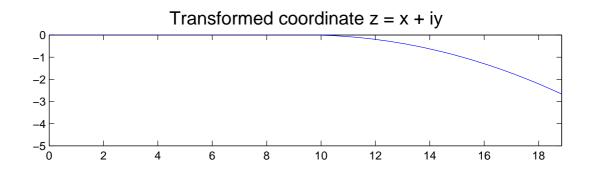


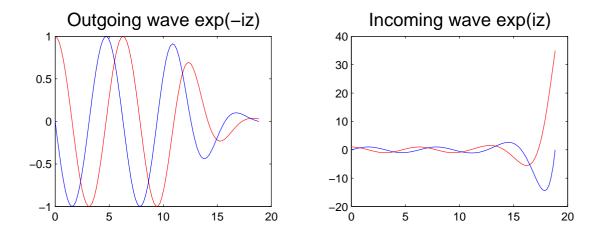




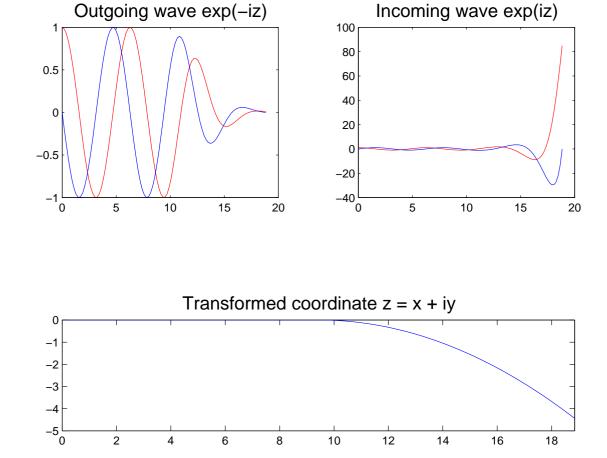












Clamp solution at transformed end to isolate outgoing wave.

Elastic PML

Weak form of time-harmonic PML equation:

$$-\omega^2 \int_{\Omega} w \cdot \rho u \, \boldsymbol{J} \, d\Omega + \int_{\Omega} \tilde{\boldsymbol{\nabla}} w : \boldsymbol{\mathsf{C}} : \tilde{\boldsymbol{\nabla}} u \, \boldsymbol{J} \, d\Omega = \int_{\Omega} w \cdot t \, d\Gamma$$

- J is the Jacobian of the transformation, $\tilde{\nabla}$ is the transformed gradient operator
- Coordinate transform typically depends on ω
 - Needed to make decay frequency-independent
- Finite element: $-\omega^2 M(\omega)u + K(\omega)u = F$
 - *M* and *K* now *both* complex symmetric

Eigenvalue problems

Consider the eigenvalue problem

$$\left(-\omega^2 M(\omega) + K(\omega)\right)u = 0$$

where M and K are complex and may depend on ω .

Can get a complex symmetric *linear* eigenproblem by

- Linearizing: $\omega = \omega_0 + \delta$, discard $O(\delta^2)$ terms
- Using $M(\omega_0)$ and $K(\omega_0)$
 - Makes sense for PML (damping usually adequate for ω the same order of magnitude as ω_0)
- Good idea when good shift is available

Eigenvalue problems

Not always approximating nonlinear eigenproblems. Can get eigenvalue problems from separation of variables.

- Continuous translational symmetry
 - Infinite guide, constant cross-section
 - Fixed forcing frequency
- Discrete translational symmetry (Bloch-Floquet waves)
 - SAW filter arrays (Zaglymayr, Sch oberl, Langer)
 - Electromagnetic filters

Complex symmetric eigenproblem

Thm: Every matrix is similar to a complex symmetric matrix.

- Can have arbitrary Jordan structure
- Complex symmetry is still useful

Analogues exist for many statements about Hermitian matrices (see Horn and Johnson, section 4.4).

Complex symmetric eigenproblem

- If z is a column eigenvector, then z^T is a row eigenvector
- The modified Rayleigh quotient

$$\theta(z) = \frac{z^T K z}{z^T M z}$$

is stationary at eigenvectors (assuming $z^T M z \neq 0$); at an eigenvector, θ equals the eigenvalue.

- Eigenvectors for distinct eigenvalues are *complex* orthogonal: $z^T M w = 0$.
- But the nice minimax results of the Hermitian case lack analogues here.

Ordinary and modified RQ

$$\ \, \rho(z) = \frac{z^H K z}{z^H M z}$$

- $\{z^H M z = 1\}$ is compact (for M pos def) $\implies \rho$ has bounded range (field of values)
- Only first-order accurate eigenvalue estimate

$$\theta(z) = \frac{z^T K z}{z^T M z}$$

- $\{z^T M z = 1\}$ is non-compact, θ can generally go wild
- Second-order accurate eigenvalue estimate when z is near an eigenvalue

Physics of $z^T z = 0$

The bad case $z^T M z = 0$ (or ≈ 0) can happen

- Mimicking infinite domain means we approximate the essential spectrum
- Propogating waves give $z^T M z \approx 0$ (Olyslager 04)
- Same occurs in quantum mechanical computations
- Usually interested in the discrete part of the spectrum

Complex-symmetric projection

Algorithms:

- Complex-symmetric Lanczos (Cullum and Willoughby)
- Arnoldi
- Complex Jacobi-Davidson
- Splitting bases
- Can do spectral transformations (e.g. shift-invert)
- Can start nonlinear eigencomputation from a linear one
- Projections may be used to build reduced models, too

Complex-symmetric Lanczos

•
$$u_0 = 0, \beta_0 = 0$$

• for $j = 1$ to k
• $v := K u_j$
• $\alpha_j := u_j^T M v$
• $v := v - \alpha_j u_j - \beta_{j-1} u_{j-1}$
• $\beta_j := \sqrt{v^T M v}$
• $u_{j+1} := v/\beta_j$

Complex-symmetric Lanczos

- Half the work, storage of usual non-symmetric Lanczos
- Used for model-reduction (with proportional drive and sense), gets usual PVL matching in 2n moments
- Still has breakdown, near breakdown, woe and doom
- Has been used both for eigenproblems and for solving linear systems (Freund)
- See Eigentemplates section 7.11.

Arnoldi

- Can compute a unitary (vs complex orthogonal) Krylov subspace basis W using standard Arnoldi
 - Avoids issues with ill-conditioning in the basis
 - But requires work to orthogonalize against more previous vectors
- Once the basis is in hand:
 - Use eigenvalues of $(W^H K W, W^H M W)$
 - Usual nonsymmetric approach
 - Use eigenvalues of $(W^T K W, W^T M W)$
 - Get second-order accuracy when W contains good eigenvector estimates
 - Identical (in exact arithmetic) to estimates from nonsymmetric Lanczos.
 - Could we combine the two?

Complex-symmetric Jacobi-Davidson

- Proposed by Arbenz and Hochstenbach
- Specializes two-sided JD (half the work, storage)
- Uses modified Rayleigh quotient
- Main problem in examples was preconditioning inner solver

Basis-splitting

Let $W = U + iV \in \mathbb{C}^k$ be a basis (e.g. from Arnoldi)

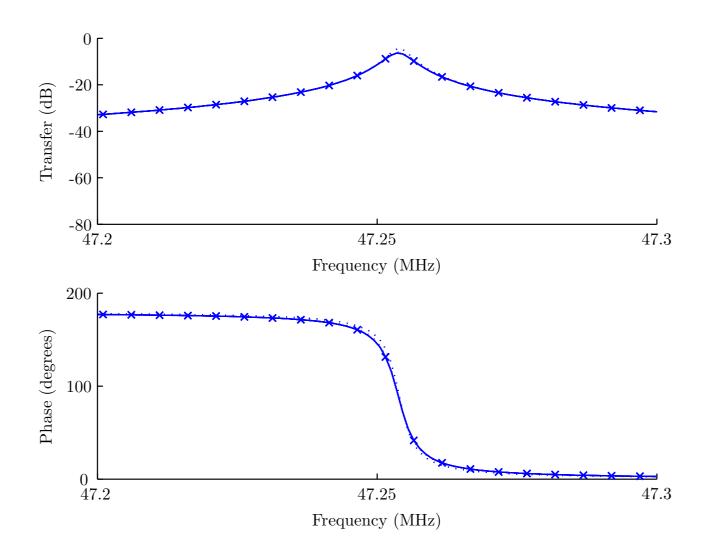
- Form $Q = \operatorname{orth}([U, V]) \in \mathbb{R}^{n \times 2k}$
 - Span of Q contains span of $[W, \overline{W}]$
- Compute eigenvalues of $(Q^T K Q, Q^T M Q)$
 - Forming $(Q^T K Q, Q^T M Q)$ not more expensive than projection with W
 - If M is pos def, Ritz values will remain bounded
 - Maintain accuracy of modified Rayleigh quotient

Basis splitting

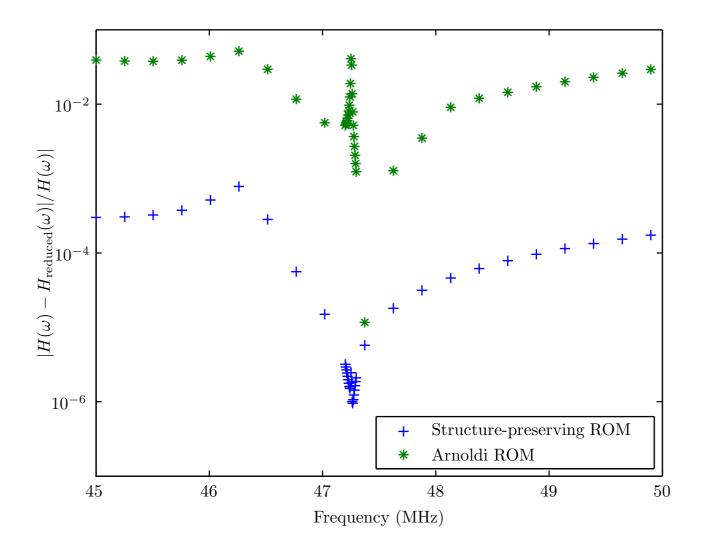
Using the split basis preserves several structures:

- Projected system remains complex symmetric
- Projection doesn't mix up real and imaginary parts
 - Real symmetries of mass, damping, stiffness preserved
- Matches Galerkin discretization of PDEs
 - Like choosing real-valued global shape functions
 - Easier to think about physically
 - Provided the original motivation for this splitting

Example: Disk resonator response



Example: Disk resonator response



Another relation to the QEP

Linearize the real QEP $(\lambda^2 I + \lambda D + K)v = 0$:

$$\begin{bmatrix} -D & -K \\ I & 0 \end{bmatrix} \begin{bmatrix} v & \bar{v} \\ \lambda v & \bar{\lambda v} \end{bmatrix} = \begin{bmatrix} v & \bar{v} \\ \lambda v & \bar{\lambda v} \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{bmatrix}$$

Map \mathbb{C} to $\mathbb{R}^{2 \times 2}$ in the standard way and consider C = A + iB:

$$\begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} z & \bar{z} \\ -iz & -\bar{i}z \end{bmatrix} = \begin{bmatrix} z & \bar{z} \\ -iz & -\bar{i}z \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{bmatrix}$$

Another relation to the QEP

- For both real form of complex symmetric eigenproblems and QEP, want to preserve structure under projection
 - Probably best to stay within original form
- For both complex symmetric eigenproblems and QEP, may want to split complex projection bases

Conclusions

- Complex symmetric systems occur in interesting places
 - Particularly in any damped resonant systems
 - Often tangled into nonlinear eigenproblems
- Can pay to exploit complex symmetry when it occurs

Further reading:

- Reduced order models in microsystems and RF MEMS (www.cs/~dbindel/papers/para04.pdf)
- Elastic PMLs for resonator anchor loss simulation (www.cs/~dbindel/papers/pml-tr.pdf)