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Compilers for accelerator design languages (ADLs) translate high-level languages into application-specific
hardware. ADL compilers rely on a hardware control interface to compose hardware units. There are two
choices: static control, which relies on cycle-level timing; or dynamic control, which uses explicit signalling
to avoid depending on timing details. Static control is efficient but brittle; dynamic control incurs hardware
costs to support compositional reasoning.

Piezo is an ADL compiler that unifies static and dynamic control in a single intermediate language (IL). Its
key insight is that the IL’s static fragment is a refinement of its dynamic fragment: static code admits a subset
of the run-time behaviors of the dynamic equivalent. Piezo can optimize code by combining facts from static
and dynamic submodules, and it opportunistically converts code from dynamic to static control styles. We
implement Piezo as an extension to an existing dynamic ADL compiler, Calyx. We use Piezo to implement
a frontend for an existing ADL, a systolic array generator, and a packet-scheduling hardware generator to
demonstrate its optimizations and the static–dynamic interactions it enables.
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1 Introduction
Accelerator design languages (ADLs) [Cong and Wang 2018; Durst et al. 2020; Hegarty et al. 2014;
Koeplinger et al. 2018; Nigam et al. 2020] raise the level of abstraction for hardware design. The
idea is analogous to traditional software compilation: instead of making users work with gates,
wires, and clock cycles, we provide them with high-level or domain-specific abstractions such as
tensor operations [Lai et al. 2019], functional programs [Durst et al. 2020; Pu et al. 2017], and
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recurrence equations [Cong and Wang 2018]. Compilers then translate these high-level descrip-
tions into efficient hardware designs. ADLs suffer cross-cutting compilation challenges, and the
architecture community has responded with a range of compiler frameworks and intermediate
languages [Majumder and Bondhugula 2024; Sharifian et al. 2019; Urbach and Petersen 2022; Xu
et al. 2022].

This paper identifies a central challenge for ADL compilers: the control interface for composing
units of hardware.The choice of interface haswide-ranging implications on a compiler’s expressive
power, its ability to optimize programs, and the semantics of its intermediate language. There are
two categories. Dynamic or latency-insensitive interfaces abstract away timing details and stream-
line compositional design, but they incur fundamental overheads [Murray and Betz 2014]. Static or
latency-sensitive interfaces are efficient, but they depend on the cycle-level timing of each module
and therefore leak implementation details across module boundaries.

Intermediate languages (ILs) for ADLs use either dynamic interfaces [Josipović et al. 2018; Nigam
et al. 2021], static interfaces [Majumder and Bondhugula 2024], or both [Sharifian et al. 2019; Xu
et al. 2022]. Static interfaces alone are insufficient because some computations, such as off-chip
memory accesses, have fundamentally variable latencies. Infrastructures that support both inter-
faces typically stratify the IL into separate dynamic and static sub-languages [Cheng et al. 2020;
Sharifian et al. 2019; Xu et al. 2022]. While stratified compilers can bring customized lowering and
optimization strategies to bear on each sub-language, they entail duplicated implementation effort
and miss out on cross-cutting optimizations that span the boundary between static and dynamic
code. Stratification also infects the frontends targeting the IL: they must carefully separate code
between the two worlds and manage their interaction.

We introduce Piezo, an IL and compiler for accelerator designs that supports boths static and
dynamic interfaces in a single, unified language. The key insight is that static IL constructs are
refinements of their dynamic counterparts: they admit a subset of the run-time behaviors. This uni-
fied approach allows transformations and optimizations to work across both interface styles. Piezo
also enables the incremental adoption of static interfaces: frontends can first establish correctness
using compositional but inefficient dynamic code, and then opportunistically convert the code to
use efficient static interfaces. Refinement in Piezo guarantees that this transition is correct.

We implement Piezo as an extension to the dynamic-first Calyx infrastructure [Nigam et al.
2021]. This paper shows how to compile Piezo’s static extensions into pure Calyx. We lift Calyx’s
existing optimizations to support Piezo’s static abstractions and implement new time-sensitive
optimizations. Piezo can also automatically infer when some dynamic Calyx code has fixed latency,
and promote it to static code.

We first evaluate Piezo’s new optimizations using a frontend that translates from an HLS-like
ADL [Nigam et al. 2020] to Piezo, and show that time-sensitive optimizations result in faster execu-
tion times (0.82× as many cycles as Calyx) and smaller designs (0.52× as many LUTs as Calyx). We
also implement a packet-scheduling engine and study how Piezo optimizations, in concert with
domain-specific human insight, are able to improve the performance of the generated hardware. As
another domain-specific case study, we extend a systolic array generator to support fused dynamic
operations to understand how Piezo can support interactions between fundamentally static and
dynamic components. We lift several limitations of the original Calyx generator, and additionally
find that, because we have unlocked pipelining, we require only 0.18× as many cycles.

2 Hardware Interfaces
Consider compiling the integer computation (𝑎 + 𝑏) × 𝑐 ÷ 𝑑 into hardware. Generating a hardware
datapath entails orchestrating physical units—such as adders, multipliers, and dividers—over time.
For this example, we use sequential, i.e., non-pipelined, hardware units. While many hardware
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+ ÷×

(a) A dynamic IL wraps
static components with dy-
namic wrappers.

+ ÷×

(b) A stratified IL uses one
compilation path for static “is-
lands” and a separate one that
incorporates dynamic compo-
nents.

+ × ÷
(c) Piezo represents static dy-
namic and static components
in the same IL. The compiler
can perform whole-program
optimizations.

Fig. 1. Hardware implementations of (𝑎 + 𝑏) × 𝑐 ÷ 𝑑 . Green units have static interfaces; orange is dynamic.

units, such as adders and multipliers, have fixed latency, many do not: integer dividers, for in-
stance, typically have data-dependent timing. Control logic for these two categories is fundamen-
tally different. A variable-latency divider may expose 1-bit wires to start the computation and to
signal completion. A fixed-latency multiplier, however, needs no explicit completion signalling:
clients can simply provide inputs and wait the requisite number of cycles. For this example, as-
sume that we are working with an adder with latency 1, a multiplier with latency 3, and a divider
with variable latency.

Dynamic compilation. Figure 1a shows how dynamic-first ILs, such Calyx [Nigam et al. 2021]
and Dynamatic [Josipović et al. 2018], might compile our expression. All units expose explicitly
signalled dynamic interfaces; each static module requires a wrapper that counts clock cycles up to
the unit’s latency and then signals completion. A purely dynamic compiler benefits from a uniform
interface and compositional reasoning, because no module can depend on the timing of any other.
However, these wrappers incur time and space overheads, and optimizations cannot exploit timing
information (§5.2).

Static compilation. Static-first ILs, such as HIR [Majumder and Bondhugula 2024], require fixed-
latency operations. They can support dynamic operators like dividers by using an upper-bound
latency. Upper bounds are pessimistic, however, and some hardware operations have unbounded
latency: the latency for an arbiter that manages conflicting memory accesses, for instance, funda-
mentally depends on the address stream.

Stratified static–dynamic compilation. Figure 1b illustrates the stratified approach, which is
used by DASS [Cheng et al. 2020], for combining static and dynamic compilation. The idea is to
compile the two parts of the program separately: first using static interfaces for the fixed-latency
fragment, (𝑎+𝑏)×𝑐 , and then using dynamic interfaces to combine this fragment with the variable-
latency divider. This combination allows latency-sensitive optimizations on the static fragment
while still allowing dynamic scheduling where it is beneficial.

This stratified approach, however, needs separate ILs for the two styles of computation. The
compiler cannot exploit information across the static–dynamic boundary. Furthermore, it compli-
cates the job for frontends that emit these ILs: switching a single subcomputation from static to
dynamic requires a global change in the way the program is encoded.

Unified static–dynamic compilation in Piezo. Figure 1c represents our approach with Piezo:
a unified IL that expresses both static and dynamic interfaces in one program. Piezo extends Ca-
lyx [Nigam et al. 2021], an existing dynamic-first IL, with static constructs that refine the semantics
of its dynamic constructs. By mirroring the dynamic IL abstractions with static counterparts, Piezo
enables compositional reasoning, incremental adoption, and whole-program optimization across
the static–dynamic boundary.
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1 component expr(a:32,b:32,c:32,d:32)->(out:32) {
2 cells {
3 add = std_add(32); // 32-bit adder
4 mult = std_mult(32); // 32-bit multiplier
5 div = std_div(32); // 32-bit divider
6 }
7 wires {
8 static<1> group do_add {
9 add.left = %[0:1] ? a;
10 add.right = %[0:1] ? b;
11 do_add[done] = add.done;
12 }
13 static<3> group do_mult {
14 mult.left = %[0:3] ? add.out;
15 mult.right = c; // implicit %[0:3] guard
16 do_mult[done] = mult.done;
17 }
18 group do_div {
19 div.go = 1;
20 div.left = mult.out;
21 div.right = d;
22 do_div[done] = div.done;
23 }
24 out = div.out;
25 }
26 control {
27 seq { static seq { do_add; do_mult; }
28 do_div;
29 }
30 }
31 }

Fig. 2. A Piezo component that computes (𝑎 + 𝑏) × 𝑐 ÷ 𝑑 . Our extensions to Calyx are shown in green, with
deletions shown in red.

3 The Piezo Intermediate Language
This section introduces Piezo, a unified IL for compiling hardware accelerators. Piezo extends

Calyx [Nigam et al. 2021], an existing dynamic IL. Calyx has a growing family of frontends, such
as for Halide [Granell Escalfet 2023; Ragan-Kelley et al. 2013] and MLIR dialects in CIRCT [Urbach
and Petersen 2022; Zang et al. 2023], that can adopt Piezo’s static interfaces to improve perfor-
mance.

We introduce Piezo using the program in Figure 2 as a running example. Our extensions to
Calyx are in green. In red, we show lines of code that are required in Calyx but must be deleted
when porting to Piezo. We describe the existing Calyx IL (§3.1), show that its original hint-based
treatment of static interfaces is insufficient (§3.2), and then introduce Piezo’s extensions.

3.1 The Calyx IL
The Calyx IL [Nigam et al. 2021] intermixes software-like control operators with hardware-like
structural resources. The former simplifies encoding of high-level language abstractions, while the
latter enables optimizations that exploit control information to optimize the physical hardware
implementation.
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Components. Components define units of hardware with input and output ports. In Figure 2, expr
has four 32-bit input ports (a through d) and one output port (out). A component has three sections:
cells, wires (which can be organized into groups), and control.

Cells. The cells section instantiates subcomponents. Cells can be either other Calyx components
or external definitions defined in a standard HDL. In Figure 2, the component expr instantiates
three cells from the standard library: add, mult, and div. Each is parameterized by a bitwidth.

Wires. Calyx uses guarded assignments to connect two ports when a logical condition, called the
guard, is true. Consider:
add.left = c0 ? 10;
add.left = c1 ? 20;
add.right = 30;

Here, add.left has the value 10 or 20 depending on which guard, c0 or c1, is true. Meanwhile,
add.right unconditionally has the value 30. Calyx’s well-formedness constraint requires that all
guards for a given port be mutually exclusive: it is illegal for c0 and c1 to simultaneously be true.

Groups. Assignments can be organized into unordered sets called groups. A group can execute
over an arbitrary number of cycles and therefore requires a 1-bit done condition to signal com-
pletion. In Figure 2, the assignments in do_div compute mult.out ÷ d by passing in inputs and
asserting the divider’s “start” signal, div.go. The group’s done signal is connected to the divider’s
done port, which becomes 1 when the divider finishes.

Control. The control section is an imperative program that decides when to execute groups. Calyx
supports sequential (seq), parallel (par), conditional (if), and iterative (while) composition.The if
and while constructs use one-bit condition ports. An invoke operator is analogous to a function
call: it executes the control program of a subcomponent fully and then returns control to the caller.

3.2 Latency Sensitivity in Calyx
As a fundamentally dynamic language, Calyx provides no guarantees on inter-group timing in its
control programs: programs cannot rely on the relative execution schedule of any two groups. For
example, any amount of time may pass between steps in a seq block. Further, different threads in
a par block may start at different times, so no thread may rely on the timing of another [Berlstein
et al. 2023]. Not only is dynamic timing necessary to support portions of the design for which
there is no known worst-case latency (e.g., an off-chip memory access), but its semantic flexibility
allows the compiler to optimize programs by adjusting inter-group timing.

Despite its advantages, however, latency insensitivity is expensive [Murray and Betz 2014]. To
mitigate this cost, Calyx comes with an optional attribute, @static(𝑛), that hints to the compiler
that a group or component has a fixed latency of 𝑛 cycles.1 These hints do not affect the program’s
semantics, so the compiler may disregard or erase them—and it often does in practice [The Calyx
Authors 2022, 2023b]. This optional nature makes Calyx’s semantics-free @static hint challeng-
ing to use correctly, both for frontends that generate Calyx IL code and within the compiler’s
optimization and lowering passes.

Frontends cannot use the hint to generate code whose correctness depends on details of its
timing. For instance, an efficient systolic array implementation (§7) needs a carefully constructed
static pipeline with precise cycle-level timing coordination, and Calyx’s @static hint cannot im-
plement this kind of schedule. Furthermore, erasable hints are unsuitable for frontends that want
1From the Calyx paper: “… latency-sensitive compilation is just an optimization—it can be disabled, debugged, and inter-
acted with separately from the compilation pipeline.”[Nigam et al. 2021, §4.4; emphasis reproduced from original.]
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to integrate with external hardware, such as a module that produces an answer exactly 4 cycles
after reading an input. The only workaround is to add a latency-insensitive wrapper, which adds
overhead and defeats the purpose of supporting latency sensitivity.

The hint-based approach hampers the compiler’s internals because each pass must treat the hint
pessimistically. Using Calyx’s @static hint, it is impossible to correctly implement any optimiza-
tion that transforms a program’s schedule in a way that exploits cycle-level scheduling. For exam-
ple, schedule compactionworks by coordinating timing across parallel computations (see §5.2); any
schedule that employs this optimization depends on guarantees about the timing of each group in
the schedule. If downstream passes can ignore the @static hint, the upstream optimization has
no straightforward way to enforce a particular cycle-level schedule. This confusion has yielded
several real bugs in Calyx [The Calyx Authors 2023a,c]. Without timing guarantees in the IL, the
only alternative is a monolithic design that discovers, optimizes, and lowers statically-timed code
in a single compiler pass without ever exposing intermediate code. A monolithic approach is in
conflict with the goals of a modular compiler that supports isolated development, reasoning, and
testing.

This paper’s thesis is that the distinction between static and dynamic control is too important—
and too semantically meaningful—to be encoded as an optional hint. Instead, the IL’s static con-
structs must be a semantic refinement (§3.5) of its dynamic equivalents: converting from dynamic
to static restricts a program’s timing behavior; the reverse is not allowed because it allows more
possible behaviors.

3.3 Static Structural Abstractions
Piezo extends Calyx with new, time-sensitive structural abstractions: static components and static
groups.

Static components. Piezo’s static components are like Calyx’s dynamic components, but they
use a different “calling convention.” Where dynamic components, such as std_div, use a go signal
to start computation and a done signal to indicate completion, static components only use go.
Compare the interface of a multiplier to that of a divider:
static<3> primitive std_mult[W](

go: 1, left: W, right: W) -> (out: W);
primitive std_div[W](

go: 1, left: W, right: W) -> (out: W, done: 1)

The static<𝑛> qualifier indicates a latency of 𝑛 cycles that is guaranteed to be preserved by the
Piezo compiler.

Static groups and relative timing guards. Static groups in Piezo use relative timing guards,
which allow assignments on specific clock cycles. This group computes ans = 6 × 7:
static<4> group mult_and_store {

mult.left = %[0:3] ? 6;
mult.right = %[0:3] ? 7;
mult.go = %[0:3] ? 1; // run the multiplier
ans.in = %3 ? mult.out; // ans is a register
ans.write_en = %3 ? 1; // assert write enable

}

Like do_div in Figure 2, the group sends operands into the left and right ports of an arithmetic
unit. Here, however, relative timing guards encode a cycle-accurate schedule: a guard %[𝑖:𝑗] is
true in the half-open interval from cycle 𝑖 to cycle 𝑗 of the group’s execution. The assignments to
ports mult.left and mult.right are active for the first 3 cycles. The guard %3 is syntactic sugar
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for %[3:4], so the write into the ans register occurs on cycle 3. The static<4> annotation on the
first line tells us the group is done on cycle 4.

Piezo’s relative timing guards resemble cycle-level schedules in some purely static languages [Ma-
jumder and Bondhugula 2024; Nigam et al. 2023]. However, they count relative to the start of the
group rather than the entire component. This distinction is crucial since it lets Piezo use static
groups in both static and dynamic contexts.

3.4 Static Control Operators
Piezo provides a static alternative to each dynamic control operator in Calyx. Unlike the dynamic
versions, static operators guarantee specific cycle-level timing behavior.

The static qualifier marks static control operators. While dynamic commands may contain
both static and dynamic children, static commands must only have static children. We write |𝑐 | for
the latency of a static command 𝑐 .

Sequential composition. A static seq like this:
static seq {𝑐1; 𝑐2; ...; 𝑐𝑛;}

has a latency of
∑𝑛

1 |𝑐𝑖 | cycles. 𝑐1 executes in the interval [0, |𝑐1 |) after the seq’s start, 𝑐2 in [|𝑐1 |, |𝑐1 |+
|𝑐2 |), and so on.

Parallel composition. A static par statement:
static par {𝑐1; 𝑐2; ...; 𝑐𝑛;}

has latency max𝑛1 |𝑐𝑖 |. Command 𝑐1 is active between [0, |𝑐1 |), command 𝑐2 between [0, |𝑐2 |), and
so on.

The parallel threads in a static par can depend on the “lockstep” execution of all other threads.
Threads can therefore communicate, whereas conflicting parallel state accesses in Calyx are data
races and therefore undefined behavior [Berlstein et al. 2023].

Conditional. Static conditionals use a 1-bit port 𝑝:
static if 𝑝 { 𝑐1 } else { 𝑐2 }

The latency is the upper bound of the branches, max(|𝑐1 |, |𝑐2 |).

Iteration. There is no static equivalent to Calyx’s unbounded while loops. Piezo instead adds both
static and dynamic variants of fixed-bound repeat loops:
static repeat 𝑛 { 𝑐 }

The body executes 𝑛 times, so the latency is 𝑛 × |𝑐 |.

Invocation. Piezo’s static invoke corresponds to Calyx’s function-call-like operation and re-
quires the target component to be static. The latency is that of the invoked cell.

Group enable. A leaf statement can refer to a static group (e.g., do_add in Figure 2). The latency
is that of the group.

3.5 Unification through Semantic Refinement
Piezo’s static constructs are all semantic refinements [Dockins 2012] of their dynamic counterparts
in Calyx. The semantics of dynamic code admit many concrete execution schedules, such as arbi-
trary delays between group executions. Each static construct instead selects one specific cycle-level
schedule from among those possibilities.
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1 int A[N];
2
3 // Statically scheduled.
4 int staticFn(int x) {
5 return ((x+2)*x+3)*x+6;
6 }
7
8 // Dynamically scheduled.
9 int filterSumMult() {
10 int res = 0;
11 for (int i = 0; i < N; i

++) {
12 int val = A[i];
13 if (val >= 0) {
14 int temp = staticFn(

val);
15 res += temp;
16 }
17 res *= val;
18 }
19 return res;
20 }

(a) An example program in a high-
level language with one statically
scheduled function and one dynami-
cally scheduled function.

1 wires {
2 ...
3 // elided: group `mult_res_val`, registers

`val` and `res`
4 // `geq` is a ">=" comparator
5 geq.left = val.out;
6 geq.right = 0;
7 out = res.out; // return res
8 }
9 control {
10 repeat N { // for (int i=0; i<N; i++)
11 ...
12 seq {
13 if geq.out {
14 static par {...} // staticFn(val)
15 // elided: res += staticFn(val)
16 }
17 mult_res_val; // res *= val;
18 }
19 ...
20 }
21 }

(b) Design after lowering to Piezo.

Fig. 3. We have elided some details in the lowered Piezo code to lighten the presentation. In particular
the static par block would contain the same computation as staticFn. The definition of the group
mult_res_val has also been elided; it contains multiplication from filterSumMult. Because Piezo can
implement the entire computation within a single component, it is able to share( §5.3) the multiplier used
by mult_res_val with the multipliers used in the static par block.

Refinement enables incremental adoption: a frontend can first generate purely dynamic code,
establish correctness using the simpler Calyx semantics, and then opportunistically add static
qualifiers. We can establish correctness for the static code by the same argument as the original
code, since it admits a subset of the original’s cycle-level executions. This refinement also means
that Piezo may automatically infer static qualifiers for some code (§5.2).

Semantic refinement also enhances optimization (§5.3). Piezo can enrich existing Calyx passes
with timing information to expose more optimization opportunities in static code. New optimiza-
tions can also combine information across static and dynamic code. This kind of hybrid optimiza-
tion would be challenging in a stratified compiler like DASS [Cheng et al. 2020] with separate ILs
and lowering paths for static and dynamic code.

Example. To get a better understanding of the types of optimizations that are unlocked by a uni-
fied IL, we will walk through an adaptation of the very example used by Cheng et al. [2020] to
motivate DASS. This is shown in Figure 3a. The program is written in a high-level language and
iterates through an array. On each iteration, if the array entry is greater than zero, it calls staticFn
on the entry and accumulates it to the result. It then unconditionally multiplies the array entry
with the result and stores the answer as the new running result.

In DASS or any other stratified compiler, staticFn is compiled completely statically and appears
as a black box to the dynamically scheduled filterSumMult. The problemwith this stratification is
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Piezo 
(Static & Dynamic)

Cell Sharing 
(§5.3)

Promotion 
(§5.1)

Compaction
(§5.2)

Collapse Control
(§4.1)

Instantiate FSMs
(§4.2)

Wrapper Insertion
(§4.3)

Calyx 
(Purely Dynamic)

Optimizations (§5) Compile Static Islands (§4)

Synthesizable 
Verilog

Existing Calyx Pipeline

Fig. 4. Piezo compilation flow. The extended Piezo syntax is optimized (§5) and compiled (§4) to pure Calyx
abstractions.

a. Input Design b. Collapsed Design d. Fully Dynamic Designc. Instantiated FSMs

static<1> group do_add { 
  add.left = %[0:1] ? a;
  add.right = %[0:1] ? b;  
}
static<3> group do_mult {
  mul.left = %[0:3] ? add.out;
  mul.right = c; 
} 

control { seq {
  static seq {
    do_add; 
    do_mult; 
  }
  do_div; }}

group comp_seq { … }
group wrap {
  comp_seq[go] = 1; 
  // assert sig to completion
  sig.in = !f.out & !sig.out ? 1; 
  // wrapper done condition
  wrap[done] = !f.out & sig.out ? 1; 
} 
// reset signal to low to allow 
// fsm-signal pair reuse
sig.in = !f.out & sig.out ? 0; 

control { seq { 
  wrap; do_div 
}}

static<4> group comp_seq { 
  add.left = %[0:1] ? a; 
  add.right = %[0:1]? b;
  // update timing guards
  mul.left = %[1:4] ? mul.out;
  mul.right = %[1:4]? c;
}

control {
  seq {
    comp_seq; 
    do_div;  
  } 
}

static<4> group comp_seq { 
  add.left = 0 ≤ f.out < 1 ? a; 
  add.right = 0 ≤ f.out < 1 ? b;
  mul.left = 1 ≤ f.out < 4 ? mul.out;
  mul.right = 1 ≤ f.out < 4 ? c;
  // increment counter
  f.in = f.out != 3 ? f.out + 1 : 0; 
}

control {
  seq {
    comp_seq; 
    do_div;  
}}

§4.1 §4.2 §4.3

Fig. 5. The stages for implementing Piezo’s static control operators.

Table 1. Interfaces between types of control.

Abbr. Caller Callee Calling Convention

𝐷 → 𝐷 Dynamic Dynamic Calyx [Nigam et al. 2021]
𝑆 → 𝑆 Static Static See §4.1
𝐷 → 𝑆 Dynamic Static See §4.3
𝑆 → 𝐷 Static Dynamic Not supported

that optimizations cannot span the static and dynamic fragments of the code. For example, because
staticFn must be compiled in isolation, we cannot save area by sharing its multiplier(s) with the
one in the res *= val line from filterSumMult.

Figure 3b sketches a simplified form of the corresponding Piezo code. In Piezo, the entire func-
tion can be lowered in a single, unified component containing both static and dynamic control.
This means that Piezo’s resource sharing pass (§5.3) can accomplish the sharing that DASS (and
other stratified compilers) cannot: by optimizing the component as a whole, it can share the mul-
tiplier used by the dynamic group mult_res_val with the multipliers used in the static par
block. Furthermore, in DASS, staticFn and filterSumMult are compiled using completely differ-
ent strategies, and target two completely different IRs. In Piezo, we can lower both computations
using the same IR, making it easier to maintain and extend the compiler.

4 Compilation
Figure 4 shows the compilation flow for Piezo. After optimizations (§5), we translate Piezo con-
structs to pure Calyx.

The Piezo compiler relies on control interfaces for static code, dynamic code, and invocations
that cross the static–dynamic boundary. For example, in a control statement like seq { a; b; },
both the parent (the seq) and the children (a and b) could use either static or dynamic control.

Table 1 lists the four possible cases, denoted 𝐼𝑝 → 𝐼𝑐 where the parent and child interfaces 𝐼 are
static (𝑆) or dynamic (𝐷). The all-dynamic case, 𝐷 → 𝐷 , is the Calyx baseline. The all-static case,
𝑆 → 𝑆 , works by counting cycles (§4.1). For 𝐷 → 𝑆 , the compiler adds a dynamic wrapper around
the static child (§4.3). Piezo disallows the 𝑆 → 𝐷 case with a compile-time error: if the child takes
an unknown amount of time, it is impossible to give the parent a static latency bound. Given the
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prohibition against 𝑆 → 𝐷 composition, we can think of any Piezo program as a dynamic control
program with interspersed static islands [Cheng et al. 2023, 2022].

Compilation starts by collapsing static islands into static groups (§4.1) and then generating FSM
logic to implement relative timing guards (§4.2). Finally, it wraps static islands for use in their
dynamic context (§4.3).

4.1 Collapsing Control
Collapsing is the process of converting a static control statement into a single group. Collapsing
preserves latency: it converts a static control statement with latency 𝑛 into a static group with
latency 𝑛. Figures 5a–b provides an example of how Piezo converts a static seq. The new group
contains all the assignments from the old groups used in the statement (do_add and do_mult in
the example), with their timing guards updated to implement the statement’s timing.

We collapse each static island recursively in a bottom-up order: to compile any statement, we
first collapse all its children.

Preprocessing. Before collapsing, we preprocess assignments to add timing guards where they
are missing: for example, the assignment mul.right = c in Figure 5a is normalized to mul.right
= %[0:3] ? c. In general, each input assignment has this form:
dst = guard ? src;

where missing guards are assumed to be 1. The preprocessing step rewrites this assignment into:
dst = guard & %[0: |𝑔 |] ? src;

where |𝑔| is the group’s latency. (A separate pass simplifies redundant guards: for example, the
guard [0:10] & [0:2] can be simplified to [0:2].)

Parallel composition. With all timing guards explicit and the children already collapsed, compil-
ing static par is simple: we merge the assignments from the children into a single static group.
The new group’s latency is the maximum latency among the children. For example, we compile:
static<1> group A { r1.in = 1; r1.write_en = 1; }
static<2> group B { r2.in = 4; r2.write_en = 1; }
control { static par { A; B; } }

into:
static<2> group comp_par {

r1.in = %[0:1] ? 1; r1.write_en = %[0:1] ? 1;
r2.in = %[0:2] ? 4; r2.write_en = %[0:2] ? 1;

}
control { comp_par; }

In general, given some static par:
static par {𝑐1; 𝑐2; ...; 𝑐𝑛;}

We first recursively collapse each child 𝑐𝑖 into a group 𝑔𝑖 , resulting in:
static par {𝑔1; 𝑔2; ...; 𝑔𝑛;}

Let𝐴𝑖 denote the set of assignments contained in group 𝑔𝑖 . We define a new static group comp_par
that contains assignments

∪𝑛
𝑖=1𝐴𝑖 and has latency max𝑛1 |𝑐𝑖 |. Finally, we return comp_par as the

result of the collapsing procedure.

Sequential composition. To compile static seq, wemerge assignments from child groups while
“shifting” their timing guards. After recursively compiling the statement’s children, the static
seq has this form:
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static seq {𝑔1; 𝑔2; ...; 𝑔𝑛;}

Let 𝐴𝑖 again be the set of assignments in group 𝑔𝑖 . We rewrite each timing guard %[𝑎:𝑏] in each
group 𝑔𝑖 to %[𝑑𝑖 + 𝑎:𝑑𝑖 + 𝑏] where 𝑑𝑖 =

∑𝑖−1
𝑗=1 |𝑐 𝑗 |, i.e., the relative start time for the group.

We then combine the time-shifted assignments. If 𝐴′
𝑖 denotes the modified assignments, we

construct a new static group comp_seq containing assignments
∪𝑛

𝑖=1𝐴
′
𝑖 and with latency

∑𝑛
1 |𝑐𝑖 |.

comp_seq is the result of collapsing this statement.
For example:

control { static seq { A; B; } }

compiles (where A and B are as above) into:
static<3> comp_seq {

r1.in = %[0:1] ? 1; r1.write_en = %[0:1] ? 1;
r2.in = %[1:3] ? 4; r2.write_en = %[1:3] ? 1;

}
control { comp_seq; }

Conditional. Semantically, static if only checks its condition port once: it must ignore any
changes to the port while either branch executes. We honor this while compiling:
static if cond {𝑐𝑡} else {𝑐 𝑓 }

by stashing cond’s value in a special register on the first cycle, and leaving the register’s value
unchanged thereafter. We generate logic to select between 𝑐𝑡 and 𝑐 𝑓 using cond directly during
the first cycle, and the special register for the remaining cycles.

Specifically, let 𝐴𝑐 denote these assignments:
cond_reg.in = %0 ? cond;
cond_reg.write_en = %0 ? 1;
cond_wire = %0 ? cond : cond_reg.out;

We generate cond_reg and cond_wire as a one-bit register and wire, respectively. The intuition is
that cond is used directly on the 0th cycle and stored in cond_reg on the remaining cycles.

Next, we recursively collapse each child 𝑐𝑡 and 𝑐 𝑓 into groups 𝑔𝑡 and 𝑔𝑓 , resulting in:
static if cond {𝑔𝑡} else {𝑔𝑓 }

Let 𝐴𝑡 and 𝐴𝑓 denote the set of assignments contained in group 𝑔𝑡 and 𝑔𝑓 , respectively. We then
modify the assignments in 𝐴𝑡 . For each assignment dst = guard ? src in 𝐴𝑡 , we rewrite each
guard to be guard & cond_wire.out. Let 𝐴′

𝑡 denote this modified set of assignments. We modify
𝐴𝑓 similarly, using the negation !cond_wire.out in the guard, to produce 𝐴′

𝑓
.

Finally, we define a new static group comp_if that contains assignments 𝐴′
𝑡 ∪ 𝐴′

𝑓
∪ 𝐴𝑐 and has

latency max(|𝑐1 |, |𝑐2 |) as the result of the collapsing procedure.

Iteration. To implement static repeat 𝑛 { 𝑔 }, the collapsed body group 𝑔 must run 𝑛 times.
Activating a static group in Piezo entails asserting its go signal for the group’s entire latency. We
can therefore compile the loop into a group that asserts 𝑔’s go signal for 𝑛 × |𝑔| cycles:
static<𝑛 × |𝑔 |> repeat_group { 𝑔[go] = 1; }

In this case, the body group 𝑔 remains alongside the new repeat_group. The body group’s FSM
(see §4.2) is responsible for resetting itself every |𝑔| cycles. This is the one control structure in
which not all the assignments collapsed into a single group.
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4.2 FSM Instantiation
Figures 5b–c illustrate the next compilation step: eliminating static timing guards (§3.3). For a
static group with latency 𝑛, this pass generates a finite state machine (FSM) counter that counts
from 0 to 𝑛 − 1; it automatically resets back to 0 immediately after hitting 𝑛 − 1. We translate each
timing guard %[j:k] into the guard 𝑗 ≤ 𝑓 < 𝑘 where 𝑓 is the counter.

Resetting the counter from 𝑛 − 1 to 0 lets static groups re-execute immediately after finishing.
Compiled repeat and while loops, for example, can chain invocations of static bodies without
wasting a cycle between each iteration.

While FSM instantiation would work the same on the original program, it is more efficient
to run it after collapsing control. Generating fewer static groups yields fewer FSM registers and
incrementers.

4.3 Wrapper Insertion
Figures 5c–d illustrate the final compilation step: converting each collapsed, timing-guard-free
static group (5c) into a dynamic group (5d).

We generate a dynamic wrapper group for every static group that has a dynamic parent. Like
any dynamic group, the wrapper exposes two 1-bit signals, go and done. When activated with
go, the wrapper in turn actives the go signal of the static group. To generate the done signal, the
wrapper uses a 1-bit signal sig to detect if a static island’s FSM has run once. When the FSM is 0
and sig is high, we know that the FSM has reset back to 0: the wrapper asserts done.

Special case: while with static body. The wrapper strategy works in the general case, but when
the dynamic parent is a while loop, the compiled code “wastes” one cycle per iteration to check
the loop condition. This strategy incurs a relative overhead of 1/𝑏 when the body takes 𝑏 cycles,
which is bad for short bodies and large trip counts. This special case is common because it lets
programs build long-running computations from compact hardware operations, so we handle it
differently to eliminate the overhead.

To compile while 𝑐 { 𝑔 } where 𝑔 is static, we generate a wrapper for the entire while loop
instead of a wrapper for 𝑔 alone. Each time the FSM returns to the initial state, the wrapper con-
currently checks the condition port and asserts done if the condition is false. This is another appli-
cation of refinement in Piezo: Calyx’s while operator admits multiple possible cycle-level timing
behaviors, and we generate a specific one to meet our objectives.

5 Optimizations
We design a pass to opportunistically convert dynamic code to static code along with new time-
sensitive static optimizations.

5.1 Static Inference and Promotion
Calyx code written as dynamic often does not need to be dynamic: its latency is deterministic.
Promoting such code to use static interfaces can save time and resources for dynamic signalling—
but it is not always profitable.We therefore split the process into two steps: inference, which detects
when dynamic groups and control have a static latency, and promotion, which converts dynamic
code to static code when it appears profitable. Inference records information without affecting
the program’s semantics, while promotion refines the program’s semantics. We infer freely but
promote cautiously.
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Inferring static latencies. We use an existing Calyx pass called infer-static-timing pass to
infer latencies for both groups and control programs. It infers a group’s latency by analyzing its
uses of its go and done. Suppose we have:
group g {

reg.in = 10; // reg is a register (latency 1)
reg.write_en = 1;
g[done] = reg.done; }

The pass observes that (1) reg.write_en must be asserted unconditionally, (2) the group’s done
flag must be tied to reg.done, and (3) the register component definition declares a latency of 1.
Calyx therefore attaches a @static(1) annotation to g: the group will take exactly one cycle to
run.

In general, for any cell c, three conditions must hold in order for Calyx to infer its latency:: (1)
c’s go port or equivalent (e.g., write_en for registers)2 is asserted unconditionally (2) the group’s
done flag is tied to c.done, and (3) Calyx must be able to determine a constant latency n for c: this
information either comes from Calyx primitives with a constant latency, which are hard-coded to
provide their latency information, or user-defined components for which Calyx has inferred their
latency. If these conditions hold, then Calyx will infer the latency of the group to be n.

For control operators, e.g., seq, inferenceworks bottom-up. If all of a seq’s children have @static
annotations, the seq gets a @static(𝑛) annotation where 𝑛 is the sum of the latencies of its chil-
dren. Despite this inference, Calyx’s original time-sensitive FSM generation pass cannot compile
static control islands; instead, the entire component needs to be static [The Calyx Authors 2023b].
Piezo lifts this restriction.

Promoting code from dynamic to static. We can promote groups and control based on inferred
@static annotations. For example, after inferring the @static(1) annotation for the group g, we
can promote it to:
static<1> group g { reg.in = 10; reg.write_en = 1; }

While static control has lower control overhead and enables downstream optimizations, it may
incur some costs as well: we introduce promotion heuristics to balance these costs. Each static island
requires one wrapper interface and one counter register.This cost is constant for each island, while
the benefit of simpler static control scales with the code size of the island. Therefore, the compiler
introduces a threshold parameter that only promotes static islands above a certain code size, in
terms of the number of groups and conditional ports.

We empirically calibrate these parameters’ default settings using experience with real programs;
see §6.1.

5.2 Schedule Compaction
Piezo features a new schedule compaction optimization to maximize parallelism while respecting
data dependencies. Schedule compaction is only feasible in a unified compiler. In a dynamic IL, the
compiler lacks latency information altogether. In a static IL, the compiler has latency information
but is barred from rescheduling code, which could violate timing properties that the program
relies on. Traditional C-based high-level synthesis (HLS) compilers accomplish similar scheduling
optimizations, but by translating between two vastly different representations: from untimedC to a

2To determine what the “equivalent” of the go port is for a given component, there is a @go attribute that can be attached to
ports in the signatures of Calyx components. For example, in the Calyx primitive library, there is a @go attribute attached
to the write_en port in the signature of std_reg.
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(10 cycles) 

A
(1 cycle) 

D
(10 cycles) 

C
(1 cycle) 

(a) Dependency graph.

wires {
// Dummy delay groups
static<1> group

delay_1 {}
static<10> group

delay_10 {}
}
static par {

A; B;
static seq {

delay_10; C; };
static seq {

delay_1; D; };
}

(b) Compacted schedule.

Fig. 6. Schedule compaction uses data dependencies to generate an as-soon-as-possible schedule.

fully static HDL. A unified IL, in contrast, can perform this optimization within a single abstraction
by exploiting the interaction between static and dynamic code.

Compaction occurs during the transition from dynamic to static code, after @static inference
and as a supplement to standard promotion. Consider the following seq:
@static(22) seq { A; B; C; D; }

where Figure 6a shows the groups’ latencies and data dependencies. If we only perform promotion,
it will take 1 + 10 + 1 + 10 = 22 cycles.

Piezo’s schedule compaction pass reschedules the group executions to start as soon as their
dependencies have finished. Specifically, A and B start at cycle 0 because they have no dependencies;
C and D start on cycle 10 and 1 respectively: the first cycle after their dependencies have finished.
This compacted schedule takes only 11 cycles.

General procedure. In general, compaction works by first calculating a compacted schedule and
then constructing a control program to implement this schedule.

It first calculates all potential dependencies between children in a seq. These dependencies in-
clude read-after-write, write-after-write, or write-after-read dependencies. Dependency analysis
is conservative: for example, any group which may read or write from a cell counts as a read
or write respectively during dependency calculations. Piezo then builds a dependency graph and
topologically sorts it to produce a list of children 𝐿. It then iterates through 𝐿 to produce an as-
soon-as-possible (ASAP) schedule: for each child 𝑐𝑖 ∈ 𝐿, it assign a start time 𝑠 (𝑐𝑖 ) according to
the following equation: 𝑠 (𝑐𝑖 ) = max𝑑𝑖 ∈𝐷𝑖 (𝑠 (𝑑𝑖 ) + |𝑑𝑖 |) where 𝐷𝑖 represents the set of children that
𝑐𝑖 depends on. In other words, it assigns the earliest possible start time for 𝑐𝑖 that still honors its
dependencies.

Next, it reconstructs a control program to implement this schedule. It emits a static par with
one thread per child. For each child 𝑐𝑖 , it creates an empty static group 𝑒 with latency 𝑠 (𝑐𝑖 ) and
then creates
static seq {𝑒; 𝑐𝑖;}

Each resulting static seq is a thread in the static par. An example is shown in Figure 6b. Since
all delay_n groups are removed during the collapsing step of compilation (§4.1), they incur no
overhead.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 350. Publication date: October 2024.



Unifying Static and Dynamic Intermediate Languages for Accelerator Generators 350:15

5.3 Cell Sharing
Calyx has a register sharing pass [Nigam et al. 2021] to reduce resource usage. It uses Calyx’s
control flow to compute registers’ live ranges and remaps them to the same instance when the
ranges do not overlap. Piezo’s variant is a generalized cell sharing pass that works with arbitrary
components instead of just registers.

In addition to working uniformly on both static and dynamic code, Piezo’s cell sharing optimiza-
tion can share cells across the static–dynamic boundary: static and dynamic parts of the design
can use the same cell. This is not possible in stratified ILs [Cheng et al. 2020; Xu et al. 2022] that
use separate optimization pipelines for the two interface styles.

Piezo’s cell sharing pass also improves over sharing in Calyx when it can exploit cycle-level
timing in static code. The original Calyx optimization must over-approximate live ranges because
of Calyx’s loose timing semantics. For example, par provides no guarantees about the cycle-level
timing of its threads (§3.4), so the compiler must conservatively assume that all live ranges in one
threadmay overlapwith the live ranges in a different thread.This prevents Calyx from sharing cells
between sibling par threads. Piezo’s enhanced cell sharing optimization exploits timing guarantees
(§3.4) to compute precise, cycle-level live ranges. These live ranges are soundly comparable across
par threads and enables sharing between them. This enhancement is an example of a latency-
sensitive optimization from Figure 4.

6 Effects of Piezo Optimizations
We compare Piezo’s performance to Calyx when compiling linear algebra kernels and a packet
scheduling engine.

6.1 Linear Algebra Kernels
Dahlia [Nigam et al. 2020] is an HLS-like imperative programming language that enables pre-
dictable hardware design. Dahlia already features two backends: one for Calyx and one for Vitis,
a commercial C++ HLS compiler [AMD Inc. 2021]. First, we lower the Dahlia implementations of
Polybench benchmarks [Louis-Noel Pouchet 2021] to Calyx. Then we promote the Calyx code to
Piezo, thereby automatically benefitting from some of Piezo’s new abstractions (§5.1). We report
the cycle counts and resource usage on an FPGA, comparing the performance of Piezo against
both of Dahlia’s existing backends.

The benchmarks are chiefly dense loop nests, so large parts of them can be scheduled statically.
However, there is some dynamic behavior, including dynamically-timed integer division and “tri-
angular” nested loops (i.e., the inner loop bound depends on the outer loop’s index).

Configurations. To generate Piezo designs from Calyx, we first perform static promotion (§5.1).
Then, we compile each design with different configurations of the schedule compaction (SC, §5.2)
and cell sharing (SH, §5.3) passes:

(1) SH: Static promotion, then cell sharing.
(2) SC: Static promotion, then schedule compaction.
(3) SH→SC: Static promotion, sharing, then compaction.
(4) SC→SH: Static promotion, compaction, then sharing.

Vitis HLS baseline. We compare both Calyx and Piezo to a commercial HLS compiler to put the
differences into context. As a monolithic, proprietary toolchain, AMD’s Vitis HLS is fundamentally
different from Dahlia, Calyx, and Piezo: it exposes no stable intermediate language and offers no
interchangeable suite of modular compiler passes. Further, it is a commercial product with many
heuristic-based optimizations that are more mature than Piezo’s, so it will probably outperform
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it. For example, unlike the Dahlia-to-Calyx compiler, it includes automatic pipelining, where the
compiler searches for a series of latency-balanced stages to implement a given data-flow graph.

Experimental setup. We use Verilator v5.006 [Veripool 2021] to obtain cycle counts. Our synthe-
sis flow uses Vivado 2020.2 and targets the Zynq UltraScale+ XCZU3EG board with a clock period
of 7 ns. This is the exact same setup the Calyx authors used for Dahlia’s existing backends [Nigam
et al. 2021], apart from using slightly different versions of Verilator and Vivado: they use Verila-
tor v4.108 and Vivado 2017.2. We report post place-and-route resource estimates for lookup tables
(LUTs, the primary logic resource of FPGAs) and registers.

We also run experiments to explore the threshold parameter (§5.1): while they unsurprisingly
yield nonuniform trade-offs between area and latency, we select a default parameter of 2 for the
static island size threshold.

Benchmark characterization. The matrix sizes involved in each benchmark are around 8 for
each dimension (e.g., a 2-dimensional matrix has 64 elements). For most benchmarks, Piezo’s cycle
counts are on the order of thousands of cycles, and LUT usage is on the order of hundreds.

We chose the linear algebra kernels from Polybench because of the substantial body of prior
work on FPGA acceleration for this category of computation [Chen et al. 2024; Skalicky et al.
2013] that has demonstrated power and performance improvements over CPUs [De Matteis et al.
2020]. While an exhaustive CPU/FPGA comparison is out of scope for this paper, which focuses
on comparing FPGA compilation strategies, we include a simple comparison against a CPU to put
the main results into context.

For a CPU baseline, we compile the original Dahlia source code to C++ and then to native
code with -O3 on gcc 11.4.0. We run the benchmarks on a server with dual Intel Xeon Gold 6230
processors [Intel 2024a] with 20 cores (40 total threads) at 2.10GHz. We used the C++ standard
library’s std::chrono::high_resolution_clock to measure execution time, averaged across 20
runs. The thermal design power (TDP) for this CPU is 125W.

We compute the FPGA running time as (𝑝 − 𝑤𝑠 ) × 𝑐 where 𝑝 is the clock period, 𝑤𝑠 is the
worst slack, and 𝑐 is the cycle count (i.e., we conservatively estimate the minimum clock period
and multiply it by the number of cycles). While exact energy characterization on FPGAs requires
specialized proprietary tools, we survey related work that uses the same Xilinx ZU3EG part [Dong
et al. 2021; Jiang et al. 2022]. The highest power consumption measured in that work is 5.5W.
That measurement is for neural network inference for image classification, a larger design than
the Polybench implementations (it uses 61,362 LUTs and 360 DSPs, while the largest utilizations
among the Polybench designs are 1,276 LUTs and 9 DSPs). We therefore consider 5.5W to be a
conservative upper bound for the benchmarks’ power consumption.

On average, the CPU is 4.4× faster, in exchange for using roughly 23× the power (125 vs. 5.5W).
A primary factor in the difference stems from platforms’ clock frequencies: the CPU runs at
2.10GHz, while the FPGA designs were on average 291.3MHz. As a consequence of their lower
clock frequency, the FPGA-accelerated Polybench kernels can offer improved performance-per-
watt efficiency while the CPU in this comparison still wins on raw execution time.

6.1.1 Comparison to Calyx and Vivado HLS. We use Piezo’s SC→SH configuration to compare
against Calyx and Vitis; Figure 7 shows results relative to Vitis (for each graph, lower is worse).
Piezo outperforms Calyx on both latency and LUTs: comparing geometricmeans, Piezo takes 0.82×
asmany cycles as Calyx and takes 0.52× asmany LUTs. Schedule compaction can explain the faster
designs, while using simpler static interfaces reduces LUT usage.

Compared to Vitis HLS, Piezo generates smaller but slower designs: the benchmarks take 0.65×
the LUTs but 2.54× as many clock cycles. The primary reason for the difference is that Vitis
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Fig. 7. Cycle count and LUT usage for the 19 linear algebra Polybench benchmarks, relative to Vitis HLS
(lower is worse). For cycle counts: Piezo takes a geometric mean of 0.82× compared to Calyx and 2.54×
compared to Vitis. For LUTs: Piezo takes 0.52× and 0.65× compared to Calyx and Vitis, respectively.
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Fig. 8. Performance of Piezo designs compiled with various optimization orderings (lower is worse). Results
are relative to SC→SH. The cycle counts are identical across the configurations SC and SC→SH, which is
why no blue bars appear in (a).

HLS performs automatic pipelining search while the Dahlia compiler does not. (Piezo can express
pipelined designs, but the frontend must decide the stage breakdown.) We anticipate that a fron-
tend that aggressively pipelines could further close the gap with commercial HLS tools.

6.1.2 Effects of Optimizations and Phase Ordering. We first explain the effect of Piezo’s various
optimizations by comparing SH and SC.Then, we examine SH→SC and SC→SH to see the impact
of the ordering of these optimizations. Figure 8 shows the results for the various configurations,
relative to the SC→SH configuration, which is the configuration used in §6.1.1.
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Fig. 9. A PIFO tree, a statistics component (s), and a controller (c). Green is static; orange is dynamic.

Cycle counts. Schedule compaction (SC) provides a consistent performance improvement: it yields
designs that take a geometric mean of 0.85× the cycles compared to non-compacted designs (SH).

LUT and register usage. Designs that share hardware resources (SH) use 0.91× the LUTs and
0.53× the registers, compared to SC designs.

Schedule compaction and cell sharing are partially in conflict: the former adds parallelism, while
the latter exploits non-parallel code to share resources. They embody a fundamental trade-off be-
tween performance and area. We measure their interaction in either order:

Cycle counts. SC→SH performs identically to SC alone.The opposite ordering, SH→SC, is slightly
slower, taking 1.12× the number of cycles, but still faster than SH (1.17×). Sharing impedes some,
but not all, opportunities for compaction.

LUT usage. SH→SC, SC→SH, and SH all perform similarly, while SC slightly increases LUT
usage (1.04×). However, the effects across benchmarks are nonuniform, and various combinations
of optimizations can sometimes outperform other combinations depending on the benchmark.

Register usage. Running sharing first (SH→SC) achieves identical register reduction to SH alone:
they both use 0.9× the registers compared to SC→SH. However, SC→SH is still significantly
better than SC alone, which increases register usage by a factor of 1.68×. Running SC first only
opportunistically adds parallelism; the designs still have some fundamental sequential behavior
that allows sharing.

6.2 Packet Schedulers
Weuse a second, more domain-specific case study to understand Piezo optimizations inmore detail.
In software-defined networking (SDN) [Foster et al. 2020], programmable packet scheduling offers
flexible policies for allocating bandwidth and ordering packet delivery. PIFO trees [Mohan et al.
2023; Sivaraman et al. 2016] are a flexible mechanism for line-rate packet scheduling. The packet
buffer of a switch consists of a compositional hierarchy of priority queues (PIFOs), each of which
implements a policy for scheduling the data held by its children.

We implement a new Piezo-based generator for PIFO tree packet schedulers as shown in Figure 9.
We push incoming packets into the PIFO tree by inserting it into a leaf node and adding priority
metadata to each parent node. To pop the highest-priority packet for forwarding, we query the tree
to identify it and update the metadata. The tree also maintains telemetric data—counts of classes
of packets—by reporting to a separate statistics component (s) at each push. An SDN controller (c)
might exploit these statistics to implement adaptive scheduling policies.

Our implementation generates the PIFO tree itself, which is fundamentally dynamic because of
the data-dependent behavior of queues, and a simple static statistics unit. While it is not the focus
of this case study, we also include a simple dynamic controller to consume the statistics.
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Implementation. We implement a flexible Piezo PIFO tree generator in 600 lines of Python. The
generator can produce binary PIFO trees of varying heights, arrangements, and capacities. It can
also implement different scheduling policies by deciding how packets get assigned to leaves and
metadata to internal nodes. For our experiment, we generate a tree with 5 PIFOs and overall capac-
ity 10. We set up the scheduling parameters to implement a hierarchical round-robin scheduling
policy.

We use the generator to synthesize four hardware configurations: plain Calyx, Calyx promoted
to Piezo, explicitly annotated Piezo, and explicitly annotated Piezo that is further promoted. The
second configuration is the result of automatically promoting the first (see §5.1).The third includes
manually inserted static<> annotations that encode domain-specific insight into the generated
hardware’s timing.The fourth configuration is the result of automatically promoting the third.The
generated design is 1,100 lines of Piezo IL.

Results. We generate a workload of 10,000 packets with randomly interspersed but balanced push
and pop events. We measure the LUT count, register count, and cycles per push for each design.
The best values are in bold.

Table 2. Performance for a 10,000 packet workload using different compilation strategies.

Configuration LUTs Registers Cycles per Push
Calyx 957 310 133.05

Promoted to Piezo 959 302 123.55
Annotated Piezo 968 302 130.05

Annotated, Promoted Piezo 920 292 120.55

The resource usage of the three designs is similar: the PIFO tree (which is always dynamic) is the
dominant component in all three designs, and the statistics component (which is dynamic in Calyx
and static in Piezo) is small.

The promoted Piezo implementation improves on the original Calyx implementation’s cycles
per push measure because the compiler exploits small opportunities for static promotion and com-
paction in all components, including components that are understood to be dynamic.Themanually
annotated Piezo implementation also improves on the baseline’s cycles per push measure—domain
knowledge lets the human guide the compiler. However, the annotated, promoted Piezo imple-
mentation performs the best of all, in both area and latency. Human insight, along with compiler
optimizations, allow us to uncover more promotion and compaction opportunities than either one
alone, decreasing cycles per push, LUTs and registers.

7 Systolic Arrays
Systolic arrays [Kung 1982] are a class of architecture commonly used inmachine learning [Fowers
et al. 2018; Jouppi et al. 2017] built from interconnected processing elements (PEs). PEs perform
simple computations and communicate with other PEs in a simple, regular manner. We redesign
an existing systolic array generator that targets Calyx to use Piezo abstractions and demonstrate
how it enables efficient composition and incremental adoption.

7.1 Systolic Arrays in Piezo
Calyx has an existing systolic array generator that produces hardware to multiple fixed-size ma-
trices. The interface of the generated systolic array accepts rows and columns of input matrices
𝐴 and 𝐵 in parallel using an output-stationary dataflow. Each PE performs a multiply-accumulate
operation and forwards its operands.
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This case study addresses three main limitations:
• Calyx’s dynamic interfaces between PEs make it challenging to pipeline computations, hin-

dering performance. Piezo enables efficient pipeline execution using static interfaces.
• A purely static implementation can only efficiently support fixed-sized matrices. Piezo’s uni-

fied approach makes it possible to support flexible matrix sizes while maintaining efficient
pipelined execution.

• Systolic arrays often have fused post operations that apply elementwise functions to the
product matrix. We show how Piezo’s mixed interfaces support various post operations and
optimize the composed design across the static–dynamic boundary.

Pipelining processing elements. Calyx’s systolic array generator decouples the logic for the PE
from the systolic array itself tomodularize code generation.Thismeans that the systolic arraymust
communicate with its PEs through dynamic interfaces. Because there are no timing guarantees,
the generator does not pipeline the PEs and instead uses sequential multipliers. Extending the
generator to a dynamically pipelined design would add unnecessary overhead; we would need
queues to buffer values between PEs.

Instead, Piezo abstractions let the systolic array communicate with its PEs using efficient static
interfaces that facilitate pipelining. Besides removing the overhead from dynamic interfaces, this
also simplifies the logic of the systolic array fabric, which is in charge of data movement. Because
we have a pipeline with initiation interval of 1, the fabric can unconditionally move data every
cycle and guarantee the right value will be read.

Fixed contraction dimension. While static interfaces allow for efficient, pipelined execution,
they can limit computational flexibility. For example, an output-stationary matrix-multiply sys-
tolic array should be able to multiply matrices of sizes 𝑖 × 𝑘 and 𝑘 × 𝑗 for any value of 𝑘 . However,
this requires dynamic control flow: the computation needs to repeat 𝑘 times where 𝑘 is a runtime
value. Piezo abstractions support this with ease: we use a while loop to execute the systolic array’s
logic 𝑘 times. Furthermore, because the control program in the loop body is purely static, Piezo’s
special handling ensures that the body executes every cycle (§4.3).
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Fig. 11. Performance and FPGA resource utilization of two implementations of a fused matrix-multiply–
ReLU kernel on Piezo-compiled systolic arrays. We compare static and dynamic interfaces for the ReLU
unit.

Supporting fused post operations. A common optimization inmachine learning frameworks [In-
tel 2024b] fuses matrix multiplication with elementwise post operations, such as nonlinearities, to
avoid writing the intermediate matrix back to memory. These post operations can be either funda-
mentally static or dynamic. Our goal is to decouple the implementation of post operations from the
systolic array: to keep the code generation modular without sacrificing efficient interfaces. We im-
plement two post operators (POs): (1) a static ReLU operation, x > 0 ? x : 0, and (2) a dynamic
leaky ReLU [Maas et al. 2013] operation, x > 0 ? x : 0.01*x. The latter is dynamic because the
true branch can directly forward the output while the false branch requires a multiplication.

Figure 10 overviews the architecture. We instantiate the systolic array and PO components for
the number of rows in the resulting matrix. If the PO is dynamic, the PO controller instantiates
buffers to queue the output stream but elides them for static POs.The interface between the systolic
array and PO is pipelined: a row’s PO starts its computation as soon as an output is available. Most
of the code—the systolic array, the controller, the PEs—is reused regardless of the PO’s interface;
Piezo’s unified abstractions enable this reuse.

7.2 Evaluation
The setup for systolic array evaluation is identical to Polybench and packet scheduling, apart from
the fact that we target the larger Alveo U250 board. Our evaluation seeks to answer the following
questions:

• Does the pipelined Piezo-generated systolic arrays outperform the existing Calyx-generated
designs?

• Can Piezo implement a runtime-configurable contraction dimension for systolic arrays with
low overhead?

• Do cross-boundary optimizations let Piezo eliminate overheads when the systolic array is
coupled with a static post operation?

Effect of pipelining. For the 16×16 design, the pipelined implementation in Piezo achieves a max
frequency of 270MHz and performs the computation in 52 cycles in comparison to the original
design’s 250MHz and 284 cycles. The latency improvement is from the pipelined execution and
the frequency improvement from simplified control logic.

Configurablematrix dimensions. We compare systolic arrays with flexible and fixed matrix size
support. The flexible design takes 1 extra cycle to finish, uses 8% more LUTs (for logic to check
the loop iteration bound), and uses the same number of registers. The flexible design pays some
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overhead to gain dynamic functionality, while the fixed design is fully static, thereby eliminating
dynamic overhead: Piezo expresses both with minimal code changes.

Overhead of dynamic post operations. We perform a synthetic experiment to quantify overhead
of a dynamic interface between the systolic array and the PO: we use the simple ReLU post opera-
tion in its default, static form and compare it against a version that artificially wraps it in a dynamic
interface. Since the computation is the same, the only difference is the interface. Figures 11a–11c
report the cycle counts, LUTs, and register usage of the resulting designs. In addition to a higher
cycle count, the dynamic implementation also has higher LUT and register usage, stemming from
the extra control logic and buffers respectively.

We also implemented a truly dynamic post operator, leaky ReLU. We omit its measurements
here because it conflates the costs of the operation and static–dynamic interaction.

8 Related Work
Piezo builds on a rich body of prior work on compilers for accelerator design languages (ADLs):
high-level programming models for designing computational hardware. However, these compilers
tend to prioritize either static or dynamic interfaces in the hardware they generate—or, when they
combine both strategies, to disallow fluid transitions between the two styles.

Traditional C-based high-level synthesis (HLS) compilers [Cadence 2024; Canis et al. 2011; In-
tel 2021; Mentor Graphics 2021; Pilato and Ferrandi 2013; Zhang et al. 2008] intermix static and
dynamic-latency operations, such as dividers. They do so using software ILs like LLVM [Lattner
and Adve 2004], which ties them to C-like, sequential computational models. Critically, traditional
HLS tools are monolithic: they do not expose consistent intermediate representations that support
modular pass development, decoupled frontends and backends, and layered correctness arguments.
Piezo contributes a stable IL that includes both software- and hardware-like abstractions and thus
supports modular passes that address both static and dynamic control.

The most closely related compilers [Cheng et al. 2020; Xu et al. 2022] seek to combine aspects
of static and dynamic control. DASS [Cheng et al. 2020] is the first HLS compiler we are aware of
to specifically balance static and dynamic scheduling within the same program. In DASS, either
the user [Cheng et al. 2020] or some heuristic [Cheng et al. 2022] identifies parts of the high-level
design that would benefit from static scheduling. Compilation proceeds in two phases: DASS first
compiles all the static islands, and then it uses a second, dynamic, approach to schedule the rest
of the program while treating the pre-compiled islands as opaque operators. In contrast, Piezo’s
unified IL can treat static portions of the program transparently and optimize them in the same
framework as dynamic code. Szafarczyk et al. [Szafarczyk et al. 2023] provide the opposite ap-
proach to DASS: it finds sections of programs that are amenable to dynamic scheduling in a pre-
viously statically-scheduled program. The dynamic sections are decoupled from the static parts
and compiled into processing elements that communicate over latency-insensitive channels. Hec-
tor [Xu et al. 2022] is a dialect of MLIR [Lattner et al. 2021] that supports three scheduling styles:
pipeline, static, and dynamic. Each style corresponds to a different Hector component type, uses a
different a syntax and semantics, and uses a different lowering strategy. In contrast to these, Piezo
provides a unified IL in which either the frontend, or a compiler heuristic (§5.1), can easily covert
dynamic programs to static and vice-versa, and lowers them using a single compilation pipeline.
This lets Piezo reuse optimizations between the two modes and even optimize across the boundary
between dynamic and static code.

The existing ILs for ADL compilers also give passes control over scheduling, but they focus on
either static [Ananian 1998; Sahasrabuddhe et al. 2007; Sinha and Patel 2012] or dynamic inter-
faces [Josipović et al. 2018; Sharifian et al. 2019; Xu et al. 2023]. In particular, HIR [Majumder and
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Bondhugula 2024] is an MLIR-based IL that describes schedules using time variables that describe
the clock cycles on when each value in a design is available. Filament [Nigam et al. 2023], like
HIR, explicitly dictates the cycle-level schedule of hardware operations, but it encodes these time
intervals into a type system. Piezo’s relative timing guards (§3.3) work similarly and describe the
cycle-level schedule for assignments. However, Piezo’s timing guards are relative to the start of
each group’s execution.This relative timing limits the scope of static schedules and enables flexible
composition with dynamic groups, scalable reasoning, and efficient lowering (§4.1). Finally, unlike
both systems, Piezo supports both static and dynamic interfaces.

9 Conclusion
Latency-sensitive hardware refines the semantics of latency-insensitive hardware. Every practical
accelerator compiler must combine the two styles, and this correspondence is the foundation for
combining them soundly.
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