Complex Symmetric Matrices

David Bindel

UC Berkeley, CS Division

Outline

- Why complex symmetry?
- Properties of complex symmetric matrices
- Projection of complex symmetric matrices
- Structure preservation and the QEP connection

Why complex symmetry?

Complex symmetric matrices appear in complex analysis:

- Grunsky inequality (Horn and Johnson):
- f regular analytic on unit disk, normalized
- Define $B(z)=B(z)^{T}, A(z)=A(z)^{H}$ s.t. f is 1-1 iff

$$
x^{H} A(z) x \geq\left|x^{T} B(z) x\right|
$$

for all $x, z \in \mathbb{C}^{n}$ s.t. $\left|z_{i}\right|<1$.

- Moment problems (Horn and Johnson)
- Given $\left\{a_{0}, a_{1}, \ldots\right\} \in \mathbb{C}$
- Define complex symm Hankel matrices $A_{2 n} \in \mathbb{C}^{2 n \times 2 n}$
- a_{i} are Fourier coeff for a bounded function iff for all n

$$
\left|x^{T} A_{2 n} x\right| \leq c x^{H} x \text { all } x \in \mathbb{C}^{2 n}
$$

Why complex symmetry?

... and in data fitting and quadrature applications:

- Exponential fitting (Vandevoore; Luk and Qiao)
- Given signals s_{0}, \ldots, s_{n}
- Find $\left\{a_{i}\right\},\left\{z_{i}\right\}$, and smallest r so

$$
s_{k}=\sum_{i=1}^{r} a_{i} z_{i}^{k}
$$

- Turns into a complex-symm tridiagonal eigenproblem
- Quadrature (Ammar, Calvetti, Reichel)
- Real symm tridiagonal eigenproblem \Longrightarrow Gauss quadrature rules (Golub-Welsch algorithm)
- Complex-symm tridiagonal eigenproblem \Longrightarrow Gauss-Kronrod with complex nodes or neg weights

Why complex symmetry?

... and in physical problems with damped resonances:

- Problems with material loss:
- Viscoelasticity via the Correspondence Principle (e.g. Christensen)
- EM waveguide simulation in the presence of conductors (e.g. Arbenz and Hochstenbach)
- Infinite domain models:
- Perfectly matched layer (PML)
- First in electromagnetics (Berengér 95)
- Then acoustics, elasticity, etc.
- Exterior complex scaling in quantum mechanics
- Invented earlier than PMLs (Simon 79)
- Same idea, little mutual awareness

Why complex symmetry?

My interest: damping in high-freq MEMS resonators

- Want to minimize losses in RF MEMS
- Physics isn't always well-understood
- Want to compute:
- Damped mode shapes and frequencies
- Reduced-order models of freq response

Damped MEMS resonances

- Material losses
- Low intrinsic losses in silicon, diamond, germanium
- Terrible material losses in metals
- Anchor loss
- Elastic waves radiate from structure
- Thermoelastic damping
- Volume changes induce temperature change
- Diffusion of heat leads to mechanical loss
- Fluid damping
- Air is a viscous fluid $(\operatorname{Re} \ll 1)$
- Can operate in a vacuum
- Shown not to dominate in many RF designs

Damped MIEMS resonances

- Material losses
- Low intrinsic losses in silicon, diamond, germanium
- Terrible material losses in metals
- Anchor loss
- Elastic waves radiate from structure
- Thermoelastic damping
- Volume changes induce temperature change
- Diffusion of heat leads to mechanical loss
- Fluid damping
- Air is a viscous fluid $(\operatorname{Re} \ll 1)$
- Can operate in a vacuum
- Shown not to dominate in many RF designs

Viscoelastic losses

Start with time-harmonic elasticity (weak form):

$$
-\omega^{2} \int_{\Omega} w \cdot \rho u d \Omega+\int_{\Omega} \epsilon(w): \sigma d \Omega=\int_{\Gamma} w \cdot t d \Gamma
$$

where

- u is time-harmonic displacement $\left(u^{0}=u e^{i \omega t}\right)$
- $\epsilon=(\nabla u)^{s}$ is time-harmonic strain
- $\sigma=\mathrm{C}: \epsilon$ is time-harmonic stress
- t is time-harmonic surface traction

Finite element discretization is real symmetric:

$$
-\omega^{2} M u+K u=F
$$

Viscoclastic losses

- Viscoelasticity: $\sigma=\hat{\mathrm{C}}(\omega): \epsilon$
- $\hat{C}(\omega)=$ Fourier transform of relaxation kernel
- Correspondence principle: hysteresis described through complex-valued material properties
- Similar principle for acoustics, electromagnetics
- Simplest case: $\hat{C}=C+i \omega \eta$ l
- Corresponds to adding a shear viscosity η
- Finite element: $-\omega^{2} M u+K(\omega) u=F$
- $K(\omega)$ is complex symmetric
- Simplest case: $K(\omega)=K_{0}+i \omega D$

Anchor loss and PMLs

Want to model elastic radiation from resonator to substrate

- Apply a complex coordinate transformation
- Generates a non-physical absorbing layer
- No impedance mismatch between the computational domain and the absorbing layer
- Idea works with general linear wave equations

Scalar wave example

Transformed coordinate $z=x+i y$

Scalar wave example

Transformed coordinate $z=x+i y$

Scalar wave example

Transformed coordinate $z=x+i y$

Clamp solution at transformed end to isolate outgoing wave.

Elastic PML

Weak form of time-harmonic PML equation:

$$
-\omega^{2} \int_{\Omega} w \cdot \rho u J d \Omega+\int_{\Omega} \tilde{\nabla} w: \mathrm{C}: \tilde{\nabla} u J d \Omega=\int_{\Omega} w \cdot t d \Gamma
$$

- J is the Jacobian of the transformation, $\tilde{\nabla}$ is the transformed gradient operator
- Coordinate transform typically depends on ω
- Needed to make decay frequency-independent
- Finite element: $-\omega^{2} M(\omega) u+K(\omega) u=F$
- M and K now both complex symmetric

Eigenvalue problems

Consider the eigenvalue problem

$$
\left(-\omega^{2} M(\omega)+K(\omega)\right) u=0
$$

where M and K are complex and may depend on ω.
Can get a complex symmetric linear eigenproblem by

- Linearizing: $\omega=\omega_{0}+\delta$, discard $O\left(\delta^{2}\right)$ terms
- Using $M\left(\omega_{0}\right)$ and $K\left(\omega_{0}\right)$
- Makes sense for PML (damping usually adequate for ω the same order of magnitude as ω_{0})
- Good idea when good shift is available

Eigenvalue problems

Not always approximating nonlinear eigenproblems.
Can get eigenvalue problems from separation of variables.

- Continuous translational symmetry
- Infinite guide, constant cross-section
- Fixed forcing frequency
- Discrete translational symmetry (Bloch-Floquet waves)
- SAW filter arrays (Zaglymayr, Sch oberl, Langer)
- Electromagnetic filters

Complex symmetric eigenproblem

Thm: Every matrix is similar to a complex symmetric matrix.

- Can have arbitrary Jordan structure
- Complex symmetry is still useful

Analogues exist for many statements about Hermitian matrices (see Horn and Johnson, section 4.4).

Complex symmetric eigenproblem

- If z is a column eigenvector, then z^{T} is a row eigenvector
- The modified Rayleigh quotient

$$
\theta(z)=\frac{z^{T} K z}{z^{T} M z}
$$

is stationary at eigenvectors (assuming $z^{T} M z \neq 0$); at an eigenvector, θ equals the eigenvalue.

- Eigenvectors for distinct eigenvalues are complex orthogonal: $z^{T} M w=0$.
- But the nice minimax results of the Hermitian case lack analogues here.

Ordinary and modified RQ

- $\rho(z)=\frac{z^{H} K z}{z^{H} M z}$
- $\left\{z^{H} M z=1\right\}$ is compact (for M pos def) \Longrightarrow ρ has bounded range (field of values)
- Only first-order accurate eigenvalue estimate
- $\theta(z)=\frac{z^{T} K z}{z^{T} M z}$
- $\left\{z^{T} M z=1\right\}$ is non-compact, θ can generally go wild
- Second-order accurate eigenvalue estimate when z is near an eigenvalue

Physics of $z^{T} z=0$

The bad case $z^{T} M z=0$ (or ≈ 0) can happen

- Mimicking infinite domain means we approximate the essential spectrum
- Propogating waves give $z^{T} M z \approx 0$ (Olyslager 04)
- Same occurs in quantum mechanical computations
- Usually interested in the discrete part of the spectrum

Complex-symmetric projection

- Algorithms:
- Complex-symmetric Lanczos (Cullum and Willoughby)
- Arnoldi
- Complex Jacobi-Davidson
- Splitting bases
- Can do spectral transformations (e.g. shift-invert)
- Can start nonlinear eigencomputation from a linear one
- Projections may be used to build reduced models, too

Complex-symmetric Lanczos

- $u_{0}=0, \beta_{0}=0$
- for $j=1$ to k
- $v:=K u_{j}$
- $\alpha_{j}:=u_{j}^{T} M v$
- $v:=v-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}$
- $\beta_{j}:=\sqrt{v^{T} M v}$
- $u_{j+1}:=v / \beta_{j}$

Complex-symmetric Lanczos

- Half the work, storage of usual non-symmetric Lanczos
- Used for model-reduction (with proportional drive and sense), gets usual PVL matching in $2 n$ moments
- Still has breakdown, near breakdown, woe and doom
- Has been used both for eigenproblems and for solving linear systems (Freund)
- See Eigentemplates section 7.11.

Arnoldi

- Can compute a unitary (vs complex orthogonal) Krylov subspace basis W using standard Arnoldi
- Avoids issues with ill-conditioning in the basis
- But requires work to orthogonalize against more previous vectors
- Once the basis is in hand:
- Use eigenvalues of $\left(W^{H} K W, W^{H} M W\right)$
- Usual nonsymmetric approach
- Use eigenvalues of ($\left.W^{T} K W, W^{T} M W\right)$
- Get second-order accuracy when W contains good eigenvector estimates
- Identical (in exact arithmetic) to estimates from nonsymmetric Lanczos.
- Could we combine the two?

Complex-symmetric Jacobi-Davidson

- Proposed by Arbenz and Hochstenbach
- Specializes two-sided JD (half the work, storage)
- Uses modified Rayleigh quotient
- Main problem in examples was preconditioning inner solver

Basis-splitting

Let $W=U+i V \in \mathbb{C}^{k}$ be a basis (e.g. from Arnoldi)

- Form $Q=\operatorname{orth}([U, V]) \in \mathbb{R}^{n \times 2 k}$
- Span of Q contains span of $[W, \bar{W}]$
- Compute eigenvalues of ($Q^{T} K Q, Q^{T} M Q$)
- Forming ($Q^{T} K Q, Q^{T} M Q$) not more expensive than projection with W
- If M is pos def, Ritz values will remain bounded
- Maintain accuracy of modified Rayleigh quotient

Basis splitting

Using the split basis preserves several structures:

- Projected system remains complex symmetric
- Projection doesn't mix up real and imaginary parts
- Real symmetries of mass, damping, stiffness preserved
- Matches Galerkin discretization of PDEs
- Like choosing real-valued global shape functions
- Easier to think about physically
- Provided the original motivation for this splitting

Another relation to the QEP

Linearize the real QEP $\left(\lambda^{2} I+\lambda D+K\right) v=0$:

$$
\left[\begin{array}{cc}
-D & -K \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
v & \bar{v} \\
\lambda v & \overline{\lambda v}
\end{array}\right]=\left[\begin{array}{cc}
v & \bar{v} \\
\lambda v & \overline{\lambda v}
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & \bar{\lambda}
\end{array}\right]
$$

Map \mathbb{C} to $\mathbb{R}^{2 \times 2}$ in the standard way and consider $C=A+i B$:

$$
\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
z & \bar{z} \\
-i z & -\bar{i} z
\end{array}\right]=\left[\begin{array}{cc}
z & \bar{z} \\
-i z & -\bar{i} z
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & \bar{\lambda}
\end{array}\right]
$$

Another relation to the QEP

- For both real form of complex symmetric eigenproblems and QEP, want to preserve structure under projection - Probably best to stay within original form
- For both complex symmetric eigenproblems and QEP, may want to split complex projection bases

Conclusions

- Complex symmetric systems occur in interesting places
- Particularly in any damped resonant systems
- Often tangled into nonlinear eigenproblems
- Can pay to exploit complex symmetry when it occurs

Further reading:

- Reduced order models in microsystems and RF MEMS (www.cs/~dbindel/papers/para04.pdf)
- Elastic PMLs for resonator anchor loss simulation (www.cs/~dbindel/papers/pml-tr.pdf)

