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Abstract. In this paper we propose and develop an iterative method to calculate a limiting
probability distribution vector of a transition probability tensor P arising from a higher-order Markov
chain. In the model, the computation of such limiting probability distribution vector x can be
formulated as a Z-eigenvalue problem Pxm−1 = x associated with the eigenvalue 1 of P where all
the entries of x are required to be non-negative and its summation must be equal to one. This
is an analog of the matrix case for a limiting probability vector of a transition probability matrix
arising from the first order Markov chain. We show that if P is a transition probability tensor, then
solutions of this Z-eigenvalue problem exist. When P is irreducible, all the entries of solutions are
positive. With some suitable conditions of P, the limiting probability distribution vector is even
unique. Under the same uniqueness assumption, the linear convergence of the iterative method can
be established. Numerical examples are presented to illustrate the theoretical results of the proposed
model and the iterative method.
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1. Introduction.

1.1. Markov Chains. The first order Markov chain concerns about a sequence
of random variables, which correspond to the states of a certain system, in such a
way that the state at one time epoch depends only on the state in the previous time
epoch. We consider a stochastic process {Xt, t = 0, 1, 2, . . .} that takes on a finite set
{1, 2, · · · , n} ≡ ⟨n⟩. An element in ⟨n⟩ refers to a state of the system.

Definition 1.1. Suppose there is a fixed probability pi,j independent of time such
that

Prob(Xt+1 = i|Xt = j,Xt−1 = it−1, . . . , X0 = i0) = Prob(Xt+1 = i|Xt = j) = pi,j

where i, j, i0, i1, . . . , it−1 ∈ ⟨n⟩. Then this {Xt} is called a Markov chain process.
The probability pi,j represents the probability that the process will make a tran-

sition to the state i given that currently the process is in the state j. Clearly one
has

pi,j ≥ 0,

n∑
i=1

pi,j = 1, j = 1, . . . , n.

The matrix P = (pi,j) is called the one-step transition probability matrix of the
process1. Let xt = (x1(t), x2(t), · · · , xn(t))

T be the probability distribution vector
of the states in a Markov chain process at the tth transition. Here (·)T denotes the
transpose of a vector.

∗School of Mathematical Sciences, South China Normal University, Guangzhou, China. E-mail:
liwen@scnu.edu.cn. The author would like to thank the support from the Institute for Computational
Mathematics, and Centre for Mathematical Imaging and Vision, Hong Kong Baptist University to
work this paper during his visit to Hong Kong Baptist University.

†Centre for Mathematical Imaging and Vision, and Department of Mathematics, Hong Kong
Baptist University, Hong Kong. E-mail: mng@math.hkbu.edu.hk.

1We note that the sum of each column of the transition probability matrix is equal to one. It
may be different from the probability context where the sum of each row is set to be one in the
notation.

1



It is easy to check that xt+1 = Pxt and xt+1 = P t+1x0, where x0 is the initial
probability distribution vector. If we let

lim
t→∞

xt = x̄ = (x̄1, x̄2, · · · , x̄n)
T or lim

t→∞
xi(t) = x̄i,

then

x̄ = lim
t→∞

xt = lim
t→∞

Pxt−1 = P x̄. (1.1)

A vector x̄ is said to be a limiting or stationary probability distribution of a finite
Markov chain having n states with x̄i ≥ 0 for all i,

∑n
i=1 x̄i = 1 and P x̄ = x̄. The

vector x̄ means that in the long run, the probability that the process in the state i is
given by x̄i. We remark that the limiting/stationary probability distribution vector x̄
can be given by the normalized eigenvector associated with the largest eigenvalue of
P being equal to 1. For ease of presentation, we refer that a positive (or nonnegative)
vector means all its entries are positive (or non-negative). It is denoted by x > 0 (or
x ≥ 0).

Theorem 1.2. Suppose P = (pi,j) is a transition probability matrix, then there
exists a non-negative vector x̄ such that P x̄ = x̄. In particular, if P is irreducible,
then x̄ must be positive and unique. When P is primitive (it must be irreducible),
(1.1) is satisfied for any initial distribution vector x0.
Interested readers can consult the book by Ross [19] for more detailed information.

1.2. Higher-order Markov Chains. There are many situations that one would
like to employ higher-order Markov chain models as a mathematical tool to analyze
data sequences in different application areas, see the examples in [5]. The (m − 1)th

order Markov chain model is used to fit the observed data through the calculation of
the (m− 1)th order transition probabilities:

0 ≤ pi1,i2,··· ,im = Prob(Xt+1 = i1|Xt = i2, . . . , Xt−m+2 = im) ≤ 1 (1.2)

where i1, i2, . . . , im ∈ ⟨n⟩, and
n∑

i1=1

pi1,i2,··· ,im = 1. (1.3)

The probability pi1,i2,··· ,im represents the probability that the process will make a
transition to the state i1 given that currently the process is in the state i2 and pre-
viously the process are in the states i3, · · · , im. It is clear when m = 2, the situation
reduces to the first order Markov chain in Definition 1.1.

A number of applications can be found in the literature, see for instance [5, 11,
17, 18, 20]. For example, a higher-order Markov chain model has been used in fitting
observed data and apply to the wind turbine design [17]. Alignment of sequences is
an important topic in DNA sequence analysis. It involves searching of patterns in a
DNA sequence of huge size [5, 17, 18]. A higher-order Markov model can be employed
to study the growth of some polymer chains due to steric effect [7]. A higher-order
Markov chain model can be built for a web server log file to be preprocessed into a
collection of user sessions [21]. By using citations among researchers, we can construct
higher-order Markov chains with respect their order of citations, and employ limiting
probability distribution vectors to study their citation ranking [9]. This idea is similar
to the PageRank algorithm where the limiting probability vector is computed based
on hyperlinks among webpages.
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In these applications and many others, one would like to characterize data se-
quences for the purpose of comparison and classification; or to model data sequences
and hence to make predictions in the control and planning process. It has been shown
that higher-order Markov chain models can be a promising approach for different ap-
plications, and their limiting probability distributions can play an important role in
the analysis, see for instance in [5] and therein references.

1.3. The Problem. In this paper, we are interested to study a limiting proba-
bility distribution of a higher-order Markov chain similar to the results in Theorem
1.1. In the literature, limiting probability distributions of some specific higher-order
Markov chains have been studied in [17, 1, 5]. Their idea is to approximate a higher-
order Markov chain by a linear combination of pij ,ij′ for some j and j′. The resulting
transition probability matrix for this approximated higher-order Markov chain is given
by a linear combination of transition matrices (pij ,ij′ ). In this setting, the limiting
probability distribution can be obtained by solving the normalized eigenvector associ-
ated with the largest eigenvalue 1 of this approximated transition probability matrix.

1.3.1. An Example. Let us consider an example of a second order Markov
chain (m = 3 and n = 3) to illustrate the problem and the motivation. By using
(1.2) and (1.3), we can calculate the following probabilities based on the conditional
probabilities pi1,i2,i3 :

xt+1 = Pxt,t−1 (1.4)

where

xt+1 =

 Prob(Xt+1 = 1)
Prob(Xt+1 = 2)
Prob(Xt+1 = 3)

 , xt,t−1 =



Prob(Xt = 1, Xt−1 = 1)
Prob(Xt = 1, Xt−1 = 2)
Prob(Xt = 1, Xt−1 = 3)
Prob(Xt = 2, Xt−1 = 1)
Prob(Xt = 2, Xt−1 = 2)
Prob(Xt = 2, Xt−1 = 3)
Prob(Xt = 3, Xt−1 = 1)
Prob(Xt = 3, Xt−1 = 2)
Prob(Xt = 3, Xt−1 = 3)


and

P =

 p1,1,1 p1,1,2 p1,1,3 p1,2,1 p1,2,2 p1,2,3 p1,3,1 p1,3,2 p1,3,3
p2,1,1 p2,1,2 p2,1,3 p2,2,1 p2,2,2 p2,2,3 p2,3,1 p2,3,2 p2,3,3
p3,1,1 p3,1,2 p3,1,3 p3,2,1 p3,2,2 p3,2,3 p3,3,1 p3,3,2 p3,3,3

 .

Here P is not a square matrix, but its column sum is equal to one as required in (1.3).
In the next subsection, we will represent P as a tensor.

In this example, we are interested to determine the probabilities in the limiting
situation (in the long run):

x̄ = lim
t→∞

xt = P lim
t→∞

xt−1,t−2 with x̄i = lim
t→∞

Prob(Xt = i). (1.5)

According to (1.5), it is necessary to know a joint probability distribution in the
limiting situation lim

t→∞
xt−1,t−2 of the second order Markov chain in order to compute

lim
t→∞

xt. One solution is to assume that a limiting joint probability distribution of the

3



second order Markov chain is in the Kronecker product form of its limiting probability
distribution:

lim
t→∞

xt−1,t−2 = lim
t→∞

xt−1 ⊗ lim
t→∞

xt−2 = x̄⊗ x̄. (1.6)

By putting (1.6) into (1.5), we require to solve for the following multivariate poly-
nomial equations: x̄ = P (x̄ ⊗ x̄). The Kronecker product form solution has been
explored and used in higher singular value decomposition [6]. The main aim of this
paper is to study solutions (existence and uniqueness) of this kind of multivariate
polynomial equations.

1.4. The Outline. Let us first introduce a tensor to represent a higher-order
Markov chain. We consider an mth order n-dimensional tensor A consisting of nm

entries in R:

A = (ai1,i2,··· ,im), ai1,i2,··· ,im ∈ R, 1 ≤ i1, i2, · · · , im ≤ n.

Here R is the set of real numbers. A is called non-negative (or, respectively, positive)
if ai1,i2,··· ,im ≥ 0 (or, respectively, ai1,i2,··· ,im > 0). For an (m − 1)th order Markov
chain in (1.2) and (1.3), we can consider the conditional probabilities pi1,i2,··· ,im as an
mth order n-dimensional tensor P consisting of nm entries in between 0 and 1. We
call P to be a transition probability tensor arising from a higher-order Markov chain.
It is clear that P is non-negative.

To an n-dimensional column vector x = (x1, x2, · · · , xn)
T ∈ Rn, we can define a

tensor multiplication with x:

Axm−1 :=

 n∑
i2,··· ,im=1

ai1,i2,··· ,imxi2 · · ·xim


1≤i1≤n

(1.7)

is an n-dimensional column vector.
By assuming a limiting joint probability distribution of an (m−1)th order Markov

chain is in the Kronecker product form of its limiting probability distribution, i.e.,

lim
t→∞

Prob(Xt−1 = i2, Xt−2 = i3, · · · , Xt−m+1 = im) =

m∏
j=2

lim
t→∞

Prob(Xt = ij), (1.8)

We note that

x̄i1 = lim
t→∞

Prob(Xt = i1)

=
n∑

i2,··· ,im=1

pi1,i2,··· ,im lim
t→∞

Prob(Xt−1 = i2, Xt−2 = i3, · · · , Xt−m+1 = im)

=
n∑

i2,··· ,im=1

pi1,i2,··· ,im

m∏
j=2

lim
t→∞

Prob(Xt = ij)

=

n∑
i2,··· ,im=1

pi1,i2,··· ,im x̄i2 · · · x̄im = (Px̄m−1)i1 ,

where (Pxm−1)i1 is the i1-th component of Pxm−1. Under a tensor multiplication
defined in (1.7), we would like to determine a limiting probability distribution vector
of a (m− 1)th order Markov chain by solving the following tensor equations:

x̄ = Px̄m−1 (1.9)
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By comparing (1.9) with (1.1) and the results in Theorem 1.1., the computation of
such limiting probability distribution vector x̄ can be formulated as a Z-eigenvalue
problem Pxm−1 = x associated with the eigenvalue 1 of P with x ≥ 0 and ∥x∥1 = 1.
Here ∥x∥1 is the 1-norm of x.

In this paper, we show that if P is a transition probability tensor, then there
exists a nonzero non-negative vector x̄ such that Px̄m−1 = x̄. When P is irreducible,
the limiting probability distribution vector x̄ must be positive. With some suitable
conditions of P, x̄ is even unique. Based on these results, we also develop an it-
erative method for solving such limiting probability distribution vector. Under the
same uniqueness assumption, the linear convergence of the iterative method can be
established. Numerical examples are presented to illustrate the theoretical results of
the proposed model and the iterative method.

The outline of this paper is given as follows. In Section 2, we analyze existence
and uniqueness of limiting probability distribution for a higher-order Markov chain.
In Section 3, we present an iterative method and study the convergence of the method.
In Section 4, we demonstrate the theoretical results by numerical examples. In Section
5, we give some concluding remarks and mention some future work.

2. The Main Results.

2.1. Irreducible Tensors. We first introduce the concept of irreducible tensors.
In [4], Chang et al. considered the following definition of irreducible tensors.

Definition 2.1. An mth order n-dimensional tensor A is called reducible if there
exists a nonempty proper index subset I ⊂ {1, 2, · · · , n} such that

ai1,i2,··· ,im = 0, ∀i1 ∈ I, ∀i2, · · · , im /∈ I.

If A is not reducible, then we call A irreducible.
By using the Matlab multi-dimensional array notation, we give examples of irre-

ducible and reducible transition probability tensors.

Example 1: (a 3th order 3-dimensional irreducible transition probability tensor)

P (:, :, 1) =

 1/5 1/3 3/10
2/5 1/3 2/5
2/5 1/3 2/5

 , P (:, :, 2) =

 1/5 1/3 2/5
2/5 1/3 2/5
2/5 1/3 1/5

 ,

P (:, :, 3) =

 1/3 1/3 1/5
1/3 1/3 2/5
1/3 1/3 2/5

 .

As all the entries ai1,i2,i3 > 0, the transition probability tensor must be irreducible.

Example 2: (a 3th order 3-dimensional reducible transition probability tensor)

P (:, :, 1) =

 1 0 0
0 1 0
0 0 1

 , P (:, :, 2) =

 1 0 0
0 1 0
0 0 1

 ,

P (:, :, 3) =

 1 0 0
0 1 0
0 0 1

 .
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We set I = {1}, and find that a1,2,3 = 0, a1,3,2 = 0, a1,2,2 = 0 and a1,3,3 = 0. The
transition probability tensor is reducible. For example, when the process is at Xt = 1
and Xt−1 = 1, the process is always at Xt+1 = 1, i.e., the states 2 and 3 cannot
be reached. In this example, it is easy to check that there exist nonnegative vectors
x̄ = (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T with the sum of entries being equal to 1, such
that Px̄2 = x̄. It is clear that solutions of Px2 = x are not unique and positive.

2.2. Theoretical Analysis. It is straightforward to show that when xi ≥ 0 and∑
i xi = 1, (Pxm−1)i must be nonnegative, and

∑
i(Pxm−1)i = 1. We can interpret

that the probability vector is preserved after the transition probability calculation via
P. This fact is the same as that in the first order Markov chain. Next we state the
main results of this paper.

Theorem 2.2. If P is a non-negative tensor of order m and dimension n with
(1.2) and (1.3), then there exists a nonzero non-negative vector x̄ such that Px̄m−1 =
x̄ and

∑n
i=1 x̄i = 1. In particular, if P is irreducible, then x̄ must be positive.

Proof. The problem can be reduced to a fixed point problem as follows. Let

Ω = {(x1, x2, · · · , xn)
T ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n,

n∑
i=1

xi = 1}.

It is clear that Ω is a closed and convex set. We define the following map Φ : Ω → Ω:

(Φ(x))i = (Pxm−1)i, 1 ≤ i ≤ n. (2.1)

It is clear that Φ is well-defined and continuous. According to the Brouwer Fixed
Point Theorem, there exists x̄ ∈ Ω such that Φ(x̄) = x̄.

Next we would like to show that x̄ is positive when P is irreducible. Assume that
x̄ is not positive, i.e., there exist some entries of x̄ are zero. Let I = {i|x̄i = 0}. It is
obvious that I is a proper subset of {1, 2, · · · , n}. Let δ = min{x̄j |j /∈ I}. We must
have δ > 0. Since x̄ satisfies Px̄m−1 = x̄, we have

n∑
i2,··· ,im=1

pi,i2,··· ,im x̄i2 · · · x̄im = x̄i = 0, ∀i ∈ I.

It follows that

δm−1
∑

i2,··· ,im /∈I

pi,i2,··· ,im ≤
∑

i2,··· ,im /∈I

pi,i2,··· ,im x̄i2 · · · x̄im ≤ 0, ∀i ∈ I.

Hence we have pi,i2,··· ,im = 0 for all i ∈ I and for all i2, · · · im /∈ I, i.e., P is reducible.
This is a contradiction, and the results follow.

Next we show that with some suitable conditions of P, x̄ is unique in Theorem
2.2. We first consider the case for tensors of order 3. Let S be a proper subset of ⟨n⟩
and S′ be its complementary set in ⟨n⟩, i.e., S′ = ⟨n⟩\S. For P = (pi1,i2,i3), let

γ := min
S⊂⟨n⟩

{
min
i3∈⟨n⟩

(
min
i2∈S

∑
i∈S′

pi,i2,i3 + min
i2∈S′

∑
i∈S

pi,i2,i3

)
+

min
i2∈⟨n⟩

(
min
i3∈S

∑
i∈S′

pi,i2,i3 + min
i3∈S′

∑
i∈S

pi,i2,i3

)}
. (2.2)
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According to the above definition, γ is bounded above by
∑

i∈S′ pi,i2,i3+
∑

i∈S pi,i2,i3+∑
i∈S′ pi,i2,i3 +

∑
i∈S pi,i2,i3 , i.e., γ is always less than or equal to 2.

Theorem 2.3. Suppose P is a non-negative tensor of order 3 and dimension n
with (1.2) and (1.3). If γ > 1, then the nonzero non-negative vector x̄ in Theorem
2.2 is unique.

Proof. Assume that there exist two positive vectors x = [x1, x2, · · · , xn] and
y = [y1, y2, · · · , yn] with x ̸= y such that x = Px2 and y = Py2. Let V = {i : xi > yi}
and V ′ = {i : xi ≤ yi}. It is clear that V and V ′ are nonempty and are not equal to
⟨n⟩, and V ∪ V ′ = ⟨n⟩.

We first note that

xi−yi =
∑
i2,i3

pi,i2,i3(xi2xi3 −yi2yi3) =
∑
i2,i3

pi,i2,i3 [(xi2 −yi2)xi3 +(xi3 −yi3)yi2 ] (2.3)

By (2.3), we have∑
i∈V

(xi − yi) =
∑
i2,i3

∑
i∈V

pi,i2,i3(xi2 − yi2)xi3 +
∑
i2,i3

∑
i∈V

pi,i2,i3(xi3 − yi3)yi2 (2.4)

Notice that
∑n

i=1(xi − yi) = 0, and therefore we have∑
i∈V

(xi − yi) =
∑
i∈V ′

(yi − xi). (2.5)

We note that∑
i2,i3

∑
i∈V

pi,i2,i3(xi2 − yi2)xi3

=
∑
i2∈V

∑
i3

∑
i∈V

pi,i2,i3(xi2 − yi2)xi3 +
∑
i2∈V ′

∑
i3

∑
i∈V

pi,i2,i3(xi2 − yi2)xi3

≤
∑
i2∈V

∑
i3

(
max
i2∈V

∑
i∈V

pi,i2,i3

)
(xi2 − yi2)xi3 −

∑
i2∈V ′

∑
i3

∑
i∈V

pi,i2,i3(yi2 − xi2)xi3

=
∑
i2∈V ′

∑
i3

(
max
i2∈V

∑
i∈V

pi,i2,i3

)
(yi2 − xi2)xi3 −

∑
i2∈V ′

∑
i3

∑
i∈V

pi,i2,i3(yi2 − xi2)xi3

=
∑
i2∈V ′

∑
i3

(
max
i2∈V

∑
i∈V

pi,i2,i3 −
∑
i∈V

pi,i2,i3

)
(yi2 − xi2)xi3

≤ max
i2∈V ′,i3∈⟨n⟩

(
max
i2∈V

∑
i∈V

pi,i2,i3 −
∑
i∈V

pi,i2,i3

) ∑
i2∈V ′

∑
i3

(yi2 − xi2)xi3 .

By using (2.5), we obtain the following inequality:

∑
i2,i3

∑
i∈V

pi,i2,i3(xi2−yi2)xi3 ≤ max
i3∈⟨n⟩

(
max
i2∈V

∑
i∈V

pi,i2,i3 − min
i2∈V ′

∑
i∈V

pi,i2,i3

) ∑
i2∈V

(xi2−yi2).

(2.6)
Similarly, we have

∑
i2,i3

∑
i∈V

pi,i2,i3(xi3−yi3)yi2 ≤ max
i2∈⟨n⟩

(
max
i3∈V

∑
i∈V

pi,i2,i3 − min
i3∈V ′

∑
i∈V

pi,i2,i3

) ∑
i3∈V

(xi3−yi3),
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which together with (2.4) and (2.6) gives

1 ≤ max
i3∈⟨n⟩

(
max
i2∈V

∑
i∈V

pi,i2,i3 − min
i2∈V ′

∑
i∈V

pi,i2,i3

)
+ max

i2∈⟨n⟩

(
max
i3∈V

∑
i∈V

pi,i2,i3 − min
i3∈V ′

∑
i∈V

pi,i2,i3

)

= max
i3∈⟨n⟩

(
max
i2∈V

(
1−

∑
i∈V ′

pi,i2,i3

)
− min

i2∈V ′

∑
i∈V

pi,i2,i3

)
+

max
i2∈⟨n⟩

(
max
i3∈V

(
1−

∑
i∈V ′

pi,i2i3

)
− min

i3∈V ′

∑
i∈V

pi,i2,i3

)

= max
i3∈⟨n⟩

(
1− min

i2∈V

∑
i∈V ′

pi,i2,i3 − min
i2∈V ′

∑
i∈V

pi,i2,i3

)
+

max
i2∈⟨n⟩

(
1− min

i3∈V

∑
i∈V ′

pi,i2i3 − min
i3∈V ′

∑
i∈V

pi,i2,i3

)

= 2− min
i3∈⟨n⟩

(
min
i2∈V

∑
i∈V ′

pi,i2,i3 + min
i2∈V ′

∑
i∈V

pi,i2,i3

)
−

min
i2∈⟨n⟩

(
min
i3∈V

∑
i∈V ′

pi,i2,i3 + min
i3∈V ′

∑
i∈V

pi,i2,i3

)
,

i.e.,

1 ≥ min
i3∈⟨n⟩

(
min
i2∈V

∑
i∈V ′

pi,i2,i3 + min
i2∈V ′

∑
i∈V

pi,i2,i3

)
+ min

i2∈⟨n⟩

(
min
i3∈V

∑
i∈V ′

pi,i2,i3 + min
i3∈V ′

∑
i∈V

pi,i2,i3

)
.

It implies that γ ≤ 1, but this contradicts the assumption, the result follows.

Remark 1: The condition that γ > 1 cannot be omitted. By considering Example 2
in Section 2.1, γ ≤ 1 for this tensor. We have shown that there are three non-negative
vectors x = (1, 0, 0)T , (0, 1, 0)T , or (0, 0, 1)T such that Px2 = x.

Remark 2: We note that the condition in Theorem 2.3 can be achieved by using the
following condition: δ3 > 1

2 where

δ3 := min
S⊂⟨n⟩

{
min

i2,i3∈⟨n⟩

∑
i∈S′

pi,i2,i3 + min
i2,i3∈⟨n⟩

∑
i∈S

pi,i2,i3

}
. (2.7)

It is easy to check that δ3 is always less than or equal to 1, and γ ≥ 2δ3. Thus when
δ3 > 1/2, we obtain γ > 1.

Remark 3: Here we further give a special kind of tensors satisfying the required
condition in Theorem 2.3:

|pi,i2,i3 − pi,j2,j3 | <
1

n
, ∀i, i2, i3, j2, j3 ∈ ⟨n⟩. (2.8)

Without loss of generality, we assume |S| ≤ n
2 . Let

min
i2,i3∈⟨n⟩

∑
i∈S′

pi,i2,i3 =
∑
i∈S′

pi,k2,k3 .
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By (2.8), for such k2 and k3, we have

pi,i2,i3 > pi,k2,k3 −
1

n
, ∀i, i2, i3,

this implies that

min
i2,i3∈⟨n⟩

∑
i∈S′

pi,i2,i3 + min
i2,i3∈⟨n⟩

∑
i∈S

pi,i2,i3 >
∑
i∈S′

pi,k2,k3
+
∑
i∈S

(pi,k2,k3
− 1

n
) ≥ 1

2
.

We further note that when n is odd, the condition in (2.8) can be changed to

|pi,i2,i3 − pi,j2,j3 | ≤
1

n
, ∀i, i2, i3, j2, j3 ∈ ⟨n⟩.

Because when n is odd, we find that either |S| or |S′| is smaller than n/2. Without
loss of generality, we let |S| < n/2. It follows that

min
i2,i3∈⟨n⟩

∑
i∈S′

pi,i2,i3 + min
i2,i3∈⟨n⟩

∑
i∈S

pi,i2,i3 ≥
∑
i∈S′

pi,k2,k3 +
∑
i∈S

(pi,k2,k3 −
1

n
) >

1

2
.

According to Remark 2, we know that for the above transition probability tensor, the
unique probability vector can be determined.

Let us consider Example 1 in Section 2.1, this irreducible transition probabil-
ity tensor satisfies the condition (2.8). The unique probability vector is given by
x̄ = (0.2970, 0.3688, 0.3342)T . By observing this example, we can interpret the con-
dition |pi,i2,i3 − pi,j2,j3 | ≤ 1

3 requires that the difference between the transition prob-
abilities from (Xt = i2, Xt−1 = i3) and (Xt = j2, Xt−1 = j3) should be small enough.
This allows the uniqueness of a fixed point in the dynamics of limiting probabilities
calculation among different possible states.

Next we consider tensors with orders being greater than 3. A similar condition
in (2.7) can be used. For P = (pi1,i2,··· ,im), let

δm := min
S

{
min

i2,··· ,im∈⟨n⟩

∑
i∈S′

pi,i2,··· ,im + min
i2,··· ,im∈⟨n⟩

∑
i∈S

pi,i2,··· ,im

}
. (2.9)

It is easy to check that δm is always less than or equal to 1. Similar arguments in the
proof of Theorem 2.3 can be employed to show the following theorem.

Theorem 2.4. Suppose P is a non-negative tensor of order m and dimension
n with (1.2) and (1.3). If δm > m−2

m−1 , then the nonzero non-negative vector x̄ in
Theorem 2.2 is unique.

Proof. Assume that there exist two positive vectors x = [x1, x2, · · · , xn] and
y = [y1, y2, · · · , yn] with x ̸= y such that x = Pxm−1 and y = Pym−1. Let V = {i :
xi > yi} and V ′ = {i : xi ≤ yi}. By the assumption we have Vi ̸= ∅ for i = 1, 2 and
V ∪ V ′ = ⟨n⟩. We note that

(xi − yi)

=
∑

i2,··· ,im

pi,i2,··· ,im(xi2 · · ·xim − yi2 · · · yim)

=
∑

i2,··· ,im

pi,i2,··· ,im [(xi2 − yi2)xi3 · · ·xim + · · ·+ (xim − yim)yi2 · · · yim−1 ].

(2.10)
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It implies that∑
i∈V

(xi − yi)

=
∑

i2,··· ,im

∑
i∈V

pi,i2,··· ,im [(xi2 − yi2)xi3 · · ·xim + · · ·+ (xim − yim)yi2 · · · yim−1 ]

(2.11)

Notice that
∑n

i=1(xi − yi) = 0, therefore again we have (2.5). By (2.5) we have∑
i2,··· ,im

∑
i∈V

pi,i2,··· ,im(xi2 − yi2)xi3 · · ·xim

=
∑
i2∈V

∑
i3,··· ,im

∑
i∈V

pi,i2,··· ,im(xi2 − yi2)xi3 · · ·xim +

∑
i2∈V ′

∑
i3,··· ,im

∑
i∈V

pi,i2,··· ,im(xi2 − yi2)xi3 · · ·xim

≤
∑
i2∈V

∑
i3,..,im

(
max

i2∈V,i3,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

)
(xi2 − yi2)xi3 · · ·xim −

∑
i2∈V ′

∑
i3,··· ,im

∑
i∈V

pi,i2,··· ,im(yi2 − xi2)xi3 · · ·xim

=
∑
i2∈V ′

∑
i3,..,im

(
max

i2∈V,i3,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

)
(yi2 − xi2)xi3 · · ·xim −

∑
i2∈V ′

∑
i3,··· ,im

∑
i∈V

pi,i2,··· ,im(yi2 − xi2)xi3 · · ·xim

=
∑
i2∈V ′

∑
i3,..,im

(
max

i2∈V,i3,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im −
∑
i∈V

pi,i2,··· ,im

)
(yi2 − xi2)xi3 · · ·xim

≤

(
max

i2∈V,i3,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im − min
i2∈V ′,i3,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

)
×∑

i2∈V ′

∑
i3,··· ,im

(yi2 − xi2)xi3 · · ·xim

≤

(
max

i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im − min
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

) ∑
i2∈V ′

(yi2 − xi2)

=

(
max

i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im − min
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

)∑
i∈V

(xi − yi). (2.12)

Similarly, for any ik, we can derive∑
i2,··· ,im

∑
i∈V

pi,i2,··· ,im(xik − yik)yi2 · · · yik−1
xik+1

· · ·xim

≤

(
max

i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im − min
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im

)∑
i∈V

(xi − yi). (2.13)
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We note that there are (m− 1) terms in (2.11) and their bounds are given by (2.12)
and (2.13). Therefore, we obtain the following inequality:

1

m− 1
≤ max

i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im − min
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im . (2.14)

Since

max
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im = 1− min
i2,··· ,im∈⟨n⟩

∑
i∈V ′

pi,i2,··· ,im ,

it follows from (2.14) that

min
i2,··· ,im∈⟨n⟩

∑
i∈V

pi,i2,··· ,im
+ min

i2,··· ,im∈⟨n⟩

∑
i∈V ′

pii,i2,··· ,im
≤ m− 2

m− 1
,

i.e., δm ≤ m−2
m−1 which contradicts the assumption. This proves the theorem.

Remark 4: Similar to (2.11), we provide a special kind of tensors of order m and
dimension n satisfying the required condition in Theorem 2.4:

|pi,i2,...,im − pi,j2,...,jm | < 2

n(m− 1)
, ∀i, i2, ..., im, j2, ..., jm ∈ ⟨n⟩.

Remark 5: The condition that γ > 1 (in Theorem 2.3) or δm > m−2
m−1 (in Theorem

2.4) is not necessary. Here we give an example to demonstrate this condition.

Example 3: (a 3th order 2-dimensional irreducible transition probability tensor)

P (:, :, 1) =

(
0 1
1 0

)
and P (:, :, 2) =

(
0 1
1 0

)
.

This transition probability tensor is irreducible. We note that when (Xt = 1, Xt−1 =
1), Xt+1 will be equal to 2 (i.e., p2,1,1 = 1); when (Xt = 1, Xt−1 = 2), Xt+1 will
be equal to 2 (i.e., p2,1,2 = 1); when (Xt = 2, Xt−1 = 1), Xt+1 will be equal to 1
(i.e., p1,2,1 = 1); when (Xt = 2, Xt−1 = 2), Xt+1 will be equal to 1 (i.e., p1,2,2 = 1).
It is interesting to note that γ = 1 for this tensor, but we still find that the unique
probability vector x̄ satisfying x̄ = Px̄2 is given by (1/2, 1/2)T .

In the section of numerical examples (Section 4), we give a 4th order transition prob-
ability tensor (vii) that δ4 ≤ 2/3 such that there is a unique positive vector such that
(1.9) holds.

2.3. Z-eigenvalue Problem of Transition Probability Tensors. In a Markov
chain, the limiting probability distribution can be given by the normalized eigenvec-
tor associated with the largest eigenvalue of P being equal to 1 (see Theorem 1.1).
In this subsection, we discuss the relation between solutions of Pxm−1 = x and the
eigenvalue problem of transition probability tensors.

The study of eigenpair of a tensor can be found in [16, 10, 4].
Definition 2.5. Let A be an mth order n-dimensional tensor and C be the

set of all complex numbers. Assume that Axm−1 is not identical to zero. We say
(λ,x) ∈ C× (Cn\{0}) is an H-eigenpair of A if

Axm−1 = λx[m−1]. (2.15)

11



Here, x[α] = [xα
1 , x

α
2 , · · · , xα

n]
T . On the other hand, we say (λ,x) ∈ C × (Cn\{0}) is

an Z-eigenpair of A if

Axm−1 = λx with ∥x∥2 = 1. (2.16)

where ∥x∥2 is the Euclidean norm of x.
This definition was introduced by Qi [16] when m is even and A is symmetric.

Independently, Lim [10] gave such a definition but restricted x to be a real vector and
λ to be a real number. For the largest H-eigenvalue of a non-negative tensor, Chang
et al. [4] showed the following Perron-Frobenius theorem.

Theorem 2.6. If A is an irreducible non-negative tensor of order m and dimen-
sion n, then there exist λ0 > 0 and x̄ > 0 with x̄ ∈ Rn such that

Ax̄m−1 = λ0x̄
[m−1]. (2.17)

Moreover, if λ is an eigenvalue with a non-negative eigenvector, then λ = λ0. If λ is
an eigenvalue of A, then |λ| ≤ λ0.

In Theorem 2.6, there is no guarantee that λ0 is equal to 1 for transition prob-
ability tensors. Numerical results in Table 4 given in [14] have shown that λ0 is not
equal to 1. Therefore, the results in Theorem 2.6 are different from a second-order
irreducible non-negative tensor (i.e., the first order Markov chain matrix P ) that the
largest eigenvalue of the first order Markov chain matrix is always equal to one [3],
and the corresponding eigenvector x > 0 and is normalized with Px = x as stated in
Theorem 1.1.

In our setting, the summation of all the entries of Px̄m−1 and x̄ are both equal
to one. It is clear that 1 must be the largest Z-eigenvalue of P with a non-negative
eigenvector x̄ and

∑n
i=1 x̄i = 1 as stated in Theorem 2.2. Thus our problem can be

formulated as the Z-eigenvalue problem of P:

Pxm−1 = x with x ≥ 0, and ∥x∥1 = 1.

This eigenvalue problem is different from the eigenvalue problems in (2.15) and (2.16).

3. The Iterative Method. According to Theorems 2.2-2.4, we propose and
study a simple iterative algorithm for computing the limiting probability distribution
vector of a transition probability tensor arising from a higher order Markov chain.

The Iterative Algorithm:
(i) Input x0 is any n-vector with

∑n
i=1[x0]i = 1;

(ii) Set t = 1;
(a) Compute xt = Pxm−1

t−1 ;
(b) Set t = t+ 1;
(c) If xt = xt−1, then stop, otherwise goto Step ii(a).

In the algorithm, the subscript index t refers to the iteration number of the iterate xt.
We note that the computation requires several iterations, through the collection to
adjust approximate probabilities to more closely reflect their theoretical true values
(underlying limiting probability distribution). The iterative method is similar to the
power method for computing the eigenvector corresponding to the largest eigenvalue
of a matrix [15]. The main computational cost of the algorithm depends on the cost
of performing tensor operation. Assume that there are O(N) nonzero entries (sparse
data) in P, the cost of this tensor calculation are of O(N) arithmetic operations.
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We note that when xi ≥ 0 and
∑

i xi = 1, we have the i-th entry of Pxm−1 is
greater than or equal to 0 for 1 ≤ i ≤ n and the summation of all entries is equal to
1. Therefore it is not necessary to perform the normalization in the exact arithmetic.
However, under the inexact arithmetic computing environment, we can perform the
normalization of xt after Step ii(a).

Here we use Example 3 in Section 2.2 to demonstrate the method does not con-
verge even for an irreducible transition probability tensor. When the algorithm starts
with an initial probability vector (1, 0)T , the next iterate of the algorithm is given
by (0, 1)T , and then the next iterate of the algorithm returns to the same initial
probability vector. Thus the algorithm does not converge.

3.1. The Convergence Analysis. The main contribution of this subsection is
to show a linear convergence of the iterative algorithm under the same assumption in
Theorems 2.3 and 2.4. Let us first consider for tensors of order 3.

Theorem 3.1. Suppose P is a non-negative tensor of order 3 and dimension n
with (1.2) and (1.3). Then {xt} generated by the iterative method, satisfies

∥xt+1 − xt∥1 ≤ (2− γ)∥xt − xt−1∥1, ∀t = 0, 1, · · · ,

where γ is defined in (2.2). If γ > 1, then {xt} converges linearly to the unique
solution x̄ (which is guaranteed to exist by Theorem 2.3), for any initial distribution
vector x0.

Proof. We consider the iterates at the t-th and the (t − 1)-th iterations of the
iterative method: xt+1 = [xt+1,1, xt+1,2, · · · , xt+1,n]

T ̸= xt = [xt,1, xt,2, · · · , xt,n]
T

where xt+1 = Px2
t and xt = Px2

t−1.
Let V (t) = {i : xt+1,i > xt,i} and V ′(t) = {i : xt+1,i ≤ xt,i}. As both xt+1 and

xt are positive, and
∑

i=1 xt+1,i =
∑

i=1 xt,i = 1, we must have V (t), V ′(t) ̸= ∅ and
V (t)∪ V ′(t) = ⟨n⟩, otherwise, xt+1 = xt, and the result follows. It is clear that V ′(t)
is complementary set of V (t) in ⟨n⟩.

By using the similar argument in Theorem 2.3, we have

xt+1,i − xt,i =
∑
i2,i3

pi,i2,i3((xt,i2 − xt−1,i2)xt,i3 + (xt,i3 − xt−1,i3)xt−1,i2) (3.1)

Therefore, we have∑
i∈V (t)

(xt+1,i − xt,i) =
∑
i2,i3

∑
i∈V (t)

pi,i2,i3(xt,i2 − xt−1,i2)xt,i3 +∑
i2,i3

∑
i∈V (t)

pi,i2,i3(xt,i3 − xt−1,i3)xt−1,i2 (3.2)

∑
i∈V (t)

(xt+1,i − xt,i) =
∑

i∈V ′(t)

(xt,i − xt+1,i) (3.3)

∑
i∈V (t−1)

(xt,i − xt−1,i) =
∑

i∈V ′(t−1)

(xt−1,i − xt,i) (3.4)

By using (3.4), we obtain∑
i2,i3

∑
i∈V (t)

pi,i2,i3(xt,i2 − xt−1,i2)xt,i3

≤

 max
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3 − min
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3

 ∑
i2∈V (t−1)

(xt,i2 − xt−1,i2), (3.5)
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and ∑
i2,i3

∑
i∈V (t)

pi,i2,i3(xt,i3 − xt−1,i3)xt−1,i2

≤

 max
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3 − min
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3

 ∑
i3∈V (t−1)

(xt,i3 − xt−1,i3),

which together with (3.2) and (3.5) gives∑
i∈V (t)

(xt+1,i − xt,i)

≤

2−
 min

i2,i3∈⟨n⟩

∑
i∈V ′(t)

pi,i2,i3 + min
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3

−

 min
i2,i3∈⟨n⟩

∑
i∈V ′(t)

pi,i2,i3 + min
i2,i3∈⟨n⟩

∑
i∈V (t)

pi,i2,i3

 ∑
i∈V (t−1)

(xt,i − xt−1,i)

≤ (2− γ)
∑

i∈V (t−1)

(xt,i − xt−1,i).

By using (3.3) and (3.4), we have

∥xt+1 − xt∥1 =
∑

i∈V (t)

(xt+1,i − xt,i) +
∑

i∈V ′(t)

(xt,i − xt+1,i)

= 2
∑

i∈V (t)

(xt+1,i − xt,i)

≤ 2(2− γ)
∑

i∈V (t−1)

(xt,i − xt−1,i)

= (2− γ)

 ∑
i∈V (t−1)

(xt,i − xt−1,i) +
∑

i∈V ′(t−1)

(xt−1,i − xt,i)


= (2− γ)∥xt − xt−1∥1.

If the iteration does not terminate in a finite number of iterations, i.e., xt+1 ̸= xt

(t = 0, 1, · · · ,), then we have

∥xt+1 − xt∥1 ≤ (2− γ)t∥x1 − x0∥1.

When γ > 1, it implies that {xt} converges as ∥xt+1 − xt∥1 converges to zero when t
tends to infinity, i.e., the iterative method converges.

By using the above argument again, we can also show that

∥xt+1 − x̄∥1 ≤ (2− γ)t+1∥x0 − x̄∥1,

It implies that {xt} converges to x̄ for any given initial x0 with a linear convergence
rate.

Here we can make use of the similar argument in Theorem 3.1, we can obtain the
convergence theorem for tensors of order m.
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Theorem 3.2. Suppose P is a non-negative tensor of order m and dimension n
with (1.2) and (1.3). Then {xt} generated by the iterative method, satisfies

∥xt+1 − xt∥1 ≤ (m− 1)(1− δm)∥xt − xt−1∥1, ∀t = 0, 1, · · · ,

If δm > m−2
m−1 , then {xt} converges linearly to the unique solution x̄ (which is guaran-

teed to exist by Theorem 2.4), for any initial distribution vector x0.
Proof. The proof is similar to that in Theorem 3.1. The main equality and

inequality are given as follows:

([xt+1]i − [xt]i) =
∑

i2,··· ,im

pi,i2,··· ,im(xt,i2 · · ·xt,im − xt−1,i2 · · ·xt−1,im)

=
∑

i2,··· ,im

pi,i2,··· ,im {(xt,i2 − xt−1,i2)xt,i3 · · ·xt,im + · · ·+

(xt,im − xt−1,im)xt−1,i2 · · ·xt−1,im−1

}
.

and ∑
i2,··· ,im

∑
i∈V (t)

pi,i2,··· ,im(xt,i2 − xt−1,i2)xt,i3 · · ·xt,im

≤

 max
i2,··· ,im∈⟨n⟩

∑
i∈V (t)

pi,i2,··· ,im − min
i2,··· ,im∈⟨n⟩

∑
i∈V (t)

pi,i2,··· ,im

 ∑
i∈V (t−1)

(xt,i − xt−1,i).

Remark 6: Under the assumptions of Theorems 3.1 and 3.2, if P is irreducible, then
the iterative method will converge linearly to the positive solution of Pxm−1 = x.

4. Numerical Examples. In this section, we present numerical examples to
demonstrate the theoretical results in Sections 2 and 3.

4.1. Demonstration I. The first two examples comes from DNA sequence data
in Tables 6 and 10 of [18]. In these two transition probability tensors, their orders m
are 3 and their numbers of states n are 3 by considering three categories ({A/G,C, T}).
By using the Matlab multi-dimensional array notation, the transition probability ten-
sors are given by

(i) P (:, :, 1) =

 0.6000 0.4083 0.4935
0.2000 0.2568 0.2426
0.2000 0.3349 0.2639

 , P (:, :, 2) =

 0.5217 0.3300 0.4152
0.2232 0.2800 0.2658
0.2551 0.3900 0.3190

 ,

P (:, :, 3) =

 0.5565 0.3648 0.4500
0.2174 0.2742 0.2600
0.2261 0.3610 0.2900

 ,

and

(ii) P (:, :, 1) =

 0.5200 0.2986 0.4462
0.2700 0.3930 0.3192
0.2100 0.3084 0.2346

 , P (:, :, 2) =

 0.6514 0.4300 0.5776
0.1970 0.3200 0.2462
0.1516 0.2500 0.1762

 ,
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P (:, :, 3) =

 0.5638 0.3424 0.4900
0.2408 0.3638 0.2900
0.1954 0.2938 0.2200


respectively.

By considering three categories ({A,C/T,G}), we construct a transition proba-
bility tensor of order 4 and dimension 3 for the DNA sequence in [12]:

(iii) P (:, :, 1, 1) =

 0.3721 0.2600 0.4157
0.4477 0.5000 0.4270
0.1802 0.2400 0.1573

 , P (:, :, 2, 1) =

 0.3692 0.2673 0.3175
0.4667 0.5594 0.5079
0.1641 0.1733 0.1746

 ,

P (:, :, 3, 1) =

 0.4227 0.2958 0.2353
0.4124 0.5563 0.5588
0.1649 0.1479 0.2059

 , P (:, :, 1, 2) =

 0.3178 0.2632 0.3194
0.5212 0.6228 0.5833
0.1610 0.1140 0.0972

 ,

P (:, :, 2, 2) =

 0.2836 0.2636 0.3042
0.5012 0.6000 0.5250
0.2152 0.1364 0.1708

 , P (:, :, 3, 2) =

 0.3382 0.2396 0.3766
0.5147 0.6406 0.4935
0.1471 0.1198 0.1299

 ,

P (:, :, 1, 3) =

 0.3204 0.2985 0.3500
0.4854 0.5000 0.5000
0.1942 0.2015 0.1500

 , P (:, :, 2, 3) =

 0.4068 0.2816 0.3594
0.3898 0.5143 0.4219
0.2034 0.2041 0.2188

 ,

P (:, :, 3, 3) =

 0.3721 0.3529 0.3000
0.5349 0.3971 0.5500
0.0930 0.2500 0.1500

 .

In [2], it is found that a better model for DNA sequence is obtained by considering
both sides, i.e., the left to the right and the right to the left in the DNA sequence
together. An example is given in [2] is a transition probability tensor of order 3 and
dimension 4 by considering four bases ({A,C,G, T}):

(iv) P (:, :, 1) =


0.2091 0.2834 0.2194 0.1830
0.3371 0.3997 0.3219 0.3377
0.3265 0.0560 0.3119 0.2961
0.1273 0.2608 0.1468 0.1832

 ,

P (:, :, 2) =


0.1952 0.2695 0.2055 0.1690
0.3336 0.3962 0.3184 0.3342
0.2954 0.0249 0.2808 0.2650
0.1758 0.3094 0.1953 0.2318

 ,

P (:, :, 3) =


0.3145 0.3887 0.3248 0.2883
0.0603 0.1230 0.0451 0.0609
0.3960 0.1255 0.3814 0.3656
0.2293 0.3628 0.2487 0.2852

 ,
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P (:, :, 4) =


0.1686 0.2429 0.1789 0.1425
0.3553 0.4180 0.3402 0.3559
0.3189 0.0484 0.3043 0.2885
0.1571 0.2907 0.1766 0.2131

 .

In this case, the higher-order Markov chain is actually a fitted low-parameter version
of the original data.

For the four transition probability tensors (i)–(iv), they are irreducible. Also
the condition in Theorem 2.4 is satisfied. Each has unique and positive limiting
probability distribution vector. In Table 4.1, we list δm for these four tensors. It
is clear that for (i), (ii) and (iv), the quantity δ3 > 1/2; and for (iii), the quantity
δ4 > 2/3. According to Theorem 3.2, we know that the iterative method converges
linearly to the unique and positive probability vector. Their corresponding theoretical
convergence rates (m− 1)(1− δm) are also shown in Table 4.1.

In the numerical experiment, we set the stopping criterion of the iterative method
to be ∥xt − xt−1∥1 < 10−10. We plot in Figure 4.1(a) the successive differences
∥xt−xt−1∥1 (the convergence history) with respect to iteration numbers for the tran-
sition probability tensor (ii). We see from the figure that the method converges lin-
early. Similar observations can be found for the transition probability tensors (i), (iii)
and (iv). In Table 4.1, we also show the maximum value of ∥xt+1−xt∥1/∥xt−xt−1∥1
over the iterations of the proposed method. We find that the maximum value is
always bounded below by (m − 1)(1 − δm). However, the maximum value is signifi-
cantly smaller than (m − 1)(1 − δm), and the iterative method can converge within
20 iterations.

Example δm (m− 1)(1− δm) max
∥xt+1 − xt∥1
∥xt − xt−1∥1

number of iterations

(i) 0.7300 0.5400 0.2321 14
(ii) 0.6472 0.7056 0.0930 9
(iii) 0.7492 0.7524 0.1628 12
(iv) 0.5742 0.8516 0.3599 20

Example limiting probability distribution vector
(i) [0.4963, 0.2349, 0.2688]
(ii) [0.4873, 0.2889, 0.2238]
(iii) [0.3503, 0.4724, 0.1773]
(iv) [0.2395, 0.2869, 0.2447, 0.2289]

Table 4.1
The computed quantities of the examples of tensors (i)-(iv).

4.2. Demonstration II. In this subsection, we show three more examples of
transition probability tensors studied in [17, 18].

The first one comes from inter-personal relationships data in [17]. The order m
is 3 and the number n of states is 3. By using the Matlab multi-dimensional array
notation, the transition probability tensor is given by

(v) P (:, :, 1) =

 0.5810 0.2432 0.1429
0 0.4109 0.0701

0.4190 0.3459 0.7870

 , P (:, :, 2) =

 0.4708 0.1330 0.0327
0.1341 0.5450 0.2042
0.3951 0.3220 0.7631

 ,
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Fig. 4.1. The convergence history of the iterative method for (a) the tensor in (ii) and (b) the
tensor in (vi).

P (:, :, 3) =

 0.4381 0.1003 0
0.0229 0.4338 0.0930
0.5390 0.4659 0.9070

 .

The second one comes from occupational mobility of physicists data in [17]. The order
m is 3 and the number n of states is 3. The transition probability tensor is given by

(vi) P (:, :, 1) =

 0.9000 0.3340 0.3106
0.0690 0.6108 0.0754
0.0310 0.0552 0.6140

 , P (:, :, 2) =

 0.6700 0.1040 0.0805
0.2892 0.8310 0.2956
0.0408 0.0650 0.6239

 ,

P (:, :, 3) =

 0.6604 0.0945 0.0710
0.0716 0.6133 0.0780
0.2680 0.2922 0.8510

 .

The third one comes from wind power data in [17]. The order m is 4 and the number
n of states is 4.

(vii) P (:, :, 1, 1) =


0.8370 0.3470 0.3105 0.3105
0.1630 0.5976 0.1316 0.0605

0 0.0544 0.5328 0.0730
0 0 0.0252 0.5560

 ,

P (:, :, 2, 1) =


0.7984 0.1865 0.1501 0.1835
0.1802 0.7400 0.2739 0.0254
0.0214 0.0735 0.5509 0.1114

0 0 0.0252 0.6797

 ,
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P (:, :, 3, 1) =


0.6646 0.1746 0.1381 0.1381
0.1527 0.5873 0.1212 0.0502
0.1745 0.2298 0.7072 0.2474
0.0082 0.0082 0.0334 0.5643

 ,

P (:, :, 4, 1) =


0.6646 0.1746 0.1381 0.1381
0.1294 0.5641 0.0980 0.0269
0.0239 0.0792 0.5567 0.0969
0.1821 0.1821 0.2073 0.7381

 ,

P (:, :, 1, 2) =


0.7085 0.2185 0.1820 0.1820
0.2770 0.7117 0.2456 0.1745
0.0145 0.0699 0.5473 0.0875

0 0 0.0252 0.5560

 ,

P (:, :, 2, 2) =


0.5480 0.0580 0.0215 0.0215
0.4194 0.8540 0.3879 0.3168
0.0326 0.0880 0.5654 0.1056

0 0 0.0252 0.5560

 ,

P (:, :, 3, 2) =


0.5360 0.0461 0.0096 0.0096
0.2667 0.7014 0.2353 0.1642
0.1890 0.2444 0.7218 0.2620
0.0082 0.0082 0.0334 0.5643

 ,

P (:, :, 4, 2) =


0.5360 0.0461 0.0096 0.0096
0.2434 0.6781 0.2120 0.1409
0.0384 0.0938 0.5712 0.1114
0.1821 0.1821 0.2073 0.7381

 ,

P (:, :, 1, 3) =


0.6989 0.2089 0.1724 0.1724
0.1547 0.5894 0.1233 0.0522
0.1398 0.1951 0.6725 0.2127
0.0066 0.0066 0.0318 0.5626

 ,

P (:, :, 2, 3) =


0.5384 0.0484 0.0119 0.0119
0.2971 0.7317 0.2656 0.1946
0.1579 0.2132 0.6906 0.2308
0.0066 0.0066 0.0318 0.5626

 ,

P (:, :, 3, 3) =


0.5265 0.0365 0 0
0.1444 0.5791 0.1130 0.0419
0.3142 0.3696 0.8470 0.3872
0.0148 0.0148 0.0400 0.5709

 ,
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P (:, :, 4, 3) =


0.5265 0.0365 0 0
0.1212 0.5558 0.0897 0.0186
0.1637 0.2190 0.6964 0.2366
0.1887 0.1887 0.2139 0.7447

 ,

P (:, :, 1, 4) =


0.6989 0.2089 0.1724 0.1724
0.1361 0.5707 0.1047 0.0336
0.0191 0.0745 0.5519 0.0921
0.1459 0.1459 0.1710 0.7019

 ,

P (:, :, 2, 4) =


0.5384 0.0484 0.0119 0.0119
0.2785 0.7131 0.2470 0.1759
0.0373 0.0926 0.5700 0.1102
0.1459 0.1459 0.1710 0.7019

 ,

P (:, :, 3, 4) =


0.5265 0.0365 0 0
0.1258 0.5604 0.0944 0.0233
0.1936 0.2490 0.7264 0.2666
0.1541 0.1541 0.1793 0.7101

 ,

P (:, :, 4, 4) =


0.5265 0.0365 0 0
0.1025 0.5372 0.0711 0
0.0430 0.0984 0.5758 0.1160
0.3280 0.3280 0.3531 0.8840

 .

In these three examples, the higher-order Markov chain is actually a fitted low-
parameter version of the original data.

For the two transition probability tensors (v)–(vi), they are irreducible. The
condition in Theorem 2.3 is satisfied. Each has unique and positive limiting probability
distribution vector. In Table 4.2, we list γ for these two tensors. We can check that for
(v) and (vi), the quantity γ > 1, but δ3 ≤ 1/2. According to Theorem 3.1, we know
that the iterative method converges linearly to the unique and positive probability
vector. Their corresponding theoretical convergence rates (2 − γ) are also shown in
Table 4.2. For the transition probability tensor (vii), it is irreducible, but the condition
in Theorem 2.4 is not satisfied (i.e., δ4 ≤ 2/3).

We employ the iterative method to solve for limiting probability vectors of these
transition probability tensors (v)–(vii), and find that the iterative method converges.
The resulting limiting probability distribution vectors are reported in Table 4.2. To
test the correctness of solution for the transition probability tensor in (vii), we use
Mathematica to solve the corresponding system of polynomials of four variables, and
find that the computed probability vector is the only solution.

In Table 4.2, we give the maximum value of ∥xt+1−xt∥1/∥xt−xt−1∥1 over the it-
erations of the proposed iterative method for the transition probability tensors in (v)–
(vii). We find that their maximum values are much larger than those of (i)–(iv), and
the numbers of iterations required for convergence are also more than those required
for (i)–(iv). For transition probability tensors in (v) and (vi), the estimated conver-
gence rates (2−γ) are very close to the maximum value of ∥xt+1−xt∥1/∥xt−xt−1∥1.
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In Figure 4.1(b), we show the convergence history of the iterative method for the tran-
sition probability tensor (vi). It is clear from the figure that the method converges
linearly. Similar observations can be found for the transition probability tensors (v)
and (vii). By comparing Figures 4.1(a) and 4.1(b), we see that the convergence of the
iterative method for the tensor (ii) is much faster than that for the tensor (vi).

Example γ (2− γ) δm max
∥xt+1 − xt∥1
∥xt − xt−1∥1

number of iterations

(v) 1.4150 0.5850 0.4150 0.5793 37
(vi) 1.1709 0.8291 0.1710 0.8248 105
(vii) – – 0 0.9290 208

Example limiting probability distribution vector
(v) [0.0511, 0.1610, 0.7879]
(vi) [0.4728, 0.2986, 0.2286]
(vii) [0.1481, 0.4161, 0.3241, 0.1117]

Table 4.2
The computed quantities of the examples of tensors (v)-(vii).

5. Concluding Remarks. In this paper, we have developed a model and pro-
posed an iterative method to calculate limiting probability distribution vector of a
transition probability tensor P arising from a higher-order Markov chain. Experi-
mental results are reported to demonstrate the theoretical results such as existence
and uniqueness of limiting probability distribution vector of a higher-order Markov
chain, and linear convergence of the proposed iterative method. Here we give several
future research work based on the proposed framework. Theoretically, we require P
to satisfy the condition in Theorem 2.3 or Theorem 2.4, in order to show that non-
negative solution of Pxm−1 = x with ∥x∥1 = 1 is unique. We conjecture that the
uniqueness result may be true for irreducible transition probability tensors without
additional properties, see the tensor (vii) in Section 4. We do not have a proof yet,
so we leave it as an open problem for future analysis.
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