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ABSTRACT
We present a simple variant of the k-d tree which automat-
ically adapts to intrinsic low dimensional structure in data
without having to explicitly learn this structure.

Categories and Subject Descriptors
I.5.0 [Computing Methodologies]: Pattern Recognition—
general ; E.4 [Data]: Coding and Information Theory

General Terms
Algorithms

1. INTRODUCTION
A k-d tree [4] is a spatial data structure that partitions R

D

into hyperrectangular cells. It is built in a recursive manner,
splitting along one coordinate direction at a time (Figure 1,
left). The succession of splits corresponds to a binary tree
whose leaves contain the individual cells in R

D.
These trees are among the most widely-used spatial par-

titionings in machine learning and statistics. To understand
their application, consider Figure 1(left), and suppose that
the dots are points in a database, while the cross is a query
point q. The cell containing q, henceforth denoted cell(q),
can quickly be identified by moving q down the tree. If the
diameter of cell(q) is small (where the diameter is taken to
mean the distance between the furthest pair of data points
in the cell), then the points in it can be expected to have
similar properties, for instance similar labels. In classifica-
tion, q is assigned the majority label in its cell, or the label
of its nearest neighbor in the cell. In regression, q is assigned
the average response value in its cell. In vector quantization,
q is replaced by the mean of the data points in the cell. Nat-
urally, the statistical theory around k-d trees is centered on
the rate at which the diameter of individual cells drops as
you move down the tree; for details, see page 320 of [8].

It is an empirical observation that the usefulness of k-d
trees diminishes as the dimension D increases. This is easy
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Figure 1: Left: A spatial partitioning of R
2 induced

by a k-d tree with three levels. The dots are data
points; the cross marks a query point q. Right: Par-
titioning induced by an RP tree.

to explain in terms of cell diameter; specifically, we will show
that there is a data set in R

D for which a k-d tree requires
D levels in order to halve the cell diameter. In other words,
if the data lie in R

1000, it could take 1000 levels of the tree
to bring the diameter of cells down to half that of the entire
data set. This would require 21000 data points!

Thus k-d trees are susceptible to the same curse of dimen-
sionality that has been the bane of other nonparametric sta-
tistical methods. However, a recent positive development in
machine learning has been the realization that a lot of data
which superficially lie in a very high-dimensional space R

D,
actually have low intrinsic dimension, in the sense of lying
close to a manifold of dimension d � D. There has been
significant interest in algorithms which learn this manifold
from data, with the intention that future data can then be
transformed into this low-dimensional space, in which stan-
dard methods will work well. This field is quite recent and
yet the literature on it is already voluminous; early founda-
tional work includes [24, 23, 3].

In this paper, we are interested in techniques that auto-
matically adapt to intrinsic low dimensional structure with-
out having to explicitly learn this structure. The most ob-
vious first question is, do k-d trees adapt to intrinsic low
dimension? The answer is no: the bad example mentioned
above has an intrinsic dimension of just O(log D). But we
introduce a simple variant of k-d trees that does possess this
property. Instead of splitting along coordinate directions at
the median, we split along a random direction in SD−1 (the
unit sphere in R

D), and instead of splitting exactly at the
median, we add a small amount of “jitter”. We call these
random projection trees (Figure 1, right), or RP trees for
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short, and we show the following.

Pick any cell C in the RP tree. If the data in C
have intrinsic dimension d, then all descendant
cells ≥ d log d levels below will have at most half
the diameter of C.

There is no dependence on the extrinsic dimensionality (D)
of the data.

2. DETAILED OVERVIEW
In what follows, we always assume the data lie in R

D.

2.1 Low-dimensional manifolds
The increasing ubiquity of massive, high-dimensional data

sets has focused the attention of the statistics and machine
learning communities on the curse of dimensionality. A large
part of this effort is based on exploiting the observation that
many high-dimensional data sets have low intrinsic dimen-
sion. This is a loosely defined notion, which is typically used
to mean that the data lie near a smooth low-dimensional
manifold.

For instance, suppose that you wish to create realistic an-
imations by collecting human motion data and then fitting
models to it. A common method for collecting motion data
is to have a person wear a skin-tight suit with high contrast
reference points printed on it. Video cameras are used to
track the 3D trajectories of the reference points as the per-
son is walking or running. In order to ensure good coverage,
a typical suit has about N = 100 reference points. The posi-
tion and posture of the body at a particular point of time is
represented by a (3N)-dimensional vector. However, despite
this seeming high dimensionality, the number of degrees of
freedom is small, corresponding to the dozen-or-so joint an-
gles in the body. The positions of the reference points are
more or less deterministic functions of these joint angles.

To take another example, a speech signal is commonly
represented by a high-dimensional time series: the signal is
broken into overlapping windows, and a variety of filters are
applied within each window. Even richer representations
can be obtained by using more filters, or by concatenating
vectors corresponding to consecutive windows. Through all
this, the intrinsic dimensionality remains small, because the
system can be described by a few physical parameters de-
scribing the configuration of the speaker’s vocal apparatus.

2.2 Intrinsic dimensionality
In this paper we explore three definitions of intrinsic di-

mension: Assouad dimension, manifold dimension, and local
covariance dimension.

Assouad (or doubling) dimension appeared in [2].

Definition 1. For any point x ∈ R
D and any r > 0, let

B(x, r) = {z : ‖x − z‖ ≤ r} denote the closed ball of radius
r centered at x. The Assouad dimension of S ⊂ R

D is the
smallest integer d such that for any ball B(x, r) ⊂ R

D, the
set B(x, r) ∩ S can be covered by 2d balls of radius r/2.

This definition has proved fruitful in recent work on embed-
dings of metric spaces [2, 18, 17]. To relate it to manifolds,
we show (Theorem 22) that the Assouad dimension of a d-
dimensional Riemannian submanifold of R

D is O(d), subject
to a bound on the second fundamental form of the manifold.

Assouad dimension and manifold dimension have become
common currency in the computer science literature. Yet

they arose in contexts very different from data analysis, and
it is not obvious that they are really the most appropriate
quantities for capturing the intrinsic dimensionality of data.
It is especially troubling that they seem quite resistant to
empirical verification: given a sample of points drawn from
an underlying distribution P , it is not easy to check whether
P is concentrated near a low-dimensional manifold, or near
a set of low Assouad dimension.

To address some of these qualms, we introduce a statis-
tically motivated notion of dimension: we say that a set S
has local covariance dimension (d, ε, r) if neighborhoods of
radius r have (1−ε) fraction of their variance concentrated in
a d-dimensional subspace. To make this precise, start by let-
ting σ2

1 , σ2
2 , . . . , σ2

D denote the eigenvalues of the covariance
matrix; these are the variances in each of the eigenvector
directions.

Definition 2. Set S ⊂ R
D has local covariance dimen-

sion (d, ε, r) if its restriction to any ball of radius r has co-
variance matrix whose largest d eigenvalues satisfy σ2

1+· · ·+
σ2

d ≥ (1− ε) · (σ2
1 + · · ·+ σ2

D).

The intuitions behind this notion have informed some of the
work on learning manifolds (for instance, [23]), but here we
formalize it for the first time.

2.3 k-d trees and RP trees
Both k-d trees and random projection (RP) trees are built

by recursive binary splits. They differ only in the nature of
the split, which we define in a subroutine ChooseRule. The
core tree-building algorithm is called MakeTree, and takes
as input a data set S ⊂ R

D.

procedure MakeTree(S)
if |S| < MinSize return (Leaf)
Rule← ChooseRule(S)
LeftT ree←MakeTree({x ∈ S : Rule(x) = true})
RightT ree← MakeTree({x ∈ S : Rule(x) = false})
return ([Rule, LeftT ree,RightT ree])

The k-d tree ChooseRule picks a coordinate direction (typ-
ically the coordinate with largest spread) and then splits the
data on its median value for that coordinate.

procedure ChooseRule(S)
comment: k-d tree version

choose a coordinate direction i
Rule(x) := xi ≤ median({zi : z ∈ S})
return (Rule)

On the other hand, an RPTree chooses a direction uniformly
at random from the unit sphere SD−1 and splits the data
into two roughly equal-sized sets using a hyperplane orthog-
onal to this direction. We describe two variants, which we
call RPTree-Max and RPTree-Mean. Both are adaptive to
intrinsic dimension, although the proofs are in different mod-
els and use different techniques.

We start with the ChooseRule for RPTree-Max.
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procedure ChooseRule(S)
comment: RPTree-Max version

choose a random unit direction v ∈ R
D

pick any x ∈ S; let y ∈ S be the farthest point from it

choose δ uniformly at random in [−1, 1] · 6‖x− y‖/√D
Rule(x) := x · v ≤ (median({z · v : z ∈ S}) + δ)
return (Rule)

(In this paper, ‖ · ‖ always denotes Euclidean distance.) A
tree of this kind, with boundaries that are arbitrary hyper-
planes, is generically called a binary space partition (BSP)
tree [13]. Our particular variant is built using two kinds of
randomness, in the split directions as well in the perturba-
tions. Both are crucial for the bounds we give.

The RPTree-Mean is similar to RPTree-Max, but differs in
a critical respect: it occasionally performs a different kind of
split, in which a cell is split into two pieces based on distance
from the mean.

procedure ChooseRule(S)
comment: RPTree-Mean version

if Δ2(S) ≤ c ·Δ2
A(S)

then

j
choose a random unit direction v
Rule(x) := x · v ≤ median({z · v : z ∈ S})

else

j
Rule(x) :=
‖x−mean(S)‖ ≤ median{‖z −mean(S)‖ : z ∈ S}

return (Rule)

In the code, c is a constant, Δ(S) is the diameter of S (the
distance between the two furthest points in the set), and
ΔA(S) is the average diameter, that is, the average distance
between points of S:

Δ2
A(S) =

1

|S|2
X

x,y∈S

‖x− y‖2.

2.4 Main results
Suppose an RP tree is built from a data set S ⊂ R

D, not
necessarily finite. If the tree has k levels, then it partitions
the space into 2k cells. We define the radius of a cell C ⊂ R

D

to be the smallest r > 0 such that S ∩C ⊂ B(x, r) for some
x ∈ C. Our first theorem gives an upper bound on the rate
at which the radius of cells in an RPTree-Max decreases as
one moves down the tree.

Theorem 3. There is a constant c1 with the following
property. Suppose an RPTree-Max is built using data set
S ⊂ R

D. Pick any cell C in the RP tree; suppose that
S ∩C has Assouad dimension ≤ d. Then with probability at
least 1/2 (over the randomization in constructing the subtree
rooted at C), for every descendant C′ which is more than
c1d log d levels below C, we have radius(C′) ≤ radius(C)/2.

Our next theorem gives a result for the second type of RP-
Tree. In this case, we are able to quantify the improvement
per level, rather than amortized over levels. Recall that
an RPTree-Mean has two different types of splits; let’s call
them splits by distance and splits by projection.

Theorem 4. There are constants 0 < c1, c2, c3 < 1 with
the following property. Suppose an RPTree-Mean is built
using data set S ⊂ R

D. Consider any cell C of radius r,
such that S∩C has local covariance dimension (d, ε, r), where

ε < c1. Pick a point x ∈ S ∩C at random, and let C′ be the
cell that contains it at the next level down.

• If C is split by distance, E [Δ(S ∩ C′)] ≤ c2Δ(S ∩ C).

• If C is split by projection, then E
ˆ
Δ2

A(S ∩ C′)
˜ ≤

(1− (c3/d))Δ2
A(S ∩ C).

In both cases, the expectation is over the randomization in
splitting C and the choice of x ∈ S ∩ C.

2.5 A lower bound for k-d trees
Finally, we remark that this property of automatically

adapting to intrinsic dimension does not hold for k-d trees.
The counterexample is very simple, and applies to any vari-
ant of k-d trees that uses axis-aligned splits.

Consider S ⊂ R
D made up of the coordinate axes between

−1 and 1: S =
SD

i=1{tei : −1 ≤ t ≤ 1}. Here e1, . . . , eD

is the canonical basis of R
D. There are many application

domains, such as text, in which data is sparse; this example
is an extreme case.

S lies within B(0, 1) and can be covered by 2D balls of
radius 1/2. It is not hard to see that the Assouad dimension
of S is d = log 2D. On the other hand, a k-d tree would
clearly need D levels before halving the diameter of its cells.
Thus k-d trees cannot be said to adapt to the intrinsic di-
mensionality of data.

2.6 Connections to other work

Uses of k-d trees
As described in the introduction, the use of k-d trees for
classification, regression, near neighbor search, and vector
quantization leads to rates of convergence that depend on
the rate at which the diameter of cells decreases down the
tree. Based on our results, RP trees might considerably
extend the scope of these methods, from data that is low
dimensional to data that is just intrinsically low dimensional.
[12] contains experimental results in this direction.

A related problem is nearest neighbor search, for which k-d
trees are commonly used. Here, the criterion governing the
efficacy of search is harder to make precise. Interestingly,
some state-of-the-art practical work on tree-based nearest
neighbor search [21] uses random projection as a prepro-
cessing step. Another notable use of random projections in
this context is locality-sensitive hashing [14]. Also relevant
is work on other tree structures with complexity guarantees
for nearest neighbor search [1, 20, 5]. It would be interesting
if similar guarantees could be shown for a data structure as
simple as ours.

Vector quantization
Vector quantization [16] is a basic building block of lossy
data compression. Here, random vectors X are generated
from some distribution P over R

D, and the goal is to pick a
finite codebook C ⊂ R

D and an encoding function α : R
D →

C such that EP ‖X − α(X)‖2 is small.
Ideally we’d let α(x) be the nearest neighbor of x in C,

but often (in audio or video compression) the number of
codewords is so enormous that this nearest neighbor com-
putation cannot be performed in real time. A more efficient
scheme is to have the codewords arranged in a tree [7]: there
is a partition of space like a k-d tree, and each x is mapped
to the mean value in cell(x). Our Theorem 4 shows that the
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vector quantization error of RP trees behaves like e−O(r/d),
where r is the depth of the tree and d is the intrinsic dimen-
sion. There is a substantial body of work that obtains rates
for vector quantization, and as one may expect, these turn
out to be of the form e−r/D [15].

Compressed sensing
The field of compressed sensing has grown out of the sur-
prising realization that high-dimensional sparse data can be
accurately reconstructed from just a few random projections
[6, 10]. The central premise of this research area is that the
original data thus never even needs to be collected: all one
ever sees are the random projections.

RP trees are similar in spirit and entirely compatible with
this viewpoint. Theorem 4 holds even if the random pro-
jections are forced to be the same across each entire level
of the tree. For a tree of depth k, this means only k ran-
dom projections are ever needed, and these can be computed
beforehand (the split-by-distance can be reworked to oper-
ate in the projected space rather than the high-dimensional
space). The data are not accessed in any other way.

3. AN RPTREE-MAX ADAPTS TO
ASSOUAD DIMENSION

In this section, we prove Theorem 3. A rough outline
is as follows. Suppose an RP tree is built using data set
S ⊂ R

D of Assouad dimension d, and that C is some cell of
the tree. If S ∩ C lies in a ball of radius Δ, then we need
to show that after O(d log d) further levels of splitting, each
resulting cell is contained in a ball of radius ≤ Δ/2. To this
end, we start by covering S∩C with balls B1, B2, . . . , BN of
radius Δ/

√
d. The Assouad dimension tells us N = O(dd/2)

suffices. We’ll show that if two balls Bi and Bj are more

than a distance (Δ/2)−(Δ/
√

d) apart, then a single random
projection (with jittered split) has a constant probability of
cleanly separating them, in the sense that Bi and Bj will
lie entirely on opposite sides of the split. There are at most
N2 such pairs i, j, so after Θ(d log d) projections every one
of these pairs will have been split. Thus, Θ(d log d) levels
below C in the tree, each cell will only contain points from
balls Bi which are within distance (Δ/2)− (Δ/

√
d) of each

other. Hence the radius of these cells will be ≤ Δ/2.
Returning to Bi and Bj , we say that a split is good if

it completely separates them. There are also bad splits, in
which the split point intersects both the balls. The remaining
splits are neutral (Figure 2). Most of our proof consists in
showing that good splits are more likely than bad ones.

To lower-bound the probability of a good split, let eBi

and eBj be the projections of Bi and Bj onto a random line.
We show that with constant probability the following events

occur: (1) eBi and eBj have a certain amount of space between
them. (2) The median of the projected data lies very close
to this space. (3) Picking a split point at random near the

median will separate eBi from eBj .

3.1 Gross statistics of projected data
We choose random projections from R

D to R by picking
U ∼ N(0, (1/D)ID) (multivariate Gaussian) and mapping
x 
→ x · U . The key property of such a projection is that
it approximately preserves the lengths of vectors, modulo a
scaling factor of

√
D. This is summarized below.

neutral

bad

Bj

Δ

Bi

good

Figure 2: Cell C of the RP tree is contained in a
ball of radius Δ. Balls Bi and Bj are part of a cover

of this cell, and have radius Δ/
√

d. For this pair of
balls, there are three kinds of splits: good, bad, and
neutral.

Lemma 5. Fix any x ∈ R
D. Pick a random vector U ∼

N(0, (1/D)ID). Then for any α, β > 0:

(a) P

h
|U · x| ≤ α · ‖x‖√

D

i
≤
q

2
π

α; and

(b) P

h
|U · x| ≥ β · ‖x‖√

D

i
≤ 2

β
e−β2/2.

Recall that the split rule looks at a random projection of
the data and then splits it approximately at the median. The
perturbation added to the median depends on the diameter
of the space.

Suppose S ⊂ R
D has Assouad dimension d. Let eS = S ·U

be its random projection into R. How does diam(eS) compare
to diam(S)? (Here diam(S) = supx,y∈S ‖x − y‖.) Clearly

diam(eS) ≤ ‖U‖ · diam(S), but we would in fact expect it to

be much smaller if d � D. In fact, diam(eS) ≤ diam(S) ·
O(
p

d/D); the following is adapted from an argument due
to [19].

Lemma 6. Suppose set S ⊂ R
D is contained in a ball

B(x0, Δ) and has Assouad dimension d. Let eS denote the
random projection of S into R. Then for any 0 < δ < 1,

with probability > 1− δ over the choice of projection, eS lies

in an interval of radius 4 · Δ√
D
·
q

2
`
d + ln 2

δ

´
centered at ex0.

Thus, S projects to an interval in R of radius at most
O(Δ ·pd/D). In fact, most of the projected points will be

even closer together, in a central interval of size O(Δ/
√

D).

Lemma 7. Suppose S ⊂ R
D lies within ball B(x0, Δ).

Pick any 0 < δ, ε ≤ 1 such that δε ≤ 1/e2. Let μ be any
measure on S. Then with probability > 1− δ over the choice

of random projection onto R, all but an ε fraction of eS (in

μ-measure) lies within distance
q

2 ln 1
δε
· Δ√

D
of ex0.

It follows that the median of the projected points also lies in
this central interval; take μ to be the uniform distribution
over S and use ε = 1/2.
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Corollary 8. Under the hypotheses of Lemma 7, for
any 0 < δ < 2/e2, with probability at least 1 − δ over the

choice of projection: |median(eS)− ex0| ≤ Δ√
D
·
q

2 ln 2
δ
.

3.2 The probability of good and bad splits
We now get to the main lemma, which gives a lower bound

on the probability of a good split (recall Figure 2).

Lemma 9. Say S ⊂ B(x0, Δ) has Assouad dimension d ≥
1. Pick balls B = B(z, r) and B′ = B(z′, r) such that

• their centers z and z′ lie in B(x0, Δ),

• the distance between these centers is ‖z−z′‖ ≥ 1
2
Δ−r,

• and the radius r is at most Δ/(512
√

d).

Now pick a random projection U , that sends S to (say)eS ⊂ R, and then pick a split point at random in the range

median(eS)± (6Δ/
√

D). With probability at least 1/192 over
the choice of U and the split point, S ∩B and S ∩B′ will be
contained in separate halves of the split.

Proof. (Sketch.) Let eB and eB′ be the projections of
S ∩ B and S ∩ B′. It follows from Lemmas 5 and 6 and
Corollary 8 that with probability at least 1/2, the random
projection U will satisfy the following properties:

1. eB and eB′ are contained within intervals of radius at
most Δ/(16

√
D) around ez and ez′, respectively.

2. |ez − ez′| ≥ Δ/(4
√

D).

3. ez and ez′ both lie within distance 3Δ/
√

D of ex0.

4. The median of eS lies within distance 3Δ/
√

D of ex0.

In this case, we say U is “good”, and the following picture

of eS is valid:

median(eS)
eB eB′

O(Δ/
√

D)

Ω(Δ/
√

D)

The “sweet spot” is the region between eB and eB′; if the
split point falls in it, the two balls will be cleanly separated.
By properties (1) and (2), the length of this sweet spot is

at least Δ/(4
√

D) − 2Δ/(16
√

D) = Δ/(8
√

D). Moreover,
by (3) and (4), we know that its entirety must lie within

distance 3Δ/
√

D of ex0 (since both ez and ez′ do), and thus

within distance 6Δ/
√

D of median(eS). Thus, under the sam-
pling strategy from the lemma statement, there is a constant
probability of hitting the sweet spot. Putting it all together,

P[B, B′ cleanly separated]

≥ P[U is good] · P[B, B′ separated|U is good]

≥ 1

2
· Δ/(8

√
D)

12Δ/
√

D
=

1

192
,

as claimed.

We also upper bound the chance of a bad split (Figure 2).
For the final qualitative result, all that matters is that this
probability be strictly smaller than that of a good split.

Lemma 10. Under the hypotheses of Lemma 9,

P[ eB, eB′ both intersect the split point] < 1/384.

3.3 Proof of Theorem 3
Finally, we complete the proof of Theorem 3.

Lemma 11. Suppose S ⊂ R
D has Assouad dimension d.

Pick any cell C in the RP tree; suppose it is contained in
a ball of radius Δ. Then the probability that there exists a
descendant of C which is more than Ω(d log d) levels below
and yet has radius > Δ/2 is at most 1/2.

Proof. Suppose S ∩ C ⊂ B(x0, Δ). Cover this set by

balls of radius r = Δ/(512
√

d); the Assouad dimension tells
us that N = (O(d))d balls suffice. Now, fix any pair of balls
B, B′ from this cover whose centers are at distance at least
Δ/2−r from one another; and, for k = 1, 2, . . ., let pk be the
probability that there is some cell k levels below C which
contains points from both B and B′.

By Lemma 9, p1 ≤ 191/192. To express pk in terms of
pk−1, think of the randomness in the subtree rooted at C
as having two parts: the randomness in splitting cell C,
and the rest of the randomness (for each of the two induced
subtrees). Lemmas 9 and 10 then tell us that

pk ≤ P[top split cleanly separates B from B′] · 0 +

P[top split intersects both B and B′] · 2pk−1 +

P[all other split configurations] · pk−1

≤ 1

192
· 0 +

1

384
· 2pk−1 +

„
1− 1

192
− 1

384

«
· pk−1

=

„
1− 1

384

«
pk−1.

The three cases in the first inequality correspond to good,
bad, and neutral splits at C (Figure 2). It follows that for
some constant c′ and k = c′d log d, we have pk ≤ 1/N2.

To finish up, take a union bound over all faraway pairs of
balls from the cover.

4. AN RPTREE-MEAN ADAPTS TO
LOCAL COVARIANCE DIMENSION

An RPTree-Mean has two types of splits. If a cell C has
much larger diameter than average-diameter (that is, av-
erage interpoint distance), then it is split according to the
distances of points from the mean. Otherwise, a random
projection is used.

4.1 Splitting by distance from the mean
This is invoked when the points in the current cell, call

them S, satisfy Δ2(S) > cΔ2
A(S) (recall that Δ(S) is the di-

ameter of S while Δ2
A(S) is the average interpoint distance).

Lemma 12. Suppose that Δ2(S) > cΔ2
A(S). Let S1 be

the points in S whose distance to mean(S) is less than or
equal to the median distance, and let S2 be the remaining
points. Then the expected squared diameter after the split is
|S1|
|S| Δ2(S1) + |S2|

|S| Δ2(S2) ≤
`

1
2

+ 2
c

´
Δ2(S).

4.2 Splitting by projection: proof outline
Suppose the current cell contains a set of points S ⊂ R

D

with Δ2(S) ≤ cΔ2
A(S). We show that a split by projection

has a constant probability of reducing the average squared
diameter Δ2

A(S) by Ω(Δ2
A(S)/d). Our proof has three parts:

I. Suppose S is split into S1 and S2, with means μ1 and
μ2. Then the reduction in average diameter can be
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expressed in a remarkably simple form, as a multiple
of ‖μ1 − μ2‖2.

II. Next, we give a lower bound on the distance between
the projected means, (eμ1 − eμ2)

2. We show that the
distribution of the projected points is subgaussian with
variance O(Δ2

A(S)/D). This well-behavedness implies
that (eμ1 − eμ2)

2 = Ω(Δ2
A(S)/D).

III. We finish by showing that, approximately, ‖μ1−μ2‖2 ≥
(D/d)(eμ1 − eμ2)

2. This is because μ1 − μ2 lies close to
the subspace spanned by the top d eigenvectors of the
covariance matrix of S; and with high probability, ev-
ery vector in this subspace shrinks by O(

p
d/D) when

projected on a random line.

We now tackle these three parts of the proof in order.

4.3 Quantifying the reduction in average
diameter

The average squared diameter Δ2
A(S) has certain reformu-

lations that make it convenient to work with. These prop-
erties are consequences of the following two observations,
the first of which the reader may recognize as a standard
“bias-variance” decomposition of statistics.

Lemma 13. Let X, Y be independent and identically dis-
tributed random variables in R

n, and fix any z ∈ R
n.

(a) E
ˆ‖X − z‖2˜ = E

ˆ‖X − EX‖2˜+ ‖z − EX‖2.
(b) E

ˆ‖X − Y ‖2˜ = 2 E
ˆ‖X − EX‖2˜.

Proof. Part (a) is immediate when both sides are ex-
panded. For (b), we use part (a) to assert that for any fixed
y, we have E

ˆ‖X − y‖2˜ = E
ˆ‖X − EX‖2˜ + ‖y − EX‖2.

We then take expectation over Y = y.

This can be used to show that the averaged squared diam-
eter, Δ2

A(S), is twice the average squared distance of points
in S from their mean.

Corollary 14. The average squared diameter of a set S
can also be written as: Δ2

A(S) = 2
|S|
P

x∈S ‖x−mean(S)‖2.

Proof. Δ2
A(S) is simply E

ˆ‖X − Y ‖2˜, when X, Y are

i.i.d. draws from the uniform distribution over S.

At each successive level of the tree, the current cell is
split into two, either by a random projection or according to
distance from the mean. Suppose the points in the current
cell are S, and that they are split into sets S1 and S2. It is
obvious that the expected diameter is nonincreasing:

Δ(S) ≥ |S1|
|S| Δ(S1) +

|S2|
|S| Δ(S2).

This is also true of the expected average diameter. In fact,
we can precisely characterize how much it decreases on ac-
count of the split.

Lemma 15. Suppose set S is partitioned (in any manner)
into S1 and S2. Then

Δ2
A(S)−

j |S1|
|S| Δ

2
A(S1) +

|S2|
|S| Δ

2
A(S2)

ff
=

2|S1| · |S2|
|S|2 ‖mean(S1)−mean(S2)‖2.

This completes part I of the proof outline.

4.4 Properties of the projected data
Projection from R

D into R
1 shrinks the average squared

diameter of a data set by roughly D. To see this, we start
with the fact that when a data set with covariance A is
projected onto a vector U , the projected data have variance
UT AU . We then observe that for random U , such quadratic
forms are concentrated about their expected values.

Lemma 16. Pick U ∼ N(0, (1/D)ID). For any S ⊂ R
D,

with probability at least 1/10, the projection of S onto U has
average squared diameter Δ2

A(S · U) ≥ Δ2
A(S)/(4D).

Proof. By Corollary 14,

Δ2
A(S · U) =

2

|S|
X
x∈S

((x−mean(S)) · U)2 = 2UT cov(S)U,

where cov(S) is the covariance of data set S. This quadratic
term has expectation (over the choice of U) E[2UT cov(S)U ]
= 2

P
i,j E[UiUj ]cov(S)ij = 2

D

P
i cov(S)ii = Δ2

A(S)/D.

Lemma 23(a) then bounds the concentration of UT cov(S)U
around its expected value.

Next, we examine the overall distribution of the projected
points. When S ⊂ R

D has diameter Δ, its projection into
the line can have diameter upto Δ, but as we saw in Lemma 7,
most of it will lie within a central interval of size O(Δ/

√
D).

Now we characterize the distribution more precisely.

Lemma 17. Suppose S ⊂ B(0, Δ) ⊂ R
D. Pick δ > 0

and U ∼ N(0, (1/D)ID). With probability ≥ 1− δ, S · U =
{x · U : x ∈ S} satisfies the following property for all pos-
itive integers k: The fraction of points outside the interval“
−kΔ/

√
D, +kΔ/

√
D
”

is at most (2k/δ) · e−k2/2.

Proof. Apply Lemma 7 for each k (with failure proba-
bility δ/2k) and take a union bound.

Finally, we examine what happens when a d-dimensional
linear subspace of R

D is projected into R
1. We show a uni-

form bound over all vectors in the subspace.

Lemma 18. There exists κ > 0 with the following prop-
erty. Fix any δ > 0 and any d-dimensional subspace H ⊂
R

D. Pick U ∼ N(0, (1/D)ID). Then with probability at least
1− δ over the choice of U ,

sup
x∈H

|x · U |2
‖x‖2 ≤ κ · d + ln 1/δ

D
.

Proof. Apply Lemma 6 to the intersection of H with
the surface of the unit sphere in R

D. This set has Assouad
dimension O(d).

4.5 Distance between projected means
We are dealing with the case when Δ2(S) ≤ c·Δ2

A(S), that
is, the diameter of set S is at most a constant factor times
the average interpoint distance. If S is projected onto a ran-
dom direction, the projected points will have variance about
Δ2

A(S)/D, by Lemma 16; and by Lemma 17, it isn’t too far
from the truth to think of these points as having roughly a
Gaussian distribution. Thus, if the projected points are split
into two groups at the mean, we would expect the means of
these two groups to be separated by a distance of about
ΔA(S)/

√
D. Indeed, this is the case. The same holds if we

split at the median, which isn’t all that different from the
mean for close-to-Gaussian distributions.

542



Lemma 19. There is a constant κ2 for which the following
holds. Pick any 0 < δ < 1/16c. Pick U ∼ N(0, (1/D)ID)
and split S into two pieces:

S1 = {x ∈ S : x · U < s} and S2 = {x ∈ S : x · U ≥ s},
where s is either mean(S · U) or median(S · U). Write p =
|S1|/|S|, and let eμ1 and eμ2 denote the means of S1 · U and
S2 · U , respectively. Then with probability at least 1/10 − δ,

(eμ2 − eμ1)
2 ≥ κ2 · 1

(p(1− p))2
· Δ

2
A(S)

D
· 1

c log(1/δ)
.

Proof. Let the r.v. eX be a uniform-random draw from
the projected points S · U . Without loss of generality S

has mean 0, so E eX = 0 and thus peμ1 + (1 − p)eμ2 = 0.
Rearranging, eμ1 = −(1− p)(eμ2 − eμ1) and eμ2 = p(eμ2 − eμ1).

We already know from Lemma 16 (and Corollary 14) that
with probability at least 1/10, the variance of the projected

points is significant: var( eX) ≥ Δ2
A(S)/8D. We’ll show this

implies a similar lower bound on (eμ2 − eμ1)
2.

Using 1(·) to denote 0−1 indicator variables, for any t > 0,

var( eX) ≤ E[( eX − s)2]

≤ E[2t| eX − s|+ (| eX − s| − t)2 · 1(| eX − s| ≥ t)]

This is convenient since the linear term gives us eμ2 − eμ1:

E[2t| eX − s|] = 2t(p(s− eμ1) + (1− p)(eμ2 − s))

= 4t · p(1− p) · (eμ2 − eμ1) + 2ts(2p− 1).

The last term vanishes since the split is either at the mean of
the projected points, in which case s = 0, or at the median,
in which case p = 1/2.

Next, we’ll choose t = to(Δ(S)/
√

D) ·plog(1/δ) for some

suitable constant to, so that the quadratic term in var( eX)
can be bounded using Lemma 17 and Corollary 8: with

probability at least 1 − δ, E[(| eX | − t)2 · 1(| eX | ≥ t)] ≤ δ ·
(Δ2(S)/D) (a simple integration). Putting things together,

Δ2
A(S)

8D
≤ var( eX) ≤ 4t ·p(1−p) · (eμ2− eμ1)+ δ · Δ

2(S)

D
.

The result now follows immediately by algebraic manipula-
tion, using the relation Δ2(S) ≤ cΔ2

A(S).

4.6 Distance between high-dimensional means
Split S into two pieces as in the setting of Lemma 19, and

let μ1 and μ2 denote the means of S1 and S2, respectively.
We already have a lower bound on the distance between the
projected means, eμ2 − eμ1; we will now show that ‖μ2 − μ1‖
is larger than this by a factor of about

p
D/d. The main

technical difficulty here is the dependence between the μi

and the projection U . Incidentally, this is the only part of
the entire argument that exploits intrinsic dimensionality.

Lemma 20. There is a constant κ3 with the following prop-
erty. Suppose set S ⊂ R

D is such that the top d eigenvalues
of cov(S) account for more than 1 − ε of its trace. Pick
a random vector U ∼ N(0, (1/D)ID), and split S into two
pieces, S1 and S2, in any fashion (which may depend upon
U). Let p = |S1|/|S|. Let μ1 and μ2 be the means of S1 and
S2, and eμ1 and eμ2 the means of S1 ·U and S2 ·U . Then for
any δ > 0, with probability ≥ 1− δ over the choice of U ,

‖μ2−μ1‖2 ≥ κ3D

d + ln 1/δ

„
(eμ2 − eμ1)

2 − 4

p(1− p)

εΔ2
A(S)

δD

«
.

Proof. Assume without loss of generality that S has zero
mean. Let H be the subspace spanned by the top d eigen-
vectors of cov(S), and let H⊥ be its orthogonal subspace.
Write any point x ∈ R

D as xH +x⊥, where each component
is a vector in R

D that lies in the respective subspace.
Pick the random vector U ; with probability ≥ 1 − δ it

satisfies the following two properties.
Property 1: For some constant κ′ > 0, for every x ∈ R

D

|xH ·U |2 ≤ ‖xH‖2 · κ′ · d + ln 1/δ

D
≤ ‖x‖2 · κ′ · d + ln 1/δ

D
.

This holds (with probability 1− δ/2) by Lemma 18.
Property 2: Letting X be a uniform-random draw from S,

EX [(X⊥ · U)2] ≤ 2

δ
· EUEX [(X⊥ · U)2]

=
2

δ
· EXEU [(X⊥ · U)2]

=
2

δD
· EX [‖X⊥‖2] ≤ εΔ2

A(S)

δD
.

The first step is Markov’s inequality, and holds with prob-
ability 1 − δ/2. The last inequality comes from the local
covariance condition.

So assume the two properties hold. Writing μ2 − μ1 as
(μ2H − μ1H ) + (μ2⊥ − μ1⊥),

(eμ2 − eμ1)
2 = ((μ2H − μ1H ) · U + (μ2⊥ − μ1⊥) · U)2

≤ 2((μ2H − μ1H) · U)2 + 2((μ2⊥ − μ1⊥) · U)2.

The first term can be bounded by Property 1:

((μ2H − μ1H ) · U)2 ≤ ‖μ2 − μ1‖2 · κ′ · d + ln 1/δ

D
.

For the second term, let EX denote expectation over X cho-
sen uniformly at random from S. Then

((μ2⊥ − μ1⊥) · U)2

≤ 2(μ2⊥ · U)2 + 2(μ1⊥ · U)2

= 2(EX [X⊥ · U | X ∈ S2])
2 + 2(EX [X⊥ · U | X ∈ S1])

2

≤ 2EX [(X⊥ · U)2 | X ∈ S2] + 2EX [(X⊥ · U)2 | X ∈ S1]

≤ 2

1− p
· EX [(X⊥ · U)2] +

2

p
· EX [(X⊥ · U)2]

=
2

p(1− p)
EX [(X⊥ · U)2] ≤ 2

p(1− p)
· εΔ

2
A(S)

δD
.

by Property 2. The lemma follows by putting the various
pieces together.

We can now finish off the proof of Theorem 4.

Theorem 21. Fix any ε ≤ O(1/c). Suppose set S ⊂ R
D

has the property that the top d eigenvalues of cov(S) account
for more than 1− ε of its trace. Pick a random vector U ∼
N(0, (1/D)ID) and split S into two parts,

S1 = {x ∈ S : x · U < s} and S2 = {x ∈ S : x · U ≥ s},
where s is either mean(S · U) or median(S · U). Then with
probability Ω(1), the expected average diameter shrinks by
Ω(Δ2

A(S)/cd).

Proof. By Lemma 15, the reduction in expected average
diameter is 2p(1 − p)‖μ1 − μ2‖2, in the language of Lem-
mas 19 and 20. The rest follows from those lemmas.
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APPENDIX

A. ASSOUAD DIMENSION OF A SMOOTH
MANIFOLD

If M is a d-dimensional Riemannian submanifold of R
D,

what is its Assouad dimension? An easy case is when M is an
affine set, in which case it has the same Assouad dimension
as R

d, namely O(d). We may expect that for more general
M , the same holds true of small enough neighborhoods.

Recall that we define balls with respect to Euclidean dis-
tance in R

D rather than geodesic distance on M . If a neigh-
borhood M ∩ B(x, r) has high curvature (speaking infor-
mally), then it could potentially have large Assouad dimen-
sion. For instance, it could be a 1-dimensional manifold and
yet curve so much that Θ(2D) balls of radius r/2 are needed
to cover it (Figure 3). We therefore limit attention to mani-
folds of bounded curvature, and to values of r small enough
that the pieces of M in B(x, r) are relatively flat.

To formalize things, we need a handle on how curved the
manifold M is locally. This is a relationship between the
Riemannian metric on M and that of the space R

D in which
it is immersed, and is captured by the second fundamental
form (chapter 6 of [9]). For any point p ∈ M , this is a
symmetric bilinear form B : Tp×Tp → T⊥

p , where Tp denotes

the tangent space at p and T⊥
p the normal space orthogonal

to Tp. Our assumption on curvature is the following.
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Assumption. The norm of the second fundamen-
tal form is uniformly bounded by some κ ≥ 0; that
is, for all p ∈M and unit norm η ∈ T⊥

p and u ∈ Tp,

we have 〈η,B(u,u)〉
〈u,u〉 ≤ κ.

We will henceforth limit attention to balls of radius O(1/κ).
An additional minor effect is that M∩B(x, r) may consist

of several connected components, in which case we need to
cover each of them. If there are N components, this can
add a factor of log N to the Assouad dimension, making it
O(d + log N).

Almost all the technical details needed to bound the As-
souad dimension of manifolds appear in a separate context
in [22]. Here we just put them together differently.

Theorem 22. Suppose M is a d-dimensional Rieman-
nian submanifold of R

D that satisfies the assumption above
for some κ ≥ 0. For any x ∈ R

D and 0 < r ≤ 1/2κ,

the set M ∩ B(x, r) can be covered by N · 2O(d) balls of ra-
dius r/2, where N is the number of connected components
of M ∩B(x, r).

Proof. We’ll show that each connected component of
M ∩B(x, r) can be covered by 2O(d) balls of radius r/2. To
this end, fix one such component, and denote its restriction
to B(x, r) by M ′.

Pick p ∈ M ′, and let Tp be the tangent space at p. Now
consider the projection of M ′ onto Tp; let f denote this
projection map. We make use of two facts proved in [22].

Fact 1 (Lemma 5.4 of [22]). The projection map
f : M ′ → Tp is 1− 1.

Now, f(M ′) is contained in a d-dimensional ball of radius

2r and can therefore be covered by 2O(d) balls of radius r/4.
We are almost done, as long as we can show that for any
such ball B ⊂ Tp, the inverse image f−1(B) is contained in
a D-dimensional ball of radius r/2. This follows from

Fact 2 (implicit in proof of Lemma 5.3 of [22]).
For any x, y ∈M ′,

‖f(x) − f(y)‖2 ≥ ‖x− y‖2 · (1− r2κ2).

Thus the inverse image of the cover in the tangent space
yields a cover of M ′.

B. VARIOUS PROOFS

B.1 Proof of Lemma 5
Since U has a Gaussian distribution, and any linear com-

bination of independent Gaussians is a Gaussian, it follows
that the projection U · x is also Gaussian. Its mean and
variance are easily seen to be zero and ‖x‖2/D, respectively.

Therefore, writing Z =
√

D
‖x‖ (U ·x), we have that Z ∼ N(0, 1).

The bounds stated in the lemma now follow from properties
of the standard normal. In particular, N(0, 1) is roughly flat
in the range [−1, 1] and then drops off rapidly; the two cases
in the lemma statement correspond to these two regimes.

The highest density achieved by the standard normal is
1/
√

2π. Thus the probability mass it assigns to the interval
[−α, α] is at most 2α/

√
2π; this takes care of (a). For (b),

we use a standard tail bound for the normal, P(|Z| ≥ β) ≤
(2/β)e−β2/2; see, for instance, page 7 of [11].

level 0: 1 center

level 2: 22d centers

centers of balls level 1: 2d centers

x0

≤ Δ

≤ Δ/2

Figure 4: A hierarchy of covers. At level k, there are
2kd points in the cover. Each of them has distance
≤ Δ/2k to its children (which constitute the cover at
level k + 1). At the leaves are individual points of S.

B.2 Proof of Lemma 6
Pick a cover of S ⊂ B(x0, Δ) by 2d balls of radius Δ/2.

Without loss of generality, we can assume the centers of
these balls lie in B(x0, Δ). Each such ball B induces a subset
S ∩ B; cover each such subset by 2d smaller balls of radius
Δ/4, once again with centers in B. Continuing this process,
the final result is a hierarchy of covers, at increasingly finer
granularities (Figure 4).

Pick any center u at level k of the tree, along with one of
its children v at level k + 1. Then ‖u− v‖ ≤ Δ/2k. Lettingeu, ev denote the projections of these two points, we have from
Lemma 5(b) that

P

"
|eu− ev| ≥ β · Δ√

D
·
„

3

4

«k
#

≤ P

"
|eu− ev| ≥ β

„
3

2

«k

· ‖u− v‖√
D

#

≤ 2

β

„
2

3

«k

exp

 
−β2

2
·
„

3

2

«2k
!
≤ δ

β

„
δ

3

«k

e−(k+1)d

using β =
p

2(d + ln(2/δ)), and (3/2)2k ≥ k + 1 (for all
k ≥ 0). Now take a union bound over all edges (u, v) in the

tree. There are 2(k+1)d edges between levels k and k + 1, so

P

h
∃k : ∃u in level k with child v : |eu− ev| ≥ β · Δ√

D
· ` 3

4

´k
i

≤
∞X

k=0

2(k+1)d · δ

β

„
δ

3

«k

e−(k+1)d ≤ δ

β
· 1

1− (δ/3)
≤ δ

where for the last step we observe β ≥ 3/2 whenever d ≥ 1.
So with probability at least 1 − δ, for all k, every edge

between levels k and k+1 in the tree has projected length at

most β ·(3/4)k ·Δ/
√

D. Thus every projected point in eS has
a distance from ex0 of at most β · Δ√

D
·`1 + 3

4
+ ( 3

4
)2 + · · · ´ =

4βΔ√
D

. Plugging in the value of β then yields the lemma.

B.3 Proof of Lemma 7
Set c =

p
2 ln 1/(δε) ≥ 2.

Fix any point x, and randomly choose a projection U .
What is the chance that ex lands far from ex0? Define the bad
event to be Fx = 1(|ex− ex0| ≥ cΔ/

√
D). By Lemma 5(b),

EU [Fx] ≤ PU

»
|ex− ex0| ≥ c · ‖x− x0‖√

D

–
≤ 2

c
e−c2/2 ≤ δε.

Since this holds for any x ∈ S, it also holds in expectation
over x drawn from μ. We are interested in bounding the

545



probability (over the choice of U) that more than an ε frac-
tion of μ falls far from ex0. Using Markov’s inequality and
then Fubini’s theorem, we have

PU [Eμ[Fx] ≥ ε] ≤ EU [Eμ[Fx]]

ε
=

Eμ[EU [Fx]]

ε
≤ δ.

B.4 Proof of Lemma 9
It will help to define the failure probabilities δ1 = 2/e31

and δ2 = 1/20. In the proof sketch above, we defined four
properties that make a projection U “good”. We now verify
that they all hold with probability at least 1/2.

Property (1) follows by applying Lemma 6 to each ball in

turn. For B, we have that with probability at least 1−δ1, eB
is within radius (4r/

√
D)·p2(d + ln(2/δ1)) ≤ (Δ/128

√
D)·p

2 ln(2e/δ1) = Δ/(16
√

D) of ez. Similarly with B′, so this
property holds with probability at least 1 − 2δ1.

(2) follows from Lemma 5(a); specifically, it fails with
probability at most 4α/5 for α = 1/(2−(4r/Δ)) ≤ 128/255.

Property (3) is from Lemma 5(b), with probability at least

1− 2δ2/
p

2 ln(2/δ2) (in that lemma, use β =
p

2 ln(2/δ2)).
Finally, (4) holds with probability ≥ 1−δ2 by Corollary 8.

B.5 Proof of Lemma 10
Define δ1 as in the previous proof. As before (property

(1)), with probability at least 1−2δ1, the projections eB andeB′ lie within radii ≤ Δ/(16
√

D) of their respective ez, ez′.
In order for eB and eB′ to both intersect the split point,

two unlikely events need to occur: first, eB must intersecteB′; second, the split point must intersect eB. These are in-
dependent events (one involves the projection and the other
involves the split point), so we will bound them in turn.

P[ eB intersects eB′] ≤ P[|ez − ez′| ≤ Δ/(8
√

D)]

≤
r

2

π
· Δ/(8

√
D)

(1/
√

D) · ((Δ/2)− r)
≤

r
2

π
· 64

255

by Lemma 5(a) and the conditions on r.

P[split point intersects eB] ≤ Δ/(8
√

D)

12Δ/
√

D
=

1

96
.

So the probability eB, eB′ both intersect the split point is at

most 2δ1 +P[ eB, eB′ touch] ·P[split point touches eB] < 1/384.

B.6 Proof of Lemma 12
Let random variable X be distributed uniformly over S.

P
ˆ‖X − EX‖2 ≥ median(‖X − EX‖2)˜ ≥ 1/2 by definition

of median, so E
ˆ‖X − EX‖2˜ ≥ median(‖X − EX‖2)/2. It

follows from Corollary 14 that

median(‖X − EX‖2) ≤ 2E
ˆ‖X − EX‖2˜ = Δ2

A(S).

S1 has squared diameter Δ2(S1) ≤ (2median(‖X − EX‖))2
≤ 4Δ2

A(S). Meanwhile, S2 has squared diameter at most
Δ2(S). Therefore,

|S1|
|S| Δ

2(S1) +
|S2|
|S| Δ

2(S2) ≤ 1

2
· 4Δ2

A(S) +
1

2
Δ2(S)

and the lemma follows by using Δ2(S) > cΔ2
A(S).

B.7 Proof of Lemma 15
Let μ, μ1, μ2 denote the means of S, S1, and S2. Using

Corollary 14 and Lemma 13(a), we have

Δ2
A(S)− |S1|

|S| Δ
2
A(S1)− |S2|

|S| Δ
2
A(S2)

=
2

|S|
X

S

‖x− μ‖2 − |S1|
|S| ·

2

|S1|
X
S1

‖x− μ1‖2

−|S2|
|S| ·

2

|S2|
X
S2

‖x− μ2‖2

=
2

|S|

(X
S1

`‖x− μ‖2 − ‖x− μ1‖2
´

+
X
S2

`‖x− μ‖2 − ‖x− μ2‖2
´)

=
2|S1|
|S| ‖μ1 − μ‖2 +

2|S2|
|S| ‖μ2 − μ‖2.

Writing μ as a weighted average of μ1 and μ2 completes the
proof.

B.8 Concentration of quadratic forms

Lemma 23. Suppose A is an n × n positive semidefinite
matrix, and U ∼ N(0, (1/n)In). Then for any α, β > 0:

(a) P[UT AU < α · E[UT AU ]] ≤ e−((1/2)−α)/2, and

(b) P[UT AU > β · E[UT AU ]] ≤ e−(β−2)/4.

Proof. This follows by examining the moment-generating
function of UT AU . Since the distribution of U is spherically
symmetric, we can work in the eigenbasis of A and assume
wlog that A = diag(a1, . . . , an), where a1, . . . , an are the
eigenvalues. For convenience we take

P
ai = 1.

Let U1, . . . , Un denote the individual coordinates of U .
We can rewrite them as Ui = Zi/

√
n, where Z1, . . . , Zn are

i.i.d. standard normal random variables. Thus UT AU =P
i aiU

2
i = (1/n)

P
i aiZ

2
i , and E[UT AU ] = 1/n.

Using Chernoff’s bounding method for (a), for any t > 0,

P

h
UT AU < α · E[UT AU ]

i
= P

"X
i

aiZ
2
i < α

#

= P

h
e−t

P
i aiZ2

i > e−tα
i
≤

E

h
e−t

P
i aiZ2

i

i
e−tα

= etα
Y

i

E

h
e−taiZ2

i

i
= etα

Y
i

„
1

1 + 2tai

«1/2

and the rest follows by using t = 1/2 along with 1/(1+x) ≤
e−x/2 for 0 < x ≤ 1. Similarly for (b), for 0 < t < 1/2,

P

h
UT AU > β · E[UT AU ]

i
= P

"X
i

aiZ
2
i > β

#

= P

h
et

P
i aiZ2

i > etβ
i
≤

E

h
et

P
i aiZ2

i

i
etβ

= e−tβ
Y

i

E

h
etaiZ2

i

i
= e−tβ

Y
i

„
1

1− 2tai

«1/2

and it is adequate to choose t = 1/4 and invoke 1/(1− x) ≤
e2x for 0 < x ≤ 1/2.
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