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Motivation: a precondition for Dijkstra

In a graph with size vertices,
the longest possible optimal path has size-1 links

so edge costs should be ď tMAX/(size-1)u to prevent overflow

Consider a 4-bit machine and unsigned integers
MAX = 15, size = 3, so every edge-cost ď 7.

5 5
6

A B C

A B CA (cost 0) B (cost 8) C (cost 8)A (cost 0) B (cost 5) C (cost 8)A (cost 0) B (cost 5) C (cost 10)A (cost 0) B (cost 5) C (cost 10)

if 5 ą 16 then relax C ⇝ B

A (cost 0) B (cost 5) C (cost 10)

if 5 ą 0 then relax C ⇝ B

A (cost 0) B (cost 0) C (cost 10)

if 5 ą 0 then relax C ⇝ B

Must allow room for the probing edge
so an edge-cost is, at most, tMAX/sizeu
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Motivation: A precondition for Dijkstra

There are many ways to fix this!

Refactor troublesome addition as subtraction
Coerce to long
Work in float, which has 8`

Never look back into optimized part
Stop earlier: when you have one vertex left in PQ, rather than zero

Sadly, this is code directly from textbooks, and
intuition supports our misstep...
...bugs such as this are often overlooked
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CertiGraph: problem scope

CompCert + VST + CertiGraph

Verify executable graph-manipulating code with rich specifications
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CertiGraph: workflow

M
athem

aticalGraph
Library

Verified
Software

Toolchain
(VST)

Spatial Graph Library

Verification of a Graph-Manipulating Function

The CompCert Project

tP0u C1 tP1u tP2u t...PnuC2 ...Cn

CoqC AsmParser,
Simplifier

Verified
Compiler
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Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal
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Supporting edge-labeled adjacency matrices

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 8

D 8 8 8 8 1

E 8 8 2 8 8

Requirement 1: graph, not multigraph
Requirement 2: labels representable
Requirement 3: D8. 8 representable and no bona-fide edge has cost 8

Contribution 1: integrate this notion of graphs into
CertiGraph in a generic way
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Undirected graphs

A

B C

D E

3

4

1

6 21

A B C D E

A 8 3 8 8 8

B 8 8 4 6 8

C 8 8 8 1 2

D 8 8 8 8 1

E 8 8 8 8 8

Kruskal and Prim handle undirected graphs

Contribution 2: integrate undirected graphs into CertiGraph

Build lightweight undirected definitions
Prove connections to existing directed definitions

Grow undirected infrastructure
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Laying out graphs in memory

We support four representations of adjacency matrices in memory:

stack-allocated 2D array int graph[size][size]
stack-allocated 1D array int graph[sizeˆsize]
heap-allocated 2D array int **graph

ù

ù

ù

Contribution 3: separation logic for each into CertiGraph

Well engineered: can swap the model with only minimal changes
(ă 1%) to the formal proofs.

Contribution 3.1: separation logic for edge lists too
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Outline

1. CertiGraph: Motivation and Overview

2. Mathematical and Spatial Representations

3. Shortest Path: Dijkstra

4. Minimum Spanning Forest: Prim and Kruskal
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Dijkstra: SoundDijk

Class SoundDijk size inf g := {
sadjmat: SoundAdjMat size inf g;
efr: @e, evalid g e Ñ

0 ď elabel g e ď (MAX/size);
ifr: (MAX/size) * (size-1) ă inf;
sz1: size = 1 Ñ @e, evalid g e Ñ elabel g e ă inf

}.

5 5
6

A B C

sadjmat: SoundDijk is an adjacency matrix
efr: Leave room for probing link
ifr: Bona-fide costs must dodge inf
sz1: Special bounds for degenerate case for inf
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Dijkstra: code and specification

void dijkstra (int **g, int src, int *dist,
int *prev, int size, int inf) {

/* elided: init PQ, fill out dist and prev */
while (size(pq)) {

␣

Ddist, prev, popped. dijk_correctpγ, src, popped, prev, distq
(
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Dijkstra: intuition for dijk_correct

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop
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Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);

for (i = 0; i < size; i++) {
␣

Ddist1, prev1 dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(
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Dijkstra: intuition for dijk_correct_weak

unseen
fringe

popped

upopped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u
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Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */
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Dijkstra: intuition for recovering dijk_correct

unseen
fringe

popped

upopped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

u ∆
“ cheapest in the fringe

unseen
fringe

popped

u

unseen
fringe

popped

u
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Dijkstra: code and specification

while (size(pq)) {
␣

dijk_correctpγ, src, popped, prev, distq
(

u = popMin(pq);
for (i = 0; i < size; i++) {

␣

Ddist1, prev1. dijk_correct_weakpγ, src, popped Z tuu, prev1, dist1, i, uq
(

/* elided: potentially relax edge (u,i) */
}} /* for */

} /* while */
"

Ddist2, prev2. @dst. 0 ď dst ă size Ñ

inv_poppedpγ, src, γ.V, prev2, dist2, dstq

*

freePQ (pq); return; } /* func */
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Dijkstra: postcondition

unseen
fringe

popped

popped ∆
“ globally optimal path known

fringe ∆
“ locally optimal path known:

popped parent + one hop
unseen ∆

“ no path exists from
popped parent + one hop

popped

fringe

popped
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Dijkstra: contributions

Contribution 4: machine-certified “real C” Dijkstra

Contribution 5: precise edge bounds to avoid overflow

Contribution 6a: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 7: certified binary heap with decrease-key
(several subtle C over/underflows discovered)
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Over/underflows in binary heaps

#define ROOT_IDX 0
#define PARENT(x) (x - 1) / 2

void swim(unsigned int k, Item arr[],
unsigned int lookup[])

{
while (k > ROOT_IDX &&

less (k, PARENT(k), arr)) {
exch(k, PARENT(k), arr, lookup);
k = PARENT(k);

}
}
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Over/underflows in binary heaps

#define ROOT_IDX 0u
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Prim: missing the forest for the trees

MST-PRIM(G,w,r):
for each u in G.V
/* elided: set up PQ,

key, parent */
r.key = 0
while PQ ‰ H

u = EXTRACT-MIN(PQ)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

Prim typically assumes a connected graph

A (0)

B (8) C (8)

D (8) E (8)

B (3) C (4)

D (1) E (1)

3

4

1

1

9

6 2
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w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

How about an unconnected graph?

D can now be extracted at cost 8... (!)
...meaning D is the root of a new tree!
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How about an unconnected graph?
D can now be extracted at cost 8... (!)

...meaning D is the root of a new tree!
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Prim: an unnecessary argument; simpler invariants

MST-PRIM(G,w,r):
for each u in G.V
u.key = INF
u.parent = NIL

r.key = 0
Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)
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Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)

MST-PRIM-NOROOT(G,w):
for each u in G.V
u.key = INF
u.parent = NIL

Q = G.V
while Q ‰ H

u = EXTRACT-MIN(Q)
for each v in G.Adj[u]
if (v P Q and

w(u,v) ă v.key)
v.parent = u
v.key = w(u,v)
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Prim: contributions

Contribution 8: machine-certified “real C” Prim

Contribution 9: more general specification

Contribution 6b: three adjacency matrix representations
(code bases differ by less than 1%)

Contribution 10: novel Prim variant without root
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Kruskal: challenges and nonchallenges

Challenges:

Edge list to represent the graph in memory
Have to sort edge list
Relies on union-find
Union-find itself uses a (directed) graph
So must manipulate two graphs simultaneously

Nonchallenges:
No algorithmic issues discovered...

Contribution 11: machine-certified “real C” Kruskal

Contribution 12: heapsort with Opnq bottom-up heapify
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Major contributions

Math, spatial support for adjacency matrices, edge lists

Added support for undirected graphs

Dijkstra: nontrivial overflow
Prim: nontrivial improvement in spec
Kruskal: library handles directed ` undirected
Binary heap: decrease-key and heapify, avoids overflow

Development is modular and general
High effort—largely because we work with C—but good reuse

Thanks!
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