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Abstract— We introduce a technique for establishing and ampli-
fying gaps between parameters of network coding and index coding
problems. The technique uses linear programs to establish separa-
tions between combinatorial and coding-theoretic parameters and
applies hypergraph lexicographic products to amplify these separa-
tions. This entails combining the dual solutions of the lexicographic
multiplicands and proving that this is a valid dual solution of the
product. Our result is general enough to apply to a large family of
linear programs. This blend of linear programs and lexicographic
products gives a recipe for constructing hard instances in which
the gap between combinatorial or coding-theoretic parameters is
polynomially large. We find polynomial gaps in cases in which the
largest previously known gaps were only small constant factors or
entirely unknown. Most notably, we show a polynomial separation
between linear and non-linear network coding rates. This involves
exploiting a connection between matroids and index coding to
establish a previously unknown separation between linear and non-
linear index coding rates. We also construct index coding problems
with a polynomial gap between the broadcast rate and the trivial
lower bound for which no gap was previously known.

1. INTRODUCTION

The problem ofNetwork Coding, introduced by Ahlswede
et al [2] in 2000, asks for the maximum rate at which
information can be passed from a set of sources to a
set of targets in a capacitated network. In practice, there
are many examples where network coding provides faster
transmission rates compared to traditional routing, e.g. [9]
details a recent one in wireless networks. However, despite
tremendous initial success in using network coding to solve
some broadcastproblems (those in which every receiver
demands the same message), very little is known about
how to compute or approximate the network coding rate
in general. (See [13] for a survey of the topic.)

In the absence of general algorithms for solving network
coding, attention has naturally turned to restricted models
of coding (e.g. linear functions between vector spaces over
finite fields) and to approximating network coding rates
using graph-theoretic parameters (e.g. minimum cut [1] and
the independence number [3]). Several of these variants
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provide bounds on the network coding rate, but the worst-
case approximation factor of these bounds remains unknown.
For example, it is known that there exists a network in which
non-linear network coding can achieve a rate which exceeds
the best linear network code by a factor of11

10 [7], but it is
not known whether this gap1 can be improved ton1−ε, or
even possibly toΘ(n).

In this paper we introduce a general technique for ampli-
fying many of these gaps by combining linear programming
with hypergraph product operations. For instance, this en-
ables us to construct a family of network coding instances
with n messages, in which the rate of the best non-linear
network code exceeds the rate of the best (vector-)linear
network code by a factor of at leastnε. A crucial ingre-
dient in our technique isindex coding[5], [4], a class of
communication problems in which a server holds a set of
messages that it wishes to broadcast over a noiseless channel
to a set of receivers. Each receiver is interested in one of the
messages and has side-information comprising some subset
of the other messages. The objective is to devise an optimal
encoding scheme (one minimizing the broadcast length) that
allows all the receivers to retrieve their required information.
Following [3], we useβ to denote the limiting value of the
information rate (i.e., ratio of broadcast length to message
length) of this optimal scheme, as the message length tends
to infinity.

In our framework, index coding is most useful for iso-
lating a sub-class of network coding problems that can be
combined using lexicographic products. However, it is also
an important and well-studied problem in its own right.
Index coding is intimately related to network coding in
general. It is essentially equivalent to the special case of
network coding in which only one edge has finite capacity.2

Additionally, [11] shows that linear network coding can be

1The literature on network coding distinguishes betweenlinear network
codes, in which the messages are required to be elements of a finite field,
andvector-linearnetwork codes, in which the messages are elements of a
finite-dimensional vector space over a finite field. Linear coding is weaker,
and a gap of sizen1−ε is known [10]. Vector-linear coding is much more
powerful, and no gap larger than 11/10 was known prior to our work.

2The unique finite-capacity edge represents the broadcast channel. Each
sender is connected to the tail of this edge, each receiver is connected to
its head, and each receiver has incoming edges directly from a subset of
the senders, representing the side-information.



reduced to linear index coding, thus implying that index
coding captures much of the difficulty of network coding.

Index coding is also intricately related to other well-
studied areas of mathematics. Connections between matroids
and index coding were established in [12]; for example, that
paper shows that realizability of a matroid over a fieldF
is equivalent to linear solvability of a corresponding index
coding problem. Index coding is also closely connected to
graph theory: a special case of index coding can be described
by an undirected graphG, representing a communication
problem where a broadcast channel communicates messages
to a set of vertices, each of whom has side-information
consisting of the neighbors’ messages. Lettingα(G), χ(G)
denote the independence and clique-cover numbers ofG,
respectively, one has

α(G) ≤ β(G) ≤ χ(G) . (1)

The first inequality above is due to an independent set
being identified with a set of receivers with no mutual
information, whereas the last one due to [5], [4] is obtained
by broadcasting the bitwiseXOR of the vertices per clique
in the optimal clique-cover ofG. As one consequence of
the general technique we develop here, we settle an open
question of [3] by proving thatα(G) can differ fromβ(G);
indeed, we show that their ratio can be as large asn0.139.

1.1. Contributions

We present a general technique that amplifies lower
bounds for index coding problems using lexicographic hy-
pergraph products in conjunction with linear programs that
express information-theoretic inequalities. The use of such
linear programs to prove lower bounds in network coding
theory is not new, but, perhaps surprisingly, they have not
gained widespread use in the analysis of index coding
problems. We give an information-theoretic linear program,
whose solution,b, gives the best known lower bound on
β. However, our main innovation is the insight that this
linear programming technique can be combined with the
combinatorial technique of graph products to yield lower
bounds for sequences of index coding and network coding
problems. Specifically, we provide a lexicographic product
operation on index coding problems along with an operation
that combines dual solutions of the corresponding two linear
programs. We show that the combined dual yields a dual
solution of the linear program corresponding to the lexico-
graphic product. Using this operation, we demonstrate that
index coding lower bounds proven using linear programming
behave supermultiplicatively under lexicographic products.
This technical tool enables us to prove some new separation
results answering open questions in the field.

Our technique not only applies to the standard linear
programs used in network information theory (those that
express entropy inequalities such as submodularity) but to
any family of linear programs constructed using what we

call a tight homomorphic constraint schema. In particular,
if one can develop a tight homomorphic constraint schema
that applies to a restricted class of codes (e.g. linear) then
it becomes possible to prove lower bounds for this class of
codes and amplify them using lexicographic products. We
pursue this approach in establishing a large multiplicative
gap between linear and non-linear network coding.

Theorem 1.1. Lower bounds for index coding problems can
be proven by solving a linear program whose constraints are
valid for the class of coding functions being considered. If
the linear program is constructed using a tight homomorphic
constraint schema (see Section 3), then its optimum is
supermultiplicative under the lexicographic product of two
index coding problems.

To separate linear from non-linear coding, we first pro-
duce a pair of linear inequalities that are valid information
inequalities for tuples of random variables defined by linear
functions over fields of odd (resp., even) characteristic, but
not vice-versa. We obtain these inequalities by considering
the Fano and non-Fano matroids; the former is a matroid that
is only realizable in characteristic 2, while the latter is only
realizable in odd characteristic and in characteristic 0. For
each of the two matroids, we are able to transform a proof
of its non-realizability into a much stronger quantitative
statement about dimensions of vector spaces over a finite
field. This, in turn, we transform into a tight homomorphic
constraint schema of valid information inequalities for linear
random variables.

We then use the connection between matroids and index
coding [7], [8], [12] and these inequalities to give a pair
of index coding instances where the best non-linear coding
rate is strictly better than the best linear rate over a field of
odd (resp.,even) characteristic. We do this by establishing
a general theorem that says that for a matroidM , and an
inequality that is violated for the rank function ofM , there
is an index coding problem for which the bound obtained
by adding this inequality to the LP is strictly greater thanb.

We can now plug the constraint schema into our lexico-
graphic product technique and apply it to these two index
coding problems to yield the aforementioned separation
between (vector-)linear and non-linear network coding.

Theorem 1.2. There exists an explicit family of network
coding instances (based on index coding instances) withn
messages and some fixedε > 0 such that the non-linear rate
is Ω(nε) times larger than the linear rate.

The largest previously known gap between the non-linear
and linear rates for network coding was a factor of11

10
([8]). No separation was known between these parameters
for index coding (see [10], [3] for related separation results
focusing on the weaker setting of scalar linear codes).

As explained above, given any index coding problem
G we can write down an LP whose constraints are based



on information inequalities that gives a lower bound on
β. It is the best known lower bound, and in many cases,
strictly better than any previously known bound. Notably,
we can show that the broadcast rate of the 5-cycle is at
least52 , giving the first known gap between the independence
numberα (which equals 2 for the 5-cycle) and the broadcast
rateβ. Amplifying this gap using lexicographic products, we
can boost the ratioβ/α to grow polynomially withn in a
family of n-vertex graphs.

Theorem 1.3.There exists an explicit family of index coding
instances withn messages such thatβ(G) is at leastΩ(nδ)
times larger thanα(G), whereδ = 1− 2 log5(2) ≈ 0.139.

The remainder of the paper is organized as follows. In
Section 2 we give a formal definition of index coding and
the lexicographic product of two index coding problems. In
Section 3 we describe a general class of LPs and prove they
behave supermultiplicatively under lexicographic products.
Section 4 is devoted to the proof of Theorem 1.3. In
Section 5 we give a construction from matroids to index
coding and prove a number of connections between proper-
ties of the matroid and the parameters of the corresponding
index coding problem. Finally, in Section 6 we establish
inequalities that are valid for linear codes over fields of
odd (resp., even) characteristic and then use these to prove
Theorem 1.2.

2. DEFINITIONS

An index coding problem is specified by adirected
hypergraphG = (V,E), where elements ofV are thought of
as messages, andE ⊆ V ×2V is a set of directed hyperedges
(v, S), each of which is interpreted as a receiver who already
knows the messages in setS and wants to receive message
v. Messages are drawn from a finite alphabetΣ, and a
solution of the problem specifies a finite alphabetΣP to
be used by the public channel, together with an encoding
schemeE : Σ|V | → ΣP such that, for any possible values of
(xv)v∈V , every receiver(v, S) is able to decode the message
xv from the value ofE(~x) together with that receiver’s side
information. The minimum encoding length` = dlog2 |ΣP |e
for messages that aret bits long (i.e.Σ = {0, 1}t) is denoted
by βt(G). As noted in [10], due to the overhead associated
with relaying the side-information map to the server the main
focus is on the caset � 1 and namely on the following
broadcast rate.

β(G) 4= lim
t→∞

βt(G)
t

= inf
t

βt(G)
t

(2)

(The limit exists by subadditivity.) This is interpreted as
the average asymptotic number of broadcast bits needed per
bit of input, that is, the asymptotic broadcast rate for long
messages. We are also interested in the optimal rate when
we require thatΣ is a finite-dimensional vector space over a
finite field F, and the encoding function is linear. We denote

this by λF, and we denote the optimal linear rate over any
field asλ.

A useful notion in index coding is the followingclosure
operation with respect toG, a given instance of the problem:
for a set of messagesS ⊆ V , define

cl(S) = clG(S) = S ∪ {x | ∃(x, T ) ∈ E s.t. T ⊆ S} . (3)

The interpretation is that every messagex ∈ cl(S) can be
decoded by someone who knows all of the messages inS
in addition to the broadcast message. In Section 5 when
we discuss a transformation that associates an index coding
problem to every matroid, the closure operation defined in
this paragraph — when specialized to the index coding
problems resulting from that transformation — will coincide
with the usual matroid-theoretic closure operation.

We next define the lexicographic product operation for
directed hypergraphs, then proceed to present Theorem 2.2
which demonstrates its merit in the context of index coding
by showing thatβ is submultiplicative for this operation.
The proof gives further intuition for the product operation.

Definition 2.1. The lexicographic product of two directed
hypergraphsG, F , denoted byG•F , is a directed hypergraph
whose vertex set is the cartesian productV (G) × V (F ).
The edge set ofG • F contains a directed hyperedgee
for every pair of hyperedges(eG, eF ) ∈ E(G) × E(F ).
If eG = (wG, SG) and eF = (wF , SF ), then the head of
e = (eG, eF ) is the ordered pair(wG, wF ) and its tail is the
set(SG×V (F ))∪ ({wG}×SF ). Denote byG•n then-fold
lexicographic power ofG.

Remark. In the special case where the index coding prob-
lem is defined by a graph3 the above definition coincides
with the usual lexicographic graph product (whereG • F
has the vertex setV (G) × V (F ) and an edge from(u, v)
to (u′, v′) iff either (u, u′) ∈ E(G) or u = u′ and
(v, v′) ∈ E(F )).

Theorem 2.2. The broadcast rate is submultiplicative under
the lexicographic product of index coding problems. That is,
β(G • F ) ≤ β(G) β(F ) for any two directed hypergraphs
G and F .

Proof: Let ε > 0 and, recalling the definition ofβ in (2)
as the limit ofβt/t, let K be a sufficiently large integer such
that for all t ≥ K we haveβt(G)/t ≤ β(G) + ε as well
asβt(F )/t ≤ β(F ) + ε. Let Σ = {0, 1}K and consider the
following scheme for the index coding problem onG • F
with input alphabetΣ, which will consist of an inner and
an outer code.

Let EF denote an encoding function forF with in-
put alphabetΣ achieving an optimal rate, i.e. minimizing

3When there aren messages and exactlyn receivers, w.l.o.g. receiver
i wants the messagexi and one can encode the side-information by a
graph onn vertices which contains the edge(i, j) iff receiver i knows the
messagexj .



log(|ΣP |)/ log(|Σ|). For eachv ∈ V (G), the inner code
appliesEF to the |V (F )|-tuple of messages indexed by the
set {v} × V (F ), obtaining a messagemv. Note that our
assumption on|Σ| implies that the length ofmv is equal to
K ′ for some integerK ′ such thatK ≤ K ′ ≤ (β(F )+ ε)K.
Next, letEG denote an optimal encoding function forG with
input {0, 1}K′

. The outer code appliesEG to {mv}v∈V (G)

and the assumption onK ensures its output is at most
(β(G) + ε)K ′ bits long.

To verify that the scheme is a valid index code, consider
a receiver inG • F represented bye = ((wG, wF ), (SG ×
V (F )) ∪ ({wG} × SF )). To decode(wG, wF ), the receiver
first computesmv for all v ∈ SG. SinceEG is valid for G,
receivere can computemwG

, and sinceEF is valid for F ,
this receiver can use the messages indexed by{wG} × SF

along withmwG
to compute(wG, wF ).

Altogether, we have an encoding ofK bits using at most
(β(F ) + ε)(β(G) + ε)K bits of the public channel, and the
required result follows from lettingε → 0.

3. LINEAR PROGRAMMING

In this section we derive a linear program whose value
constitutes a lower bound on the broadcast rate, and we
prove that the value of the LP behaves supermultiplicatively
under lexicographic products. In fact, rather than working
with a specific linear program, we work with a general class
of LP’s having two types of constraints: those dictated by
the network structure (which are the same for all LP’s in
the general class), and additional constraints depending only
on the vertex set, generated by aconstraint schema, i.e. a
procedure for enumerating a finite set of constraints given
an arbitrary finite index set. We identify some axioms on
the constraint schema that constitute a sufficient condition
for the LP value to be supermultiplicative. An example of
a constraint schema which is important in network informa-
tion theory issubmodularity. For a given index setI, the
submodularity schema enumerates all of the constraints of
the form zS + zT ≥ zS∩T + zS∪T whereS, T range over
subsets ofI.

Now we explain the general class of LPs which behave
submultiplicatively under the lexicographic product and give
bounds onβ. Given an index code, if we sample each
message independently and uniformly at random, we obtain
a finite probability space on which the messages and the
public channel are random variables. IfS is a subset of
these random variables, we will denote the Shannon entropy
of the joint distribution of the variables inS by H(S). If
S ⊆ T ⊆ cl(S) then every message inT \S can be decoded
given the messages inS and the public channelp, and
consequentlyH(S∪{p}) = H(T ∪{p}). More generally, if
we normalize entropy (i.e. choose the base of the logarithm)
so thatH(x) = 1 for each messagex, then for everyS ⊆ T
we have

H(T ∪ {p})−H(S ∪ {p}) ≤ |T \ cl(S)| ∆= cST , (4)

min z∅

s.t. zI = |I| (w)

∀S ⊂ T zT − zS ≤ cST (x)

Az ≥ 0 (y)

max |I| · w −
P

S⊂T cST xST

s.t.
P

q aqSyq +
P

T⊃S xST −
P

T⊂S xTS = 0

∀S 6= ∅, I
P

q aq∅yq +
P

T 6=∅ x∅T = 1

P
q aqIyq −

P
T 6=I xTI + w = 0

x, y ≥ 0

Figure 1. The LP and its dual.

where the above is taken as the definition ofcST . This
implies that for any index code we obtain a feasible solution
of the primal LP in Figure 1 by settingzS = H(S ∪ {p})
for every S. Indeed, the first constraint expresses the fact
that the value ofp is determined by the values of the
n messages, which are mutually independent. The second
constraint was discussed above. The final line of the LP
represents a set of constraints, corresponding to the rows
of the matrixA = (aqS), that are universally valid for any
tuple of random variables indexed by the message setI.
For instance, it is well known that the entropy of random
variables has the submodularity property:H(S) + H(T ) ≥
H(S ∪ T ) + H(S ∩ T ) if S, T are any two sets of random
variables on the same sample space. So, for example,
the rows of the constraint matrixA could be indexed by
pairs of setsS, T , with entries in the(S, T ) row chosen
so that it represents the submodularity constraint (namely
aqS = aqT = 1, aq S∩T = aq S∪T = −1 and all other entries
of row a of A are zero). Noting thatH({p}) ≤ β(G) we
can altogether conclude the following theorem.

Theorem 3.1. For an index coding problemG, let B(G)
be the LP in Figure 1 whenA represents the submodularity
constraints and letb(G) be its optimal solution. Then
b(G) ≤ β(G).

It is known that entropies of sets of random variables
satisfy additional linear inequalities besides submodularity;
if desired, the procedure for constructing the matrixA
could be modified to incorporate some of these inequalities.
Alternatively, in the context of restricted classes of encoding
and decoding functions (e.g. linear functions) there may
be additional inequalities that are specific to that class
of functions, in which case the constraint matrixA may
incorporate these inequalities and we obtain a linear program
that is valid for this restricted model of index coding but not



valid in general. We will utilize such constraints in Section 6
when proving a separation between linear and non-linear
network coding.

Definition 3.2. A constraint schemaassociates to each finite
index set I a finite setQ(I) (indexing constraints) and
a matrix A(I) with rows indexed byQ(I) and columns
indexed byP(I), the power set ofI. In addition, to each
Boolean lattice homomorphism4 h : P(I) → P(J) it
associates a functionh∗ : Q(I) → Q(J).

Let 1 be theP(I)-indexed vector such that1S = 1 for
all S, and let 1i be the vector where(1i)S = 1 for all
S containing i and otherwise(1i)S = 0. We say that a
constraint schema istight if A(I)1 = A(I)1i = 0 for every
index setI and elementi ∈ I.

Given h andh∗ let Ph andQh be matrices representing
the linear transformations they induce onRP(I) → RP(J)

andRQ(I) → RQ(J), respectively. That is,Ph andQh have
zeros everywhere except(Ph)h(S)S = 1 and (Qh)h∗(q)q =
1. We say that a constraint schema ishomomorphicif it
satisfiesA(J)TQh = PhA(I)T for every Boolean lattice
homomorphismh : P(I) → P(J).

Example 3.3. Earlier we alluded to thesubmodularity
constraint schema. This is the constraint schema that as-
sociates to each index setI the constraint-index setQ(I) =
P(I)×P(I), along with the constraint matrixA(I) whose
entries are as follows. In row(S, T ) and columnU , we
have an entry of1 if U = S or U = T , an entry of
−1 if U = S ∩ T or U = S ∪ T , and otherwise 0. (If
any two of S, T, S ∩ T, S ∪ T are equal, then that row
of A(I) is set to zero.) It is easy to verify thatA(I)1 =
A(I)1i = 0 for all i ∈ I, thus the schema is tight. For a
homomorphismh, the corresponding mapping of constraint
sets ish∗(S, T ) = (h(S), h(T )). We claim that, equipped
with this mapping ofh → h∗, the constraint schema is
homomorphic. Indeed, to verify thatA(J)TQh = PhA(I)T

take any two setsS, T ⊂ I and argue as follows to show that
u = Ph A(I)T eS,T and v = A(J)T Qh eS,T are identical
(here and hencefortheX,Y denotes the standard basis vector
of RP(I) having 1 in coordinate(X, Y ) for X, Y ⊂ I).
First observe thatA(I)T eS,T is the vectorũ ∈ RP(()I)

which has0 entries everywhere except̃uS = ũT = 1 and
ũS∪T = ũS∩T = −1 provided thatS * T * S, otherwise
ũ = 0. As such,u = Phũ has0 entries everywhere except

uh(S) = uh(T ) = 1 , uh(S∪T ) = uh(S∩T ) = −1

provided thatS * T * S and furthermoreh(S) * h(T ) *
h(S), otherwiseu = 0 (for instance, ifS ⊆ T then ũ = 0
and sou = 0, whereas ifh(S) ⊆ h(T ) thenũ belongs to the
kernel ofPh). Similarly, Qh eS,T = eh(S),h(T ) and therefore

4A Boolean lattice homomorphism preserves unions and intersections,
but does not necessarily map the empty set to the empty set nor the universal
set to the universal set, and does not necessarily preserve complements.

v = A(J)T eh(S),h(T ) has0 entries everywhere except

vh(S) = vh(T ) = 1 , vh(S)∪h(T ) = vh(S)∩h(T ) = −1

provided thath(S) * h(T ) * h(S), otherwisev = 0. To see
that u = v note that ifh(S) ⊆ h(T ) thenu = v = 0, and if
S ⊆ T then again we geth(S) ⊆ h(T ) due to monotonicity
(recall thath is a lattice homomorphism) and sou = v = 0.
Adding the analogous statements obtained from reversing
the roles ofS, T , it remains only to verify thatu = v in
caseh(S) * h(T ) * h(S), which reduces by the above
definitions ofu andv to requiring thath(S ∪ T ) = h(S) ∪
h(T ) andh(S ∩ T ) = h(S) ∩ h(T ). Both requirements are
satisfied by definition of a Boolean lattice homomorphism,
and altogether we conclude that the submodularity constraint
schema is homomorphic.

Theorem 3.4. Let A be a tight homomorphic constraint
schema. For every index coding problem letρ(G) denote
the optimum of the LP in Figure 1 whenI = V (G) and the
constantscST are defined as in(4). Then for every two index
coding problemsG andF , we haveρ(G•H) ≥ ρ(G) ρ(F ).

Remark 3.5. The condition thatA needs to be tight and
homomorphic is surprisingly unrestrictive. In Section 6,
Lemmas 6.3 and 6.4 show that a large class of inequalities
can be expressed as tight homomorphic constraint schema.

Proof: It will be useful to rewrite the constraint set
of the dual LP in a more succinct form. First, ifx is any
vector indexed by pairsS, T such thatS ⊂ T ⊆ I, let
∇x ∈ RP(I) denote the vector such that for allS, (∇x)S =∑

T⊃S xST −
∑

T⊂S xTS . Next, for a setS ⊆ I, let eS

denote the standard basis vector vector inRP(I) whoseS
component is1. Then the entire constraint set of the dual
LP can be abbreviated to the following:

ATy +∇x + weI = e∅ , x, y ≥ 0 . (5)

Some further simplifications of the dual can be obtained
using the fact that the constraint schema is tight. For
example, multiplying the left and right sides of (5) by the
row vector1T gives

1TATy + 1T∇x + w = 1 .

By the tightness of the constraint schema1TAT = 0.
It is straightforward to verify that1T∇x = 0 and after
eliminating these two terms from the equation above, we
find simply thatw = 1. Similarly, if we multiply the left and
right sides of (5) by the row vector1T

i and substitutew = 1,
we obtain1T

i ATy +1T
i ∇x+1 = 0 and consequently (again

by the tightness) we arrive at1 = −1T
i ∇x. At the same

time, −1T
i ∇x =

∑
S⊂T

i∈T\S
xST by definition of∇x, hence

summing over alli ∈ I yields that|I| =
∑

S⊂T |T \S|xST .
Plugging in this expression for|I| and w = 1, the LP



objective of the dual can be rewritten as

|I| −
∑
S⊂T

cST xST =
∑
S⊂T

(|T \ S| − cST ) xST

=
∑
S⊂T

|T ∩ (cl(S) \ S)|xST ,

where the last equation used the fact thatcST = |T \ cl(S)|.
We now define

d(S, T ) = |T ∩ (cl(S) \ S)|

and altogether we arrive at the following reformulation of
the dual LP.

max
∑

S⊂T d(S, T ) xST

s.t. ATy +∇x = e∅ − eI

x, y ≥ 0 .

(6)

Now suppose that(ξG, ηG), (ξF , ηF ) are optimal solu-
tions of the dual LP forG, F , achieving objective values
ρ(G) and ρ(F ), respectively. (Hereξ, η play the role of
x, y from (6), resp.) We will show how to construct a pair
of vectors(ξG•F , ηG•F ) that is feasible for the dual LP of
G•F and achieves an objective value of at leastρ(G) ρ(F ).
The construction is as follows. Letg : P(V (G)) →
P(V (G • F )) be the mappingg(X) = X × V (F ). For sets
S ⊂ T ⊆ V (G), let hST : P(V (F )) → P(V (G • F )) be
the mappinghST (X) = (T × X) ∪ (S × V (F )). Observe
that both mappings are Boolean lattice homomorphisms.

To gain intuition about the mappingsg, hST it is useful
to think of obtaining the vertex set ofG • F by replacing
every vertex ofG with a copy of F . Here g({v}) maps
the vertexv in G to the copy ofF that replacesv. The
mappinghST ({u}) maps a vertexu in F to the vertexu
in the copies ofF that replace vertices inT , and then adds
the set{u} × V (F ).

Recall that Definition 3.2 associates two matricesPh, Qh

to every Boolean lattice homomorphismh : P(I) → P(J).
It is also useful to define a matrixRh as follows: the columns
and rows ofRh are indexed by pairsS ⊂ T ⊆ I and
X ⊂ Y ⊆ J , respectively, with the entry in rowXY and
columnST being equal to 1 ifX = h(S) andY = h(T ),
otherwise 0. Under this definition,

∇(Rhx) = Ph∇x for any x ∈ RP(I) . (7)

Indeed, ifx = eS,T for someS ⊂ T ⊆ I then∇eS,T = eS−
eT and soPh eS,T = eh(S) − eh(T ), whereas∇(RheS,T ) =
∇(eh(S),h(T )) = eh(S) − eh(T ).

We may now define

ξG•F =
∑
S⊂T

(ξG)ST (RhST ξF ) , (8)

ηG•F = Qg ηG +
∑
S⊂T

(ξG)ST (QhST ηF ) . (9)

In words, the dual solution forG • F contains a copy of
the dual solution forF lifted according tohST for every
pair S ⊂ T and one copy of the dual solution ofG lifted
according tog. The feasibility of(ξG•F , ηG•F ) will follow
from multiple applications of the homomorphic property of
the constraint schema and the feasibility of(ξF , ηF ) and
(ξG, ηG), achieved by the following claim.

Claim 3.6. The pair (ξG•F , ηG•F ) as defined in(8),(9) is
a feasible dual solution.

Proof: The matricesQg, RhST , QhST all have{0, 1}-
valued entries thus clearlyξG•F , ηG•F ≥ 0. Letting A =
A(G • F ), we must prove thatATηG•F + ∇ξG•F = e∅ −
eV (G•F ). Plugging in the values of(ξG•F , ηG•F ) we have

ATηG•F +∇ξG•F = ATQgηG +
X
S⊂T

(ξG)ST (ATQhST ηF )

+
X
S⊂T

(ξG)ST ∇(RhST ξF )

= PgA(G)TηG+
X
S⊂T

(ξG)ST

�
PhST A(F )TηF +∇(RhST ξF )

�

(10)
where the second equality applied the homomorphic prop-
erty of the constraint schema. To treat the summation in the
last expression above, recall (7) which implies that

PhST A(F )TηF +∇(RhST ξF ) = PhST A(F )TηF +PhST ∇ξF

= PhST (e∅ − eV (F )) , (11)

with the last equality due to the fact that(ξF , ηF ) achieves
the optimum of the dual LP forF . Recalling thatPheS =
eh(S) for any h and combining it with the factshST (∅) =
S × V (F ) and g(S) = S × V (F ) gives PhST e∅ =
eS×V (F ) = PgeS . Similarly, sincehST (V (F )) = T ×V (F )
we havePhST eV (F ) = eT×V (F ) = PgeT , and plugging
these identities in (11) combined with (10) gives:

ATηG•F +∇ξG•F = Pg

[
A(G)TηG+

∑
S⊂T

(ξG)ST (eS−eT )
]

.

Collecting together all the terms involvingeS for a
given S ∈ P(I), we find that the coefficient ofeS is∑

T⊃S(ξG)ST −
∑

T⊂S(ξG)ST = (∇ξG)S . Hence,

ATηG•F +∇ξG•F = Pg

[
A(G)TηG +∇ξG

]
= Pg

[
e∅ − eV (G)

]
= e∅ − eV (G•F ) ,

where the second equality was due to(ξG, ηG) achieving
the optimum of the dual LP forG.

To finish the proof, we must evaluate the dual LP objective
and show that it is at leastρ(G) ρ(F ), as the next claim
establishes:

Claim 3.7. The LP objective for the dual solution given in
Claim 3.6 has value at leastρ(G) ρ(F ).

Proof: To simplify the notation, throughout this proof
we will use K, L to denote subsets ofV (G • F ) while



referring to subsets ofV (G) asS, T and to subsets ofV (F )
asX, Y . We have∑
K⊂L

d(K, L)(ξG•F )KL (12)

=
∑
K⊂L

d(K, L)
∑
S⊂T

(ξG)ST (RhST ξF )KL

=
∑
S⊂T

(ξG)ST

( ∑
K⊂L

d(K, L) (RhST ξF )KL

)
=

∑
S⊂T

(ξG)ST

( ∑
X⊂Y

d
(
hST (X), hST (Y )

)
(ξF )XY

)
,

where the last identity is by definition ofRh.
At this point we are interested in deriving a lower bound

on d
(
hST (X), hST (Y )

)
, to which end we first need to

analyzeclG•F (hST (X)). Recall thatE(G • F ) consists of
all hyperedges of the form(w,K) with w = (wG, wF ) and
K = (WG×V (F ))∪ ({wG}×WF ) for some pair of edges
(wG,WG) ∈ E(G) and (wF ,WF ) ∈ E(F ). We first claim
that for anyS ⊂ T andX ⊂ V (F ), if X̂ denoteshST (X),
then

clG•F (X̂) \ X̂ ⊇
(
(clG(S) \ S) ∩ T

)
×

(
clF (X) \X

)
.

(13)
To show this, letL denote the set on the right side of (13).
Note thatL contains no ordered pairs whose first component
is in S or whose second component is inX, and thereforeL
is disjoint fromX̂ = (T ×X)∪ (S×V (F )). Consequently,

it suffices to show thatclG•F
(
X̂

)
⊇ L. Consider any

w = (wG, wF ) belonging toL. As wG ∈ clG(S) \ S, there
must exist an edge(wG,WG) ∈ E(G) such thatWG ⊆ S.
Similarly, there must exist an edge(wF ,WF ) ∈ E(F ) such
thatWF ⊆ X. Letting K = (WG×V (F ))∪ ({wG}×WF ),
we find thatK ⊆ (S × V (F )) ∪ (T × X) = X̂ and that

(w,K) ∈ E(G • F ), implying w ∈ clG•F
(
X̂

)
as desired.

Let X̂ = hST (X) and Ŷ = hST (Y ), and recall that

d(X̂, Ŷ ) is defined as
∣∣∣(clG•F (X̂) \ X̂

)
∩ Ŷ

∣∣∣. Using (13)

and noting that̂Y ⊇ (T × Y ) we find that

(clG•F (X̂) \ X̂) ∩ Ŷ ⊇
((clG(S) \ S) ∩ T )× ((clF (X) \X) ∩ Y )

and hence

d(X̂, Ŷ ) ≥ |(clG(S) \ S) ∩ T | · |(clF (X) \X) ∩ Y |
= d(S, T ) d(X, Y ) .

Plugging this bound into (12) we find that∑
K⊂L

d(K, L)(ξG•F )KL

≥
∑
S⊂T

(ξG)ST

∑
X⊂Y

d(S, T )d(X, Y )(ξF )XY ,

and since the last expression above is precisely equal to( ∑
S⊂T

d(S, T )(ξG)ST

)( ∑
X⊂Y

d(X, Y )(ξF )XY

)
= ρ(G) ρ(F )

this concludes the proof.
Combining Claims 3.6 and 3.7 concludes the proof of the

Theorem 3.4.

4. SEPARATION BETWEENα AND β

To prove Theorem 1.3, we start by using Theorem 3.1 to
show thatβ(C5) > α(C5) whereC5 is the 5-cycle. Then we
apply the power of Theorem 3.4 to transform this constant
gap onC5 to a polynomial gap onCk

5 .
First we show thatβ(C5) ≥ b(C5) = 5

2 . We can show
that b(C5) ≥ 5

2 by providing a feasible dual solution for the
LP B with value 5

2 . This can easily be achieved by listing a
set of primal constraints whose variables sum and cancel to
show thatz∅ ≥ 5

2 . Labeling the vertices ofC5 by 1, 2, 3, 4, 5
sequentially, such a set of constraints is given below. It is
helpful to note that in an index coding problem defined by
an undirected graph,x ∈ cl(S) if x ∈ S or all the neighbors
of x are inS.

2 ≥ z{1,3} − z∅

2 ≥ z{2,4} − z∅

1 ≥ z{5} − z∅

0 ≥ z{1,2,3} − z{1,3}

0 ≥ z{2,3,4} − z{2,4}

z{2,3,4} + z{1,2,3} ≥ z{2,3} + z{1,2,3,4}

z{2,3} + z{5} ≥ z∅ + z{2,3,5}

0 ≥ z{1,2,3,4,5} − z{1,2,3,4}

0 ≥ z{1,2,3,4,5} − z{2,3,5}

z{1,2,3,4,5} = 5
z{1,2,3,4,5} = 5

Applying Theorem 3.4 we deduce that for any integer
k ≥ 1 thek-th lexicographic power ofC5 satisfiesβ(Ck

5 ) ≥
b(Ck

5 ) ≥
(

5
2

)k
. Furthermore,α(C5) = 2 and it is well

known that the independence number is multiplicative on
lexicographic products and soα(Ck

5 ) = 2k. Altogether,
Ck

5 is a graph onn = 5k vertices withα = nlog5(2) and
β ≥ n1−log5(2), implying our result.

5. MATROIDS AND INDEX CODING

Recall that a matroid is a pairM = (E, r) whereE is a
ground set andr : 2E → N is a rank function satisfying

(i) r(A) ≤ |A| for all A ⊆ E;
(ii) r(A) ≤ r(B) for all A ⊆ B ⊆ E (monotonicity);

(iii) r(A)+r(B) ≥ r(A∪B)+r(A∩B) for all A,B ⊆ E
(submodularity).

The rank vector of a matroid,~r(M), is a 2|E|-dimensional
vector indexed by subsets ofE, such that itsS-th coordinate



is r(S). A subsetS ⊆ E is calledindependentif r(S) = |S|
and it is called abasisof M if r(S) = |S| = r(E).

In this section we give a construction mapping a matroid
to an instance of index coding that exactly captures the de-
pendencies in the matroid. We proceed to show some useful
connections between matroid properties and the broadcast
rate of the corresponding index coding problem.

Definition 5.1. Let M = (E, r) be a matroid. The hyper-
graph index coding problemassociatedto M , denoted by
GM , has a message setE and all receivers of the form{

(x, S) | x ∈ E , S ⊆ E , r(S) = r(S ∪ {x})
}

.

Remark. A similar yet slightly more complicated construc-
tion was given in [12]. Our construction is (essentially) a
subset of the one appearing there. A construction that maps
a matroid to a network coding problem is given in [7], [8].
They prove an analog of Proposition 5.2.

Proposition 5.2. For a matroid M = (E, r), b(GM ) =
|E| − r(E).

Proof: In what follows we will let n = |E| and r =
r(E). To show thatb(GM ) ≤ n−r it suffices to showzS =
r(S)+n−r is a feasible primal solution to the LPB(GM ).
The feasibility of constraints(w) and (x) follows trivially
from the definition ofGM and properties of a matroid. The
feasibility of (y) : zT − zS ≤ cST ∀S ⊂ T follows from
repeated application of submodularity:

zT − zS = r(T )− r(S) ≤
∑

x∈T\S

r(S ∪ {x})− r(S)

≤
∑

x∈cl(S)

(r(S ∪ {x})− r(S))

+
∑

x∈T\cl(S)

r({x}) ≤ |T \ cl(S)| = cST .

For the reverse inequality, letS be any basis ofM and note
that z∅ = zE − (zE − zS)− (zS − z∅) ≥ n− r.

The following definition relaxes the notion of a represen-
tation for a matroid.

Definition 5.3. A matroid M = (E, r) with |E| = n
is under-representablein d dimensions over a finite field
F if there exists ad × n matrix with entries inF and
columns indexed by elements ofE such that (i) the rows are
independent and (ii) ifr(x ∪ S) = r(S) then the columns
indexed byx ∪ S are dependent.

Observe that if a matrix representsM then it also under-
representsM . We next show a relation between under-
representations forM over F and thescalar linear rateλF

1,
where the alphabet vector space, over which the encoding
functions are required to be linear, is single-dimensional.
Note that λF ≤ λF

1. The following is the analogue of
Theorem 8 in [12] for our version of the matroid to index
coding mapping.

Theorem 5.4.A matroidM = (E, r) with |E| = n is under-
representable ind dimensions over a finite fieldF if and only
if λF

1(GM ) ≤ n−d. In particular, if M is representable over
F thenλF(GM ) = β(GM ) = n− r(E).

Proof: Let R be ad×n matrix which under-represents
M in d dimensions overF. Let Q be an(n− d)×n matrix
whose rows span the kernel ofR. We will show thatQ is a
valid encoding matrix forGM . Let y ∈ FE be some input
message set and consider a receiver(x, S), who wishes to
decodeyx from {yz : z ∈ S} and the broadcast messageQy.
Extendker(Q) arbitrarily into a basisB for FE and lety =
y′+y′′ be the unique decomposition according toB such that
y′ ∈ ker(Q). Clearly,Qy′′ = Qy sincey′ ∈ ker(Q), hence
one can recovery′′ from the public channel by triangulating
Q. It remains for the receiver(x, S) to recovery′x. To this
end, observe that the rows ofR span ker(Q) and recall
that by Definitions 5.1 and 5.3, columnx of R is a linear
combination of the columns ofR indexed byS. Sincey′ is
in the row-space ofR it follows thaty′x is equal to the exact
same linear combination of the components ofy′ indexed
by S, all of which are known to the receiver. Altogether, the
receiver can recover bothy′x andy′′x and obtain the message
x. As this holds for any receiver, we conclude thatQ is a
valid encoding matrix and thusλF

1(GM ) ≤ n − d. When
d = r(E) the inequality is tight because this upper bound
coincides with the lower bound given by Proposition 5.2.

Conversely, suppose that there exists a scalar linear code
for GM overF with raten−d, and letQ be a corresponding
(n−d)×n encoding matrix of rankn−d. Let R be ad×n
matrix whose rows span the kernel ofQ. We claim that
R under-representsM . Indeed, consider a receiver(x, S).
It is easy to verify that this receiver has a linear decoding
function of the formuT · Qy + vT · yS for some vectors
u, v, whereyS is the vector formed by restrictingy to the
indices ofS. As Q is a valid encoding matrix forGM , this
evaluates toyx for any y ∈ FE . In particular, ifyT is a row
of R then Qy = 0 and sovT · yS = yx, and applying this
argument to every row ofR verifies that columnx of R is a
linear combination of the columns ofR indexed byS (with
coefficients fromv). Since this holds for any receiver we
have thatR under-representsM , as required.

We conclude this section with a result that will be useful
in establishing lower bounds on the value of the LP forGM

with a given constraint matrixA.

Theorem 5.5. Suppose thatM = (E, r) is a matroid and
A is a matrix such thatA1 = 0 and A~r(M) 6≥ 0. If the
linear program in Figure 1 is instantiated with constraint
matrix A, then the value of the LP is strictly greater than
|E| − r(E).

Proof: We will give a dual solution(w, x, y) to the LP
with value strictly greater than|E| − r(E).



Recalling the hypothesisA~r(M) 6≥ 0, let q be a row ofA
such that

∑
S⊆E aqSr(S) < 0. Let S+ = {S ⊆ E | aqS >

0, S 6= E, ∅} and S− = {S ⊆ E | aqS < 0, S 6= E, ∅}.
Note that the hypothesis thatA1 = 0 implies thataq∅ +∑

S∈S+ aqS = −
(
aqE +

∑
S∈S− aqS

)
. Assume thatA is

scaled soaq∅+
∑

S∈S+ aqS = −
(
aqE +

∑
S∈S− aqS

)
= 1.

This assumption is without loss of generality sinceaqE +∑
S∈S− aqS is strictly negative, as can be seen from:

r(E)
(

aqE +
∑

S∈S−
aqS

)
≤ aqEr(E) +

∑
S∈S−

aqSr(S)

≤ aqEr(E) +
∑

S∈S−
aqSr(S) +

∑
S∈S+

aqSr(S)

=
∑
S

aqSr(S) < 0 .

Define the dual vectory by settingyq = 1 andyq′ = 0 for
rows q′ 6= q of A. To define the dual vectorx, let us first
associate to every setS ⊆ E a matroid basisb(S) such that
the setm(S) = b(S) ∩ S is a maximal independent subset
of S, i.e. |m(S)| = r(m(S)) = r(S). Let u(S) = S ∪ b(S).
For everyS ∈ S+, let x∅m(S) = xm(S)S = aqS and for
everyS ∈ S−, let xSu(S) = xu(S)E = −aqS . Set all other
values ofxST to zero. Finally, setw = 1. By construction,
(w, x, y) satisfies all of the dual constraints. Using the
relationsc∅m(S) = r(S), cSu(S) = r(E) − r(S), cm(S)S =
cu(S)E = 0, we find that the dual LP objective value is

|E|w −
∑
S⊂T

cST xST

= |E| −
∑

S∈S+

(c∅m(S) + cm(S)S)aqS

−
∑

S∈S−
(cSu(S) + cu(S)E)(−aqS)

= |E| −
∑

S∈S+

r(S)aqS +
∑

S∈S−
(r(E)− r(S))aqS

= |E|+
∑

S∈S−
aqSr(E)−

∑
S

aqSr(S) + aq∅r(∅) + aqEr(E)

= |E| − r(E)−
∑
S

aqSr(S).

By hypothesis
∑

S aqSr(S) < 0, as required.

6. SEPARATION BETWEEN LINEAR AND NON-LINEAR

RATES

In this section we sketch the proof of Theorem 1.2. To
this end we will first show that the linear rate over a field of
even characteristic is strictly better than the linear rate over
a field of odd characteristic for the index coding problem
associated to the Fano matroid, and that the reverse relation
holds for the non-Fano matroid. Then we will take the

lexicographic product of the two index codes to get a gap
between the linear and non-linear coding rates, and then use
lexicographic products again to amplify that gap.

TheFano matroid, denotedF , and thenon-Fano matroid,
denotedN , are 7 element, rank 3 matroids. The seven
columns of the matrix

(
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

)
constitute a linear

representation of the Fano matroid whenchar(F) = 2 and
one for the non-Fano matroid whenchar(F) 6= 2.

It is well known that the Fano matroid is representable
only in a field of characteristic 2, and the non-Fano matroid
is representable in any field whose characteristic is different
from 2 but not in fields of characteristic 2. We use a
generalization of this fact to obtain the following theorem
that directly implies Theorem 1.2. All proofs were omitted
from this section for space reasons; see [6] for full proofs.

Theorem 6.1 (Separation Theorem). Let G = GF • GN .
There exists someε > 0 such thatβ(G•n) = 16n whereas
λ(G•n) ≥ (16 + ε)n for all n.

The fact thatβ(G•n) = 16n will be a straightforward
application of Proposition 5.2 and Theorem 5.4. The lower
bound on the linear rate however will require considerably
more effort. In order to boundλ from below we will extend
the LPB to two LPs, one of which will be a lower bound
for linear codes over fields with odd characteristic and the
other for linear codes over even characteristic. Each one will
supplement the matrixA in the LP with a set of constraints,
one set derived from dimension inequalities based on the
representation of the Fano matroid and the other from the
non-Fano matroid. The LP that gives a lower bound for
linear codes over a field with even characteristic will be
used to show that the linear broadcast rate ofGN over a
field of even characteristic is strictly greater than four, and
the LP for odd characteristic will imply the corresponding
result for GF . Furthermore, the constraints will satisfy the
conditions of Theorem 3.4. Putting this all together implies
that when we take the lexicographic product of the Fano and
non-Fano index coding problems, no linear code is as good
as one that combines linear codes overF2 andF3.

If {Vi}i∈I are subspaces of a vector spaceV ,n let
~d({Vi}i∈I) be a 2|I| dimensional vector indexed by the
subsets ofI such that the coordinate indexed byS is the
dimension of the span of{Vi}i∈S . The following theorem
provides the ingredients for proving thatλF(GN ) > 4 when
F is a finite field of even characteristic, whereasλF(GF ) > 4
whenF is of odd characteristic.

Theorem 6.2. There exist a pair of27-dimensional vectors
Λeven, Λodd such that for any 7 subspaces{Vi}i∈U of a
vector space over a fieldF, we have

0 ≤

{
Λeven · ~d({Vi}i∈U ) if char(F) = 2
Λodd · ~d({Vi}i∈U ) if char(F) 6= 2.

However,Λeven ·~r(N ) andΛodd ·~r(F) are strictly negative.



The proof begins with a quantitative strengthening of the
non-representability ofN in characteristic 2: we specify a
sequence of linear inequalities satisfied by~r(N ) such that,
if {Vi}i∈U are d-dimensional and~d({Vi}i∈U ) satisfies all
but the last of the inequalities, then it violates the last one
by d additively. Then we show how to transform a general
7-tuple of subspaces into one satisfying all but the last of
the inequalities. The vectorΛeven expresses the negation of
the final linear inequality in the sequence, combined with
correction terms that reflect how the transformation modifies
the subspace dimensions. The casechar(F) 6= 2 is handled
similarly.

The following pair of lemmas shows how to take a single
linear constraint, such as one of those whose existence
is asserted by Theorem 6.2, and transform it into a tight
homomorphic constraint schema. To state the lemmas, we
must first define the set of vectorsDF(K) ⊂ RP(K), for
any index setK and field F, to be the set of all vectors
~d({Vk}k∈K), where{Vk}k∈K runs through allK-indexed
tuples of finite-dimensional vector spaces overF.

Lemma 6.3 (Tightening Modification). SupposeI is any
index set,e is an element not inI, andJ = I ∪ {e}. There
exists an explicit linear transformation fromRP(J) to RP(I),
represented by a matrixB, such that:

(i) B ·DF(J) ⊆ DF(I) for every fieldF.
(ii) B1 = B1j = 0 for all j ∈ J .

(iii) If M is a matroid with ground setI and the intersection
of all matroid bases ofM is the empty set, then
B~r(M +e) = ~r(M), whereM +e denotes the matroid
obtained by adjoining a rank-zero element toM .

Lemma 6.4(Homomorphic Schema Extension). Let I be an
index set, and let~α ∈ RP(I) be a vector such that~αT~d ≥ 0
for all ~d ∈ DF(I). Then there is a homomorphic constraint
schema(Q,A) such that~αT is a row of the matrixA(I), and
for every index setK and vector~d ∈ DF(K), A(K)~d ≥ 0.
If ~αT1 = ~αT1i = 0 for all i ∈ I, then the constraint schema
(Q,A) is tight.

Finally, it will be useful to describe the following simple
operation for combining constraint schemas.

Definition 6.5. Thedisjoint unionof two constraint schemas
(Q1, A1) and (Q2, A2) is the constraint schema which
associates to every index setI the disjoint unionQ(I) =
Q1(I) tQ2(I) and the constraint matrixA(I) given by

A(I)qS =

{
A1(I)qS if q ∈ Q1(I)
A2(I)qS if q ∈ Q2(I).

For a homomorphismh : P(I) → P(J), the functionh∗ :
Q(I) → Q(J) is defined by combiningQ1(I) h∗−→ Q1(J)
andQ2(I) h∗−→ Q2(J) in the obvious way.

Lemma 6.6. The disjoint union of two tight constraint
schemas is tight, and the disjoint union of two homomorphic
constraint schemas is homomorphic.

Theorem 6.1 now follows from combining these re-
sults with those of earlier sections. We transform each of
Λeven, Λodd into a tight homomorphic constraint schema
using Lemmas 6.3 and 6.4, and we take the disjoint union
of each of these with the submodularity schema. Using the
resulting pair of linear programs in Theorem 5.4, we obtain
λ(G) ≥ 16 + ε for someε > 0. Amplifying this gap using
Theorem 3.4 yields the lower boundλ(G•n) > (16 + ε)n.
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