
Functional Correctness of Dijkstra’s, Kruskal’s,
and Prim’s Algorithms in C

Anshuman Mohan Leow Wei Xiang Aquinas Hobor

CAV 2021
July 18-24, 2021

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E
Dijkstra’s algorithm (1959)

one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 21

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E
Dijkstra’s algorithm (1959)

one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 21

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E

Dijkstra’s algorithm (1959)
one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 21

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E

Dijkstra’s algorithm (1959)
one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 2

1

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E

Dijkstra’s algorithm (1959)
one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 21

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Refresher: Dijkstra, Prim, Kruskal

A

B C

D E

Dijkstra’s algorithm (1959)
one-to-all shortest paths

(Jarník’s) Prim’s (Dijkstra’s) algorithm (1930, 1957, 1959)
prune connected graph to MST

Kruskal’s algorithm (1956)
prune graph to MSF

3

4

1

6 21

9

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 2 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links

so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B C

A B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B C

A B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B C

A B C

A (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B C

A B C

A (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B C

A (cost 0) B (cost 8) C (cost 8)

A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)

A (cost 0) B (cost 5) C (cost 8)

A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)

A (cost 0) B (cost 5) C (cost 10)

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge

so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links
so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B CA B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 3 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!

Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction

Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long

Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part

Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep

...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

Motivation: A precondition for Dijkstra

There are many ways to fix this!
Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 4 / 30

CertiGraph: problem scope

CompCert + VST + CertiGraph

Verify executable graph-manipulating code with rich specifications

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 5 / 30

CertiGraph: problem scope

CompCert + VST + CertiGraph

Verify executable graph-manipulating code with rich specifications

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 5 / 30

CertiGraph: workflow

M
athem

aticalGraph
Library

Verified
Software

Toolchain
(VST)

Spatial Graph Library

Verification of a Graph-Manipulating Function

The CompCert Project

tP0u C1 tP1u tP2u t...PnuC2 ...Cn

CoqC AsmParser,
Simplifier

Verified
Compiler

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 6 / 30

Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 7 / 30

Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 8 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph

Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable

Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable

and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 9 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions

Prove connections to existing directed definitions
Grow undirected infrastructure

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure
Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 10 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:

stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]

stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]

heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Laying out graphs in memory

We support four representations of adjacency matrices in memory:
stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 11 / 30

Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 12 / 30

Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix
efr: Leave room for probing link
ifr: Bona-fide costs must dodge inf
sz1: Special bounds for degenerate case for inf

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 13 / 30

Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix

efr: Leave room for probing link
ifr: Bona-fide costs must dodge inf
sz1: Special bounds for degenerate case for inf

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 13 / 30

Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix
efr: Leave room for probing link

ifr: Bona-fide costs must dodge inf
sz1: Special bounds for degenerate case for inf

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 13 / 30

Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix
efr: Leave room for probing link
ifr: Bona-fide costs must dodge inf

sz1: Special bounds for degenerate case for inf

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 13 / 30

Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix
efr: Leave room for probing link
ifr: Bona-fide costs must dodge inf
sz1: Special bounds for degenerate case for inf

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 13 / 30

Dijkstra: code and specification

void dijkstra (int **g, int src, int *dist,
int *prev, int size, int inf) {

/* elided: init PQ, fill out dist and prev */
while (size(pq)) {

␣

Ddist, prev, popped. dijk_correctpγ, src, popped, prev, distq
(

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 14 / 30

Dijkstra: code and specification

void dijkstra (int **g, int src, int *dist,
int *prev, int size, int inf) {

/* elided: init PQ, fill out dist and prev */
while (size(pq)) {

␣

Ddist, prev, popped. dijk_correctpγ, src, popped, prev, distq
(

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 14 / 30

Dijkstra: intuition for dijk_correct

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 15 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);

for (i = 0; i < size; i++) {
␣

Ddist1, prev1 dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 16 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);

for (i = 0; i < size; i++) {
␣

Ddist1, prev1 dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 16 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);

for (i = 0; i < size; i++) {
␣

Ddist1, prev1 dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 16 / 30

Dijkstra: intuition for dijk_correct_weak

unseen
fringe

popped

upopped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 17 / 30

Dijkstra: intuition for dijk_correct_weak

unseen
fringe

popped

u

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 17 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 18 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 18 / 30

Dijkstra: intuition for recovering dijk_correct

unseen
fringe

popped

upopped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

unseen
fringe

popped

u

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 19 / 30

Dijkstra: intuition for recovering dijk_correct

unseen
fringe

popped

u

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

unseen
fringe

popped

u

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 19 / 30

Dijkstra: intuition for recovering dijk_correct

unseen
fringe

popped

u

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

unseen
fringe

popped

u

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 19 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */

} /* while */
"

Ddist2, prev2. @dst. 0 ď dst ă size Ñ

inv_poppedpγ, src, γ.V, prev2, dist2, dstq

*

freePQ (pq); return; } /* func */

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 20 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */ } /* while */

"

Ddist2, prev2. @dst. 0 ď dst ă size Ñ

inv_poppedpγ, src, γ.V, prev2, dist2, dstq

*

freePQ (pq); return; } /* func */

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 20 / 30

Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */ } /* while */

"

Ddist2, prev2. @dst. 0 ď dst ă size Ñ

inv_poppedpγ, src, γ.V, prev2, dist2, dstq

*

freePQ (pq); return; } /* func */

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 20 / 30

Dijkstra: postcondition

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

popped

fringe

popped

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 21 / 30

Dijkstra: postcondition

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop popped

fringe

popped

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 21 / 30

Dijkstra: postcondition

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

popped

fringe

popped

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 21 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations

(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap

with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key

(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 22 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Over/underflows in binary heaps

#define ROOT_IDX 0u
#define PARENT(x) (x - 1u) / 2u

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 23 / 30

Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 24 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Prim typically assumes a connected graph

A (0)

B (8) C (8)

D (8) E (8)

B (3) C (4)

D (1) E (1)

3

4

1

1

9

6 2

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 25 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Prim typically assumes a connected graph

A (0)

B (8) C (8)

D (8) E (8)

B (3) C (4)

D (1) E (1)

3

4

1

1

9

6 2

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 25 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Prim typically assumes a connected graph

A (0)

B (8) C (8)

D (8) E (8)

B (3) C (4)

D (1) E (1)

3

4

1

1

9

6 2

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 25 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?

D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?

D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?

D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?
D can now be extracted at cost 8... (!)

...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?
D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?
D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!

A (0)

3

4

1

B (8) C (8)

D (8) E (8)

9

B (3) C (4)

D (8) E (8)

B (3) C (4)

D (8) E (1)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 26 / 30

Prim: an unnecessary argument; simpler invariants

MST-PRIM(G,w,r):
for each u in G.V
u.key = INF
u.parent = NIL

r.key = 0
Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 27 / 30

Prim: an unnecessary argument; simpler invariants

MST-PRIM(G,w,r):
for each u in G.V
u.key = INF
u.parent = NIL

r.key = 0
Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 27 / 30

Prim: an unnecessary argument; simpler invariants

MST-PRIM(G,w,r):
for each u in G.V
u.key = INF
u.parent = NIL

r.key = 0
Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

MST-PRIM-NOROOT(G,w):
for each u in G.V
u.key = INF
u.parent = NIL

Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 27 / 30

Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 28 / 30

Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 28 / 30

Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations

(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 28 / 30

Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 28 / 30

Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 28 / 30

Kruskal: challenges and nonchallenges

Challenges:

Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory

Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list

Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find

Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph

So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:

No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Kruskal: challenges and nonchallenges

Challenges:
Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 29 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists

Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow

Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec

Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected

Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

Major contributions

Math, spatial support for adjacency matrices, edge lists
Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!

Mohan, Leow, Hobor (NUS) Verifying Dijkstra, Kruskal, Prim 30 / 30

	CertiGraph: Motivation and Overview
	Mathematical and Spatial Representations
	Shortest Path: Dijkstra
	Minimum Spanning Forest: Prim and Kruskal

