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Abstract— We introduce a technique for establishing and ampli- provide bounds on the network coding rate, but the worst-

fying gaps between parameters of network coding and index codingase approximation factor of these bounds remains unknown.

problems. The technique uses linear programs to establish separgg, example, it is known that there exists a network in which
tions between combinatorial and coding-theoretic parameters and '

applies hypergraph lexicographic products to amplify these separa{lon'“near network coding can achieve a rate which _e)_(CGEdS
tions. This entails combining the dual solutions of the lexicographicthe best linear network code by a factor $f [7], but it is
multiplicands and proving that this is a valid dual solution of the not known whether this g@ran be improved ta! ¢, or
product. Our result is general enough to apply to a large family ofeven possibly t(n).

linear programs. This blend of linear programs and lexicographic In this paper we introduce a general technique for ampli-

products gives a recipe for constructing hard instances in whic%/. . . h
the gap between combinatorial or coding-theoretic parameters i&/ing many of these gaps by combining linear programming

polynomially large We find polynomial gaps in cases in which the With hypergraph product operations. For instance, this en-
largest previously known gaps were only small constant factors oables us to construct a family of network coding instances
entirely unknown. Most notably, we show a polynomial separationyith 1, messages, in which the rate of the best non-linear

between linear and non-finear network coding rates. This involves, o york code exceeds the rate of the best (vector-)linear
exploiting a connection between matroids and index coding to

establish a previously unknown separation between linear and nofletwork code by a factor of at least. A crucial ingre-
linear index coding rates. We also construct index coding problemélient in our technique isndex coding[5], [4], a class of
with a polynomial gap between the broadcast rate and the triviacommunication problems in which a server holds a set of

lower bound for which no gap was previously known. messages that it wishes to broadcast over a noiseless channel
to a set of receivers. Each receiver is interested in one of the
1. INTRODUCTION messages and has side-information comprising some subset

of the other messages. The objective is to devise an optimal

The problem oNetwork Codingintroduced by Ahlswede encoding scheme (one minimizing the broadcast length) that
et al [2] in 2000, asks for the maximum rate at which allows all the receivers to retrieve their required information.
information can be passed from a set of sources to #ollowing [3], we uses to denote the limiting value of the
set of targets in a capacitated network. In practice, therinformation rate (i.e., ratio of broadcast length to message
are many examples where network coding provides fastdength) of this optimal scheme, as the message length tends
transmission rates compared to traditional routing, €.g. [9%o infinity.
details a recent one in wireless networks. However, despite |n our framework, index coding is most useful for iso-
tremendous initial success in using network coding to solveating a sub-class of network coding problems that can be
some broadcastproblems (those in which every receiver combined using lexicographic products. However, it is also
demands the same message), very little is known abowin important and well-studied problem in its own right.
how to compute or approximate the network coding ratéindex coding is intimately related to network coding in
in general. (See_[13] for a survey of the topic.) general. It is essentially equivalent to the special case of

In the absence of general algorithms for solving networknetwork coding in which only one edge has finite capﬁity,
coding, attention has naturally turned to restricted model$\dditionally, [11] shows that linear network coding can be
of coding (e.g. linear functions between vector spaces over
finite fields) and to approximating network coding rates ithe literature on network coding distinguishes betwiesar network
using graph-theoretic parameters (e.g. minimum [cut [1] and@odes, in which the messages are required to be elements of a finite field,

; r ; dvector-linearnetwork codes, in which the messages are elements of a

the mdependence number [3]) Several of these Varlanﬁ:l]ite-dimensionzsll vector space over a finite field. Linear coding is weaker,
and a gap of size! ¢ is known [10]. Vector-linear coding is much more
The first author was supported by an NDSEG Graduate Fellowship, aowerful, and no gap larger than 11/10 was known prior to our work.
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reduced to linear index coding, thus implying that indexcall a tight homomorphic constraint schembn particular,
coding captures much of the difficulty of network coding. if one can develop a tight homomorphic constraint schema

Index coding is also intricately related to other well- that applies to a restricted class of codes (e.g. linear) then
studied areas of mathematics. Connections between matroidsbecomes possible to prove lower bounds for this class of
and index coding were establishedlinl[12]; for example, thatodes and amplify them using lexicographic products. We
paper shows that realizability of a matroid over a fi€ld pursue this approach in establishing a large multiplicative
is equivalent to linear solvability of a corresponding indexgap between linear and non-linear network coding.

coding problem. Index coding is also closely connected to]_

) . ) ) . eorem 1.1. Lower bounds for index coding problems can
graph theory: a special case of index coding can be describ : : :
. : o e proven by solving a linear program whose constraints are
by an undirected graplds, representing a communication

. valid for the class of coding functions being considered. If

problem where a broadcast channel communicates messages . . . . .
. S . ~he linear program is constructed using a tight homomorphic
to a set of vertices, each of whom has side-information

consisting of the neighbors’ messages. Letiin@?), x(G) constramt. s_che.ma (see Secu@ 3), the_n its optimum is
. . supermultiplicative under the lexicographic product of two
denote the independence and clique-cover number§,of

. index coding problems.
respectively, one has
To separate linear from non-linear coding, we first pro-
o(G) < B(G) =X(G). (1) duce a Sair of linear inequalities that are vglid informa?ion
The first inequality above is due to an independent setnequalities for tuples of random variables defined by linear
being identified with a set of receivers with no mutual functions over fields of odd (resp., even) characteristic, but
information, whereas the last one duelto [5], [4] is obtainedot vice-versa. We obtain these inequalities by considering
by broadcasting the bitwiseoRr of the vertices per clique the Fano and non-Fano matroids; the former is a matroid that
in the optimal clique-cover ofy. As one consequence of is only realizable in characteristic 2, while the latter is only
the general technique we develop here, we settle an opd@galizable in odd characteristic and in characteristic 0. For
question of[[3] by proving that(G) can differ from3(G); ~ each of the two matroids, we are able to transform a proof

indeed, we show that their ratio can be as largeas*. of its non-realizability into a much stronger quantitative
o statement about dimensions of vector spaces over a finite
1.1. Contributions field. This, in turn, we transform into a tight homomorphic

We present a general technique that amplifies lowerconstraint schema of valid information inequalities for linear
bounds for index coding problems using lexicographic hy-random variables.
pergraph products in conjunction with linear programs that We then use the connection between matroids and index
express information-theoretic inequalities. The use of sucleoding [7], [8], [12] and these inequalities to give a pair
linear programs to prove lower bounds in network codingof index coding instances where the best non-linear coding
theory is not new, but, perhaps surprisingly, they have notate is strictly better than the best linear rate over a field of
gained widespread use in the analysis of index codingpdd (resp.,even) characteristic. We do this by establishing
problems. We give an information-theoretic linear program,a general theorem that says that for a matrdigd and an
whose solutionp, gives the best known lower bound on inequality that is violated for the rank function &f, there
#. However, our main innovation is the insight that thisis an index coding problem for which the bound obtained
linear programming technique can be combined with theby adding this inequality to the LP is strictly greater thian
combinatorial technique of graph products to yield lower We can now plug the constraint schema into our lexico-
bounds for sequences of index coding and network codingraphic product technique and apply it to these two index
problems. Specifically, we provide a lexicographic productcoding problems to yield the aforementioned separation
operation on index coding problems along with an operatiorbetween (vector-)linear and non-linear network coding.
that combines dual solutions of the corresponding two linea . .- .
. . heorem 1.2. There exists an explicit family of network
programs. We show that the combined dual yields a dual .~ . . L .
. . . ._coding instances (based on index coding instances) with
solution of the linear program corresponding to the lexico- ! .

X . g . messages and some fixed- 0 such that the non-linear rate
graphic product. Using this operation, we demonstrate that o .
. . . . 1S ©(n®) times larger than the linear rate.
index coding lower bounds proven using linear programming
behave supermultiplicatively under lexicographic products. The largest previously known gap between the non-linear
This technical tool enables us to prove some new separaticend linear rates for network coding was a factor %f
results answering open questions in the field. ([8]). No separation was known between these parameters

Our technique not only applies to the standard linearfor index coding (se€_[10][[3] for related separation results
programs used in network information theory (those thafocusing on the weaker setting of scalar linear codes).
express entropy inequalities such as submodularity) but to As explained above, given any index coding problem
any family of linear programs constructed using what we G we can write down an LP whose constraints are based



on information inequalities that gives a lower bound onthis by AF, and we denote the optimal linear rate over any

(. It is the best known lower bound, and in many casesfield as\.

strictly better than any previously known bound. Notably, A useful notion in index coding is the followinglosure

we can show that the broadcast rate of the 5-cycle is abperation with respect t@, a given instance of the problem:

Ieastg, giving the first known gap between the independencdor a set of messages C V, define

numbera (which equals 2 for the 5-cycle) and the broadcast

rate 3. Amplifying this gap using lexicographic products, we cl(§) =clg(§) = §U{z |3(z,T) e Est.TC5}. (3)

can boost the rati@#/a to grow polynomially withn in @ The interpretation is that every messages cl(S) can be

family of n-vertex graphs. decoded by someone who knows all of the messages in

in addition to the broadcast message. In Secfipn 5 when

we discuss a transformation that associates an index coding

problem to every matroid, the closure operation defined in

this paragraph — when specialized to the index coding
The remainder of the paper is organized as follows. Inproblems resulting from that transformation — will coincide

Section[2 we give a formal definition of index coding and with the usual matroid-theoretic closure operation.

the lexicographic product of two index coding problems. In. We next define the lexicographic product operation for

Sectior 8 we describe a general class of LPs and prove thajirected hypergraphs, then proceed to present Theprgm 2.2

behave supermultiplicatively under lexicographic productswhich demonstrates its merit in the context of index coding

Section[# is devoted to the proof of Theorgm]1.3. Inby showing that3 is submultiplicative for this operation.

Section[$ we give a construction from matroids to indexThe proof gives further intuition for the product operation.

coding and prove a number of connections between propeE

ties of the matroid and the parameters of the correspondin . .
: , . i . ., Hypergraphgr, F', denoted byGe I, is a directed hypergraph
index coding problem. Finally, in Sectidri 6 we establlshWhose vertex set is the cartesian proditiG) x V(F).

inequalities that are valid for linear codes over fields of ) .
odd (resp., even) characteristic and then use these to proTehe edge set ofy e I contains a directed hyperedge

or every pair of hyperedgeteg,er) € E(G) x E(F).
TheorenLLp. If e = (we,Sc) ander = (wr, Sr), then the head of
2 DEFINITIONS e = (eg, er) is the ordered paifwg, wr) and its tail is the
set(Sg x V(F))U({wg} x Sr). Denote byG*™ the n-fold
lexicographic power ofz.

Theorem 1.3. There exists an explicit family of index coding
instances with messages such tha(G) is at leastQ(n°)
times larger thano(G), whered =1 — 2log;(2) ~ 0.139.

efinition 2.1. The lexicographic product of two directed

An index coding problem is specified by directed
hypergraphG = (V, E), where elements df are thought of
as messages, attiC V x2" is a set of directed hyperedges Remark. In the special case where the index coding prob-
(v, ), each of which is interpreted as a receiver who alreadyem is defined by a grafhthe above definition coincides
knows the messages in sgtand wants to receive message With the usual lexicographic graph product (wheves F'

v. Messages are drawn from a finite alphabetand a has the vertex set’(G) x V(F) and an edge fronfu, v)
solution of the problem specifies a finite alphatigt to  to (uv/,0) iff either (u,u) € E(G) or v = « and
be used by the public channel, together with an encodingv,v’) € E(F).

. 14 i
schemet : £IVI — ¥ such that, for any possible values of Theorem 2.2. The broadcast rate is submultiplicative under
(z)vev, every receivefv, 5) is able to decode the message e |exicographic product of index coding problems. That is,

z,, from the value of€(¥) together with that receiver’s side B(G e F) < B(G) B(F) for any two directed hypergraphs
information. The minimum encoding length= [log, |Xp|] GandF.

for messages that atéits long (i.e.X = {0, 1}') is denoted _ o .
by 6:(G). As noted in[[10], due to the overhead associated ~ Proof: Lete > 0 and, recalling the definition of in (2)
with relaying the side-information map to the server the mair@s the limit of 3, /¢, let K" be a sufficiently large integer such

focus is on the case > 1 and namely on the following that for allz > K we havej,(G)/t < B(G) + ¢ as well
broadcast rate asf(F)/t < B(F)+e. Let ¥ = {0,1}* and consider the
8,(C) 3(C) following scheme for the index coding problem Ghe F’
B(G) £ lim 282 — inf 20 (2)  with input alphabet:, which will consist of an inner and
oo 2 ¢t an outer code.
(The limit exists by subadditivity.) This is interpreted as Let £ denote an encoding function foF with in-
the average asymptotic number of broadcast bits needed pput alphabet: achieving an optimal rate, i.e. minimizing
bit of input, that is, the asymptotic broadcast rate for long
messages. We are also interested in the optimal rate WhenSWhe” there arex» messages and exactly receivers, w.l.0.g. receiver
. . . . . 1 wants the message; and one can encode the side-information by a
we require thak is a finite-dimensional vector space over a

e e . el Yeb graph onn vertices which contains the edgg ;) iff receiver: knows the
finite field F, and the encoding function is linear. We denote messager;.



log(|Xpl|)/log(|X]). For eachv € V(G), the inner code
appliesér to the |V (F)|-tuple of messages indexed by the
set {v} x V(F), obtaining a message:,. Note that our s.t. zr = |I (w)
assumption onX%| implies that the length ofn, is equal to
K’ for some integeds’ such thatk' < K’ < (8(F)+¢)K.
Next, let€s denote an optimal encoding function Grwith Az >0 (y)
input {0, 1}K'. The outer code applieSg to {m.,},cv(a)
and the assumption o ensures its output is at most
(B(G) + ) K’ bits long. max I -w =3 gcp esTsT

To verify that the scheme is a valid index code, consider s¢t. > GasYq + Yopns TST — Yopcg Trs =0
a receiver inG e F' represented by = ((wg, wr), (Sg %

min 1)

VSCT 2zr—zs<csr (:1’)

V(F))U ({wg} x Sr)). To decode(we, wr), the receiver VS #0,1
first computesmn, for all v € Sg. Sinceéq is val!d for G, 22q Qaq0¥a + D or g Tor =1

receivere can computen,,,, and sincer is valid for F,

this receiver can use the messages indexeduyy} x Sp 2 g QarYqg — 2y ¥ +w =0

along withm,,, to compute(weg, wr). 2,y >0

Altogether, we have an encoding &f bits using at most
(B(F) +¢)(B(G) +¢)K bits of the public channel, and the
required result follows from letting — O. ]

Figure 1. The LP and its dual.

where the above is taken as the definition qafr. This

implies that for any index code we obtain a feasible solution

In this section we derive a linear program whose value . P :
. of the primal LP in Fi ureE 1 by settings = H(S U
constitutes a lower bound on the broadcast rate, and w; P g y 9s ( {r})

€, and W, every S. Indeed, the first constraint expresses the fact
prove that the value of the LP behaves supermult|pllcat|vel3{hat the value ofp is determined by the values of the

under lexicographic products. In fact, rather than workingn messages, which are mutually independent. The second

with a specific linear program, we work with a general CIaSSconstraint was discussed above. The final line of the LP

of LP's having two types of constraints: those dictated t.)yrepresents a set of constraints, corresponding to the rows

the network structure (which are the same for all LP’s Nt the matrix A — (a4s), that are universally valid for any

the general class), and additional constr_aints depe_nding On%ple of random variables indexed by the messagelset
on the vertex set, generated bycanstraint schemai.e. a For instance, it is well known that the entropy of random

procedure for enumerating a finite set of constraints given . riables has the submodularity propertj(S) + H(T) >

tE;]n arbltr?ry f;nltehlndexthsit. we t!?e:[ntlfy Sc;_fm.e atx'omsd.t(.)nH(S UT)+ H(SNT)if S,T are any two sets of random
; et(r:]onﬁpralnl scten;a a Conslt_l Lll_e?supimen conl IIc;r\‘/ariables on the same sample space. So, for example,
or et . ;/a uhe 0 eh_surf)t_err_nu |pt|cat|ye. tn exkam]f)e %the rows of the constraint matrid could be indexed by
?COTS raint sc Emac\j/vllc_t |T:|mpor antin ':je WorI'ntf?rma'pairs of setsS, T, with entries in the(S,T) row chosen
lon theory Issubmodulanty =or a given Index sei, the %o that it represents the submodularity constraint (namely
submodularity schema enumerates all of the constraints of -1 o — _1andalloth tri
the form zs + 21 > zsnr + zsur Where S, T range over .45 — fal = b dasnT =g SUT = and afl other entries

S AT = =SNT T =SUT ’ of row a of A are zero). Noting thaH ({p}) < B(G) we

subsets off. ;
. . can altogether conclude the following theorem.
Now we explain the general class of LPs which behave g 9

submultiplicatively under the lexicographic product and giveTheorem 3.1. For an index coding problend, let B(G)
bounds onp3. Given an index code, if we sample each be the LP in Figurg¢ [l wher represents the submodularity
message independently and uniformly at random, we obtainonstraints and letb(G) be its optimal solution. Then
a finite probability space on which the messages and th&(G) < 8(G).

public channel are random variables. 3f is a subset of
these random variables, we will denote the Shannon entropy.
of the joint distribution of the variables i§ by H(S). If
S C T C cl(S) then every message iR\ S can be decoded
given the messages if and the public channeb, and
consequenth (SU{p}) = H(T'U{p}). More generally, if
we normalize entropy (i.e. choose the base of the logarithm
so thatH (z) = 1 for each message, then for everyS C T

we have

3. LINEAR PROGRAMMING

It is known that entropies of sets of random variables
tisfy additional linear inequalities besides submodularity;
if desired, the procedure for constructing the matrx
could be modified to incorporate some of these inequalities.
Alternatively, in the context of restricted classes of encoding
nd decoding functions (e.g. linear functions) there may
e additional inequalities that are specific to that class
of functions, in which case the constraint matrk may
incorporate these inequalities and we obtain a linear program
H(TU{p}) — HSU{p}) <|T\ cl(9)| 2 cst, (4)  thatis valid for this restricted model of index coding but not



valid in general. We will utilize such constraints in Secf{ign 6v = A(J)T en(s),n(r) has0 entries everywhere except
when proving a separation between linear and non-linear
network coding. Vn(s) = Vh(T) = 1,  Un($)uh(T) = Va(S)nh(T) = —1

Definition 3.2. A constraint schemassociates to each finite provided that:(S) ¢ h(T) € h(S), otherwisev = 0. To see
index setl a finite setQ(/) (indexing constraints) and thatu = v note that ifh(S) C h(T) thenu = v = 0, and if
a matrix A(I) with rows indexed byQ(/) and columns S C T then again we get(S) C h(T) due to monotonicity
indexed byP(I), the power set ofl. In addition, to each (recall thath is a lattice homomorphism) and so= v = 0.
Boolean lattice homomorphiﬁnh : P(I) — P(J) it  Adding the analogous statements obtained from reversing
associates a functioh, : Q(I) — Q(J). the roles ofS, T, it remains only to verify thats = v in
Let 1 be theP(/)-indexed vector such thats = 1 for  caseh(S) ¢ h(T) ¢ h(S), which reduces by the above
all S, and let1; be the vector whergl;)s = 1 for all  definitions ofu andwv to requiring thath(SUT) = h(S) U
S containingi and otherwise(1;)s = 0. We say that a h(T) andh(SNT) = h(S) N h(T). Both requirements are
constraint schema igght if A(I)1 = A(1)1, =0 for every  satisfied by definition of a Boolean lattice homomorphism,
index set/ and elementi € I. and altogether we conclude that the submodularity constraint
Given h and h, let P, and @), be matrices representing schema is homomorphic.

the linear transformations they induce &f () — RP(/) . . .
andR2(D —, R, respectively. That isP, and (), have Theorem 3.4. Let A be a tight homomorphic constraint

schema. For every index coding problem [€(G) denote
zeros everywhere exceply)n(s)s = 1 and (Qn)n. () = : =n
1. We say that a constraint schemahismomorphicif it the optimum of the ITP n F|gu@ 1 whdn=V/(G) and_ the
satisfiesA(.J)TQ, — P,A(I)T for every Boolean lattice con_stants:ST are defined as iifd)). Then for every two index
homomorphism : P(T) — P(.J). coding problemss and F’, we havep(Ge H) > p(G) p(F').

Remark 3.5. The condition thatA needs to be tight and
homomorphic is surprisingly unrestrictive. In Sectiph 6,
Lemmag 6.8 anfl 6.4 show that a large class of inequalities
can be expressed as tight homomorphic constraint schema.

Example 3.3. Earlier we alluded to thesubmodularity
constraint schemaThis is the constraint schema that as-
sociates to each index skthe constraint-index se@(I) =
P(I) x P(I), along with the constraint matriX(I) whose
entries are as follows. In rowsS,T") and columnU, we Proof: It will be useful to rewrite the constraint set
have an entry ofl if U = S or U = T, an entry of of the dual LP in a more succinct form. First, if is any
—1if U =5nTorU = SUT, and otherwise 0. (If vector indexed by pairsS,T such thatS c T C I, let
any two of S, T, SNT,SUT are equal, then that row vz ¢ R”() denote the vector such that for &l (Vz)s =
of A(I) is set to zero.) It is easy to verify that(I)1 = S o5 ST — Sorestrs. Next, for a setS C I, let eg
A(I)1; = 0 for all i € I, thus the schema is tight. For a denote the standard basis vector vectoRi(!) whose S
homomorphisnt, the corresponding mapping of constraint component isl. Then the entire constraint set of the dual

sets ish,(S,T) = (h(5),h(T)). We claim that, equipped | P can be abbreviated to the following:
with this mapping ofh — h,, the constraint schema is

homomorphic. Indeed, to verify that(J)TQ, = P, A(I)T ATy +Vz+wer=ey, z,y>0. (5)
take any two set§, 7' C I and argue as follows to show that

uw= P, A(I)T esr andv = AT Qp esr are identical Some further simplifications of the dual can be obtained
(here and henceforthy y denotes the standard basis vectorusing the fact that the constraint schema is tight. For
of RP(!) having 1 in coordinate(X,Y) for X,Y c I).  €xample, multiplying the left and right sides ¢fl (5) by the
First observe thatd(I)Tesr is the vectora € RP(O1)  row vectorl® gives

which has0 entries everywhere excepty = 47 = 1 and
asur = usnr = —1 provided thatS ¢ T ¢ S, otherwise
@ = 0. As such,u = P,@ has0 entries everywhere except

1"TATy +1" Ve +w=1.

By the tightness of the constraint schermdA"T = 0.

It is straightforward to verify thatt"Vz = 0 and after
eliminating these two terms from the equation above, we
provided thatS ¢ T' ¢ S and furthermorex(S) € h(T) ¢  find simply thatw = 1. Similarly, if we multiply the left and
h(S), otherwiseu = 0 (for instance, ifS C T thena = 0 right sides of[(b) by the row vectdr] and substitutev = 1,

and sou = 0, whereas if2(S) C h(T) thena belongs to the  we obtain1] ATy +1]Vx+1 = 0 and consequently (again
kernel of ). Similarly, @, es 7 = en(s),n() @and therefore by the tightness) we arrive dt = —1/Vz. At the same
time, —1]Vz = Y scr xsr by definition of Vz, hence

4A Boolean lattice homomorphism preserves unions and intersections . _ i€T\S
but does not necessarily map the empty set to the empty set nor the univers%\*'mm_mg Qver '_alk el yle“_js that|I| = ZSCT ‘T\S| LST-
set to the universal set, and does not necessarily preserve complementsPlugging in this expression fof/| and w = 1, the LP

Up(s) = Up(T) =1, Upsur) = Un(snT) = —1



objective of the dual can be rewritten as

11— > csrwsr = Y (IT\ S| - csr) wsr

ScT SCT

= > TN (c(S)\ S)|zsr,

ScT

where the last equation used the fact that = |7"\ c1(5)|.
We now define

d(S,T) =T N (cl(5) \ 9)|

and altogether we arrive at the following reformulation of

the dual LP.

max

ZSCT d(S7 T) st

st ATy+Ve=ey—e;s

(6)
z,y>0.

Now suppose thatc®, n%), (¢, n'") are optimal solu-
tions of the dual LP forG, F', achieving objective values
p(G) and p(F), respectively. (Here,n play the role of

In words, the dual solution fof e F' contains a copy of
the dual solution forF' lifted according tohS” for every
pair S C T and one copy of the dual solution ¢f lifted
according tog. The feasibility of(¢%*¥ n*F) will follow
from multiple applications of the homomorphic property of
the constraint schema and the feasibility (gf", ) and
(¢9,1n%), achieved by the following claim.

Claim 3.6. The pair (¢9*F, n©*f") as defined in(8),(@) is
a feasible dual solution.

Proof: The matrices),, Rysr, Qs all have{0,1}-
valued entries thus clearlg“*?’, n“*¥" > 0. Letting A =
A(G e F), we must prove thatlTn@ef + VeGeF = ¢y —
ev(cer)- Plugging in the values of¢“*”, n“*¥") we have

AT £ vee T = ATQm  + ) (€9)sr(ATQpsrn")
SCT

+ ) (€9)sr V(Rys £7)

ScT
= PAG) 7+ Y (€9)sr(Pusr ABP) 0" + V(Rysr 7))
scT
(10)

z,y from (§), resp.) We will show how to construct a pair where the second equality applied the homomorphic prop-

of vectors(£&*F n@*F) that is feasible for the dual LP of
G e F and achieves an objective value of at leas¥) p(F').
The construction is as follows. Legy : P(V(G)) —
P(V(G e F)) be the mapping/(X) = X x V(F). For sets
ScTCV(Q),lethST . P(V(F)) — P(V(GeF)) be
the mappingh°” (X) = (T x X) U (S x V(F)). Observe
that both mappings are Boolean lattice homomorphisms.

To gain intuition about the mappings ~°7 it is useful
to think of obtaining the vertex set @ e ' by replacing
every vertex ofG with a copy of F. Here g({v}) maps
the vertexv in G to the copy of F' that replaces. The
mapping T ({u}) maps a vertex: in F to the vertexu
in the copies ofF' that replace vertices ifi", and then adds
the set{u} x V(F).

Recall that Definitiori 3]2 associates two matri¢gs Q),
to every Boolean lattice homomorphisim: P(I) — P(J).
It is also useful to define a matrik;, as follows: the columns
and rows of R, are indexed by pair$s ¢ 7' C [ and
X C Y C J, respectively, with the entry in rolX'Y and
column ST being equal to 1 ifX = h(S) andY = h(T),
otherwise 0. Under this definition,

V(Rpz) = P,Vx for anyz € RPU) .

(7
Indeed, ifx = eg 7 for someS C T C I thenVegs r = es—
er and soP;, €S, T = €n(S) — Er(T)» WhereasV(RheS_,T) =

V(eh(S),h(T)) = €n(S) — En(T)-
We may now define

€9 =3 (%) sr (Rpsr €7),

ScT

N = Qun®+ Y (€% st (Qust ™).

SCcT

(8)
(9)

erty of the constraint schema. To treat the summation in the
last expression above, recdl] (7) which implies that

PhSTA(F)TnF—‘rV(RhST &F) = Pyst A(F)T’I]F—FPhSTVfF

= Pysr (50) - eV(F)) s (11)

with the last equality due to the fact th@!", n*") achieves
the optimum of the dual LP foF'. Recalling thatP,es =
en(s) for any h and combining it with the facta>” () =
S x V(F) and g(S) = S x V(F) gives Pysrey =
esxv(r) = Pyes. Similarly, sinceh™T (V(F)) = T x V(F)
we have Pysrey(py = erxy(r) = Pyer, and plugging
these identities i (11) combined with {10) gives:

AT,’?GOF+V€G0F _ Pg |:A(G)T77G+Z(£G)ST (QS*QT) )
scT

Collecting together all the terms involvings for a

given S € P(I), we find that the coefficient otg is

ZTDS(fG)ST - ETCs’(fG)ST = (VE9)s. Hence,
ATﬁG.F + VfG.F _ Pg [A(G)T’I]G + ng}
=1y [e@ - eV(G)] =€) — €V (GeF) >
where the second equality was due (7, 7“) achieving
the optimum of the dual LP fo6. ]
To finish the proof, we must evaluate the dual LP objective

and show that it is at leasi(G) p(F'), as the next claim
establishes:

Claim 3.7. The LP objective for the dual solution given in
Claim[3.6 has value at leagt(G) p(F).

Proof: To simplify the notation, throughout this proof
we will use K, L to denote subsets df (G e F') while



referring to subsets df (G) asS, T and to subsets df (F')
as X,Y. We have

> d(K, L) (€% kL

KCL

> d(K, L) > (%) s (Rysr €M)k,

KCL SCT
= Z(EG)ST( Z d(K, L) (RhST gF)KL)
(3 01T w) € )

SCT KCL
XCY

12)

= Z (fG)ST

ScT

where the last identity is by definition aty,.

At this point we are interested in deriving a lower bound

on d(hT(X),r5T(Y)), to which end we first need to
analyzeclg. » (h°T(X)). Recall thatE(G e F) consists of
all hyperedges of the forrw, K) with w = (wg, wr) and
K =(WexV(F))U({wg} x Wg) for some pair of edges
(wg,Wg) € E(G) and (wp, Wr) € E(F). We first claim
that for anyS ¢ T and X C V(F), if X denotesh®”(X),
then

caer(X)\ X 2 ((cla(S)\S)NT) x (clp(X)\ X).
(13)
To show this, letL denote the set on the right side pf|(13).

Note thatZ contains no ordered pairs whose first component

is in .S or whose second component isif and thereford.
is disjoint fromX = (T'x X)U (S x V(F')). Consequently,
it suffices to show thatlger (X) 2 L. Consider any
w = (wg, wr) belonging toL. As wg € clg(S) \ S, there
must exist an edgéwq, W) € E(G) such thatiWg C S.
Similarly, there must exist an edder, Wr) € E(F) such
thatWr C X. Letting K = (Wg x V(F))U({wg} x Wr),
we find thatK C (S x V(F)) U (T x X) = X and that
(w,K) € E(G e F), implying w € clger (X) as desired.

Let X = n°T(X) andY = AST(Y), and recall that
d(X,Y) is defined a# (clg.F(X)\X) mY‘. Using [I3)
and noting tha” 2 (T x Y) we find that

(aer(X)\ X)NY 2
((cla(S)\S)NT) x ((clr(X)\ X)NY)

and hence

d(X.¥) = |(cla($)\ S) N T] - [(clp(X)\ X) N Y|
=d(S,T)d(X,Y).

Plugging this bound intd (12) we find that
DA, L)) ke

KCL
> > (€% sr Y d(S,T)d(X, V) (E ) xy
SCcT XCY

and since the last expression above is precisely equal to

(> d(S.T)(E)s) (D dX,Y)(E ) xy) = p(G) p(F)

SCcT XCY

this concludes the proof. ]
Combining Claim$ 3J6 ar[d 3.7 concludes the proof of the
Theoren 3 4. ]

4. SEPARATION BETWEEN« AND (3

To prove Theorerp 1]3, we start by using Theofenj 3.1 to
show that3(Cs) > a(Cs) whereCj is the 5-cycle. Then we
apply the power of Theorefn 3.4 to transform this constant
gap onCs to a polynomial gap orC'~.

First we show that3(Cs) > b(Cs) g We can show
thatb(Cs) > 5 by providing a feasible dual solution for the
LP B8 with valueg. This can easily be achieved by listing a
set of primal constraints whose variables sum and cancel to
show thatzy > % Labeling the vertices of’; by 1,2, 3,4,5
sequentially, such a set of constraints is given below. It is
helpful to note that in an index coding problem defined by
an undirected graph; € cl(.S) if = € S or all the neighbors
of z are inS.

2>z013) — 20
2> zp04y — 2
1> Z{51 — 2¢
02> z{1,23) — 2{1,3)
0> 2(23.4) — 22,4}
Z{2.34} T 2{1,2,3} = #{2,3} T %{1,2,3,4}
Z{2,3} + 25} = 20 + 2{2,3,5}
02> 2{123.4,5) — 2{1,2,3,4)
02> 2(1,2,3,4,5) — #{2,3,5}
2{1,2,34,5) = O
Z{1,2,3,4,5} = O
Applying Theorem 34 we deduce that for any integer
k > 1 the k-th lexicographic power of’; satisfies3(C¥) >
b(CF) > (§)k Furthermore,a(Cs) = 2 and it is well

2
known that the independence number is multiplicative on

lexicographic products and sa(C¥) = 2F. Altogether,
CF is a graph onn = 5% vertices witha = n'°8:(2) and
B > nt~1o2:(2) | implying our result.

5. MATROIDS AND INDEX CODING

Recall that a matroid is a paiv/ = (E,r) whereE is a
ground set and : 2¥ — N is a rank function satisfying

(i) r(A) < |A| forall AC E;

(i) r(A) <r(B) for all A C B C E (monotonicity);

(i) r(A)+r(B)>r(AUuB)+r(AnB)forall A, BCE

(submodularity).

The rank vector of a matroidi(M), is a2!¥l-dimensional
vector indexed by subsets &f, such that itsS-th coordinate



isr(S). A subsetS C E is calledindependenif r(S) = |S|  Theorem 5.4. A matroidM = (E,r) with |E| = n is under-

and it is called aasisof M if r(S) = |S| = r(E). representable il dimensions over a finite fielfl if and only
In this section we give a construction mapping a matroidif \Y(G,;) < n—d. In particular, if M is representable over

to an instance of index coding that exactly captures the deF then \F(Gy) = 3(Gyr) = n — 7(E).

pendencies in the matroid. We proceed to show some useful

connections between matroid properties and the broadcast Proof: Let R be ad x n matrix which under-represents

rate of the corresponding index coding problem. M in d dimensions oveF. Let @ be an(n — d) x n matrix

o ) whose rows span the kernel & We will show thatQ is a
Definition 5.1. Let M = (E,r) be a matroid. The hyper-

. - g valid encoding matrix forG,;. Let y € F¥ be some input
graph index coding problerassociatedto M, denoted by message set and consider a recefuers), who wishes to
G, has a message setand all receivers of the form

decodey,. from {y. : z € S} and the broadcast message.
{(,8) | z€ E,SCE,r(S)=r(SU{z})}. Extendker(Q) arbitrarily into a basisB for F¥ and lety =

- . , y'+y" be the unique decomposition accordingdauch that

Remark. A similar yet slightly more complicated construc- Y € ker(Q). Clearly, Qy" = Qy sincey’ € ker(Q), hence

tion was given inl[12]. Our construction is (essentially) @ ,n6 can recovey” from the public channel by triangulating
subset of the one appearing there. A construction that mag@_ It remains for the receivef, ) to recovery’.. To this

a matroid to a network coding problem is given fin [7], [8]. end, observe that the rows @t spanker(Q) and recall

They prove an analog of Propositipn5.2. that by Definitiond 5]1 anfd 5.3, columnof R is a linear
Proposition 5.2. For a matroid M = (E,r), b(Gy) =  combination of the columns ok indexed bysS. Sincey’ is
|E| — r(E). in the row-space oR it follows thaty/, is equal to the exact

same linear combination of the componentsybfindexed
by S, all of which are known to the receiver. Altogether, the
receiver can recover bot}j, andy” and obtain the message

r(S)+n—r is afeasible primal solution to the LB(Gar). . aq this holds for any receiver, we conclude tigatis a
The feasibility of constraint$w) and (z) follows trivially valid encoding matrix and thua¥(Gas) < n — d. When

from' tﬁe definition ofG; and properties of a matroid. The d = r(E) the inequality is tight because this upper bound

feasibility of (3./) F AT AS S ¢st VS C T follows from coincides with the lower bound given by Propositjon] 5.2.

repeated application of submodularity: _ -
Conversely, suppose that there exists a scalar linear code

Proof: In what follows we will letn = |E| andr =
r(E). To show thab(Gys) < n—r it suffices to showsg =

ar—zs=r(T)—r(S) < > r(Su{z}) —r(5) for Gy over[F with raten—d, and letQ be a corresponding
T€T\S (n—d) xn encoding matrix of ranke —d. Let R be ad x n

< Z (r(SU{z}) — r(9)) matrix whose rows span the kerngl of. We cl_aim that
sed(S) R under-representd/. Indeed, consider a receivét, S).

It is easy to verify that this receiver has a linear decoding
+ Z r({z}) < [T\ el(S)| = csr- function of the formu™ - Qy + v - yg for some vectors
2€T\el(S) u, v, whereyg is the vector formed by restricting to the
For the reverse inequality, lét be any basis ofif and note indices ofS. As QQ is a valid encoding matrix fo6;;, this

thatzg = 2z — (25 — 25) — (25 — 29) > n —1. B evaluates tgy, for anyy € FE. In particular, ifyT is a row
The following definition relaxes the notion of a represen-of R thenQy = 0 and sov' - ys = y,, and applying this
tation for a matroid. argument to every row oR verifies that column: of R is a

Definition 5.3. A matroid M = (E,r) with |E| = n I|nea_r c_:omblnatlon of ?he coll_JmnS(ﬂmdexed bysS (wnh
coefficients fromwv). Since this holds for any receiver we

is under-representablén d dimensions over a finite field ;
P have thatR under-represent8/, as required. ]

F if there exists ad x n matrix with entries inF and
columns indexed by elements Bfsuch that (i) the rows are ~ We conclude this section with a result that will be useful
independent and (i) if-(z U S) = r(S) then the columns in establishing lower bounds on the value of the LP@y
indexed byz U S are dependent. with a given constraint matrixl.

Observe that if a matrix represents then it also under-  Theorem 5.5. Suppose thaf/ = (E,r) is a matroid and
represents}M. We next show a relation between under- 4 js a matrix such thatdl = 0 and AF(M) # 0. If the
representations fok/ over F and thescalar linear rateA], inear program in Figure[TL is instantiated with constraint

where the alphabet vector space, over which the encodingatrix A, then the value of the LP is strictly greater than
functions are required to be linear, is smgle—d|men5|onal1E| —r(BE).

Note that \¥ < Af. The following is the analogue of
Theorem 8 in[[1R2] for our version of the matroid to index Proof: We will give a dual solution(w, z,y) to the LP
coding mapping. with value strictly greater thajF| — r(E).



Recalling the hypothesidr(M) # 0, let g be a row ofA lexicographic product of the two index codes to get a gap
such thaty " ¢z agsr(S) < 0. Let ST ={S C E |aqs >  between the linear and non-linear coding rates, and then use
0,5 # E,0} andS~ = {S C F | ays < 0,5 # E,0}. lexicographic products again to amplify that gap.

Note that the hypothesis thatl = 0 implies thatayy + The Fano matroid denoted?, and thenon-Fano matroid
Ysest Ggs = — (age + Y ges- aqs). Assume thatd is  denoted\V, are 7 element, rank 3 matroids. The seven
scaled Sau+ Y gegr Ggs = — (age + Y ges- ags) = 1. columns of the matrix(é 2 § (%) (1) é D constitute a linear
This assumption is without loss of generality singg: +  representation of the Fano matroid whemr(F) = 2 and
Y ses- Aqs IS strictly negative, as can be seen from: one for the non-Fano matroid whehar(F) +# 2.
It is well known that the Fano matroid is representable
r(E) (aqE + Z aqs> only in a field of characteristic 2, and the non-Fano matroid
Ses- is representable in any field whose characteristic is different
< agur(E) + Z ags7(S) from 2 but not in fields of characteristic 2. We use a
Ses- generalization of this fact to obtain the following theorem

that directly implies Theorern 1.2. All proofs were omitted

< aqer(E) + szs: agsT(5) + szs:+ tas7(5) from this section for space reasons; see [6] for full proofs.
€5~ S
= Za sr(S) < 0. Theorem 6.1 (Separation Theorem)Let G = G o Gy .
3 ! There exists some > 0 such thatg(G*") = 16™ whereas

) . AG*™) > (16 + €)™ for all n.
Define the dual vectoy by settingy, = 1 andy, = 0 for (@) 2 ( 2 "

rows ¢’ # q of A. To define the dual vectar, let us first The fact that3(G*") = 16" will be a straightforward
associate to every sétC E a matroid basi$(S) such that ~application of Propositiof 52 and Theorém]5.4. The lower
the setm(S) = b(S) N S is a maximal independent subset bound on the linear rate however will require considerably
of S, i.e.|m(S)| = r(m(S)) = r(S). Letu(S) = SUb(S).  more effort. In order to bound from below we will extend
For everyS € ST, let zg,(s) = Tm(s)s = aqs and for the I__P% to two LPs, one of yvhich will be a IO\_/ve_r bound
every S € 87, let wg,(s) = Tu(s)r = —aqs-. Set all other for linear codes over fields with odd characteristic and the
values ofz g to zero. Finally, setv = 1. By construction, other for linear codes over even characteristic. Each one will
(w,x,y) satisfies all of the dual constraints. Using the supplement the matrid in the LP with a set of constraints,
relationscy,,(sy = 7(5), csu(sy = r(E) — 7(S), em(s)s =  One set derived from dimension inequalities based on the
cu(s)e = 0, we find that the dual LP objective value is representation of the Fano matroid and the other from the
non-Fano matroid. The LP that gives a lower bound for

|E|w — Z CSTTST linear codes over a field with even characteristic will be
scT used to show that the linear broadcast rateGgf over a

= |E| - Z (Com(s) + Cm(s)5) g8 field of even characteristic is strictly greater than four, and
Sest the LP for odd characteristic will imply the corresponding

result for G . Furthermore, the constraints will satisfy the

= > (esus) T cusp)(—ags) conditions of Theorerfi 3.4. Putting this all together implies
Ses” that when we take the lexicographic product of the Fano and
=|El= ) r(S)ags + Y (r(E) —r(S))ags non-Fano index coding problems, no linear code is as good
Ses+ SeS- as one that combines linear codes o¥erand .

=|E|+ Z aqsr(E) —Zaqsr(S)+aq@r((2))+aqEr(E) _If {Vi}ier are subspaces of a vector spaten let
ses- S d({V;}icr) be a2/l dimensional vector indexed by the
—|E| — »(E) — ). subsets ofl such that the coordinate indexed Byis the
[E| = r(E) %:aqgr( ) dimension of the span ofV;};cs. The following theorem
) ) provides the ingredients for proving th&f(G ) > 4 when
By hypothesis) _ g aqs7(5) < 0, as required. B Fisafinite field of even characteristic, whered$G ) > 4

6. SEPARATION BETWEEN LINEAR AND NON-LINEAR when is of odd characteristic.

RATES Theorem 6.2. There exist a pair oR”-dimensional vectors

In this section we sketch the proof of Theor§m] 1.2. Tolteven: Aoda such that for any 7 subspace¥’i}icy of a
this end we will first show that the linear rate over a field of VECtor space over a fiell, we have
even characteristic is strictly better than the linear rate over Aeven - d({Vi}icrr) if char(F) = 2
a field of odd characteristic for the index coding problem 0< Noaa - d{Vi}icws)  if char(F) # 2
associated to the Fano matroid, and that the reverse relation odd ifici chat '
holds for the non-Fano matroid. Then we will take the HoweverAcye, - F(N) and Aqq - ¥(F) are strictly negative.



The proof begins with a quantitative strengthening of theLemma 6.6. The disjoint union of two tight constraint
non-representability of\" in characteristic 2: we specify a schemas is tight, and the disjoint union of two homomorphic
sequence of linear inequalities satisfiedify\') such that, constraint schemas is homomorphic.
it {Vi}icu are d-dmensmngl an(ﬂ({‘./i}i.e”) satisfies all Theorem[6]l now follows from combining these re-
but the last of the inequalities, then it violates the last one . . .

" sults with those of earlier sections. We transform each of
by d additively. Then we show how to transform a general

7-tuple of subspaces into one satisfying all but the last oﬁ o i\gﬁ]dm'an%]% 2\?1%1Zm:rzrtljo\:\[/)ehItcalf:Tr?(taradlinst'osir?iI:iin
the inequalities. The vectaok..., expresses the negation of 9 s )

. . . o . .., of each of these with the submodularity schema. Using the
the final linear inequality in the sequence, combined W|thresultin air of linear programs in Theorém]5.4, we obtain
correction terms that reflect how the transformation modifie gp brog | !

the subspace dimensions. The caker(F) # 2 is handled S)‘(G) = 16 + ¢ for somez > 0. Amplifying this gap using
similarly.

The following pair of lemmas shows how to take a single
linear constraint, such as one of those whose existence[l] M. Adler, N. J. A. Harvey, K. Jain, R. Kleinberg,
is asserted by Theorem $.2, and transform it into a tight
homomorphic constraint schema. To state the lemmas, we

must first define the set of vectoSy(K) ¢ RPE), for
any index setK and fieldF, to be the set of all vectors
d({Vi}rex), where{V;}rex runs through allK-indexed
tuples of finite-dimensional vector spaces o¥er

Lemma 6.3 (Tightening Modification) Supposel is any

index sete is an element not id, and J = I U {e}. There

exists an explicit linear transformation froR” (/) to RP (1),

represented by a matri®, such that:

(i) B-Dgr(J) C Dp(I) for every fieldF.

(i) B1=B1;=0forall jeJ.

(i) If M is a matroid with ground set and the intersection
of all matroid bases ofM is the empty set, then
Br(M +e) = ¥(M), whereM + e denotes the matroid
obtained by adjoining a rank-zero elementté.

Lemma 6.4(Homomorphic Schema Extensiorbet I be an
index set, and lefi € RP) be a vector such thai'd > 0
for all d € Dg(I). Then there is a homomorphic constraint
schemg @, A) such thati" is a row of the matrixA(7), and
for every index sef< and vectord € Dg(K), A(K)d > 0.

If &T1 = &1, = 0 forall i € I, then the constraint schema
(@, A) is tight.

Finally, it will be useful to describe the following simple
operation for combining constraint schemas.

Definition 6.5. Thedisjoint unionof two constraint schemas [10]

(Q1,A41) and (Q2, A2) is the constraint schema which
associates to every index sktthe disjoint unionQ(I) =

Q1 (I) U Qy(I) and the constraint matriX(I) given by
Ai(I)gs if g€ Q1(1)
A(I =
(as {AQ(I)qS if ¢ € Qs(1).

For a homomorphismi : P(I) — P(J), the functionh, :
Q(I) — Q(J) is defined by combiningd; (I) = Q1 (J)
and 9y (1) LR Q> (J) in the obvious way.

(11]

(12]

(13]

Theoren{ 34 yields the lower boundG*") > (16 + ¢)".
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