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Why complex symmetry?

Complex symmetric matrices appear in complex analysis:

Grunsky inequality (Horn and Johnson):
f regular analytic on unit disk, normalized

Define B(z) = B(z)T , A(z) = A(z)H s.t. f is 1-1 iff

xHA(z)x ≥ |xT B(z)x|

for all x, z ∈ C
n s.t. |zi| < 1.

Moment problems (Horn and Johnson)
Given {a0, a1, . . .} ∈ C

Define complex symm Hankel matrices A2n ∈ C
2n×2n

ai are Fourier coeff for a bounded function iff for all n

|xT A2nx| ≤ cxHx all x ∈ C
2n
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Why complex symmetry?

... and in data fitting and quadrature applications:

Exponential fitting (Vandevoore; Luk and Qiao)
Given signals s0, . . . , sn

Find {ai}, {zi}, and smallest r so

sk =
r

∑

i=1

aiz
k
i

Turns into a complex-symm tridiagonal eigenproblem

Quadrature (Ammar, Calvetti, Reichel)
Real symm tridiagonal eigenproblem =⇒
Gauss quadrature rules (Golub-Welsch algorithm)
Complex-symm tridiagonal eigenproblem =⇒
Gauss-Kronrod with complex nodes or neg weights
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Why complex symmetry?

... and in physical problems with damped resonances:

Problems with material loss:
Viscoelasticity via the Correspondence Principle
(e.g. Christensen)
EM waveguide simulation in the presence of
conductors (e.g. Arbenz and Hochstenbach)

Infinite domain models:
Perfectly matched layer (PML)

First in electromagnetics (Berengér 95)
Then acoustics, elasticity, etc.

Exterior complex scaling in quantum mechanics
Invented earlier than PMLs (Simon 79)
Same idea, little mutual awareness
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Why complex symmetry?

My interest: damping in high-freq MEMS resonators

Want to minimize losses in RF MEMS

Physics isn’t always well-understood

Want to compute:
Damped mode shapes and frequencies
Reduced-order models of freq response
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Damped MEMS resonances

Material losses
Low intrinsic losses in silicon, diamond, germanium
Terrible material losses in metals

Anchor loss
Elastic waves radiate from structure

Thermoelastic damping
Volume changes induce temperature change
Diffusion of heat leads to mechanical loss

Fluid damping
Air is a viscous fluid (Re � 1)
Can operate in a vacuum
Shown not to dominate in many RF designs
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Viscoelastic losses

Start with time-harmonic elasticity (weak form):

−ω2

∫

Ω

w · ρu dΩ +

∫

Ω

ε(w) : σ dΩ =

∫

Γ

w · t dΓ

where

u is time-harmonic displacement (u0 = ueiωt)

ε = (∇u)s is time-harmonic strain

σ = C : ε is time-harmonic stress

t is time-harmonic surface traction

Finite element discretization is real symmetric:

−ω2Mu + Ku = F
Complex Symmetric Matrices – p. 8/30



Viscoelastic losses

Viscoelasticity: σ = Ĉ(ω) : ε

Ĉ(ω) = Fourier transform of relaxation kernel
Correspondence principle: hysteresis described
through complex-valued material properties
Similar principle for acoustics, electromagnetics

Simplest case: Ĉ = C + iωηI

Corresponds to adding a shear viscosity η

Finite element: −ω2Mu + K(ω)u = F

K(ω) is complex symmetric
Simplest case: K(ω) = K0 + iωD
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Anchor loss and PMLs

DiskElectrode

Wafer
V+

V
−

V+

Want to model elastic radiation from resonator to substrate

Apply a complex coordinate transformation

Generates a non-physical absorbing layer

No impedance mismatch between the computational
domain and the absorbing layer

Idea works with general linear wave equations

Complex Symmetric Matrices – p. 10/30



Scalar wave example
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Scalar wave example
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Scalar wave example
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Scalar wave example
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Scalar wave example
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Clamp solution at transformed end to isolate outgoing wave.
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Elastic PML

Weak form of time-harmonic PML equation:

−ω2

∫

Ω

w · ρu J dΩ +

∫

Ω

∇̃w : C : ∇̃u J dΩ =

∫

Ω

w · t dΓ

J is the Jacobian of the transformation, ∇̃ is the
transformed gradient operator

Coordinate transform typically depends on ω

Needed to make decay frequency-independent

Finite element: −ω2M(ω)u + K(ω)u = F

M and K now both complex symmetric

Complex Symmetric Matrices – p. 12/30



Eigenvalue problems

Consider the eigenvalue problem
(

−ω2M(ω) + K(ω)
)

u = 0

where M and K are complex and may depend on ω.

Can get a complex symmetric linear eigenproblem by

Linearizing: ω = ω0 + δ, discard O(δ2) terms

Using M(ω0) and K(ω0)

Makes sense for PML (damping usually adequate for
ω the same order of magnitude as ω0)

Good idea when good shift is available
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Eigenvalue problems

Not always approximating nonlinear eigenproblems.
Can get eigenvalue problems from separation of variables.

Continuous translational symmetry
Infinite guide, constant cross-section
Fixed forcing frequency

Discrete translational symmetry (Bloch-Floquet waves)
SAW filter arrays (Zaglymayr, Sch oberl, Langer)
Electromagnetic filters
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Complex symmetric eigenproblem

Thm: Every matrix is similar to a complex symmetric matrix.

Can have arbitrary Jordan structure

Complex symmetry is still useful

Analogues exist for many statements about Hermitian
matrices (see Horn and Johnson, section 4.4).
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Complex symmetric eigenproblem

If z is a column eigenvector, then zT is a row
eigenvector

The modified Rayleigh quotient

θ(z) =
zT Kz

zT Mz

is stationary at eigenvectors (assuming zT Mz 6= 0); at
an eigenvector, θ equals the eigenvalue.

Eigenvectors for distinct eigenvalues are complex
orthogonal : zT Mw = 0.

But the nice minimax results of the Hermitian case lack
analogues here.
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Ordinary and modified RQ

ρ(z) = zHKz
zHMz

{zHMz = 1} is compact (for M pos def) =⇒
ρ has bounded range (field of values)
Only first-order accurate eigenvalue estimate

θ(z) = zT Kz
zT Mz

{zT Mz = 1} is non-compact, θ can generally go wild
Second-order accurate eigenvalue estimate when z
is near an eigenvalue
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Physics of zTz = 0

The bad case zT Mz = 0 (or ≈ 0) can happen

Mimicking infinite domain means we approximate the
essential spectrum

Propogating waves give zT Mz ≈ 0 (Olyslager 04)

Same occurs in quantum mechanical computations

Usually interested in the discrete part of the spectrum

Complex Symmetric Matrices – p. 18/30



Complex-symmetric projection

Algorithms:
Complex-symmetric Lanczos (Cullum and
Willoughby)
Arnoldi
Complex Jacobi-Davidson
Splitting bases

Can do spectral transformations (e.g. shift-invert)

Can start nonlinear eigencomputation from a linear one

Projections may be used to build reduced models, too
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Complex-symmetric Lanczos

u0 = 0, β0 = 0

for j = 1 to k

v := Kuj

αj := uT
j Mv

v := v − αjuj − βj−1uj−1

βj :=
√

vT Mv

uj+1 := v/βj
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Complex-symmetric Lanczos

Half the work, storage of usual non-symmetric Lanczos

Used for model-reduction (with proportional drive and
sense), gets usual PVL matching in 2n moments

Still has breakdown, near breakdown, woe and doom

Has been used both for eigenproblems and for solving
linear systems (Freund)

See Eigentemplates section 7.11.
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Arnoldi

Can compute a unitary (vs complex orthogonal) Krylov
subspace basis W using standard Arnoldi

Avoids issues with ill-conditioning in the basis
But requires work to orthogonalize against more
previous vectors

Once the basis is in hand:
Use eigenvalues of (WHKW, WHMW )

Usual nonsymmetric approach

Use eigenvalues of (W T KW, W T MW )
Get second-order accuracy when W contains
good eigenvector estimates
Identical (in exact arithmetic) to estimates from
nonsymmetric Lanczos.

Could we combine the two?
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Complex-symmetric Jacobi-Davidson

Proposed by Arbenz and Hochstenbach

Specializes two-sided JD (half the work, storage)

Uses modified Rayleigh quotient

Main problem in examples was preconditioning inner
solver
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Basis-splitting

Let W = U + iV ∈ C
k be a basis (e.g. from Arnoldi)

Form Q = orth([U, V ]) ∈ R
n×2k

Span of Q contains span of [W, W̄ ]

Compute eigenvalues of (QT KQ, QT MQ)

Forming (QT KQ, QT MQ) not more expensive than
projection with W

If M is pos def, Ritz values will remain bounded
Maintain accuracy of modified Rayleigh quotient
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Basis splitting

Using the split basis preserves several structures:

Projected system remains complex symmetric

Projection doesn’t mix up real and imaginary parts
Real symmetries of mass, damping, stiffness
preserved

Matches Galerkin discretization of PDEs
Like choosing real-valued global shape functions
Easier to think about physically
Provided the original motivation for this splitting
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Example: Disk resonator response
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Example: Disk resonator response

PSfrag replacements
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Another relation to the QEP

Linearize the real QEP (λ2I + λD + K)v = 0:
[

−D −K

I 0

] [

v v̄

λv λ̄v

]

=

[

v v̄

λv λ̄v

] [

λ 0

0 λ̄

]

Map C to R
2×2 in the standard way and consider

C = A + iB:
[

A −B

B A

] [

z z̄

−iz −̄iz

]

=

[

z z̄

−iz −̄iz

] [

λ 0

0 λ̄

]
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Another relation to the QEP

For both real form of complex symmetric eigenproblems
and QEP, want to preserve structure under projection

Probably best to stay within original form

For both complex symmetric eigenproblems and QEP,
may want to split complex projection bases
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Conclusions

Complex symmetric systems occur in interesting places
Particularly in any damped resonant systems
Often tangled into nonlinear eigenproblems

Can pay to exploit complex symmetry when it occurs

Further reading:

Reduced order models in microsystems and RF MEMS
(www.cs/∼dbindel/papers/para04.pdf)

Elastic PMLs for resonator anchor loss simulation
(www.cs/∼dbindel/papers/pml-tr.pdf)
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