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Abstract

Index Coding has received considerable attention recently motivated in part by applications
such as fast video-on-demand and efficient communication in wireless networks and in part by its
connection to Network Coding. Optimal encoding schemes and efficient heuristics were studied
in various settings, while also leading to new results for Network Coding such as improved gaps
between linear and non-linear capacity as well as hardness of approximation. The basic setting of
Index Coding encodes the side-information relation, the problem input, as an undirected graph
and the fundamental parameter is the broadcast rate β, the average communication cost per
bit for sufficiently long messages (i.e. the non-linear vector capacity). Recent nontrivial bounds
on β were derived from the study of other Index Coding capacities (e.g. the scalar capacity β1)
by Bar-Yossef et al (2006), Lubetzky and Stav (2007) and Alon et al (2008). However, these
indirect bounds shed little light on the behavior of β: there was no known polynomial-time
algorithm for approximating β in a general network to within a nontrivial (i.e. o(n)) factor, and
the exact value of β remained unknown for any graph where Index Coding is nontrivial.

Our main contribution is a direct information-theoretic analysis of the broadcast rate β

using linear programs, in contrast to previous approaches that compared β with graph-theoretic
parameters. This allows us to resolve the aforementioned two open questions. We provide a
polynomial-time algorithm with a nontrivial approximation ratio for computing β in a general
network along with a polynomial-time decision procedure for recognizing instances with β = 2.
In addition, we pinpoint β precisely for various classes of graphs (e.g. for various Cayley graphs of
cyclic groups) thereby simultaneously improving the previously known upper and lower bounds
for these graphs. Via this approach we construct graphs where the difference between β and its
trivial lower bound is linear in the number of vertices and ones where β is uniformly bounded
while its upper bound derived from the naive encoding scheme is polynomially worse.

1 Introduction

In the Index Coding problem a server holds a set of messages that it wishes to broadcast over
a noiseless channel to a set of receivers. Each receiver is interested in one of the messages and
has side-information comprising some subset of the other messages. Given the side-information
map as an input, the objective is to devise an optimal encoding scheme for the messages (e.g., one
minimizing the broadcast length) that allows all the receivers to retrieve their required information.

This notion of source coding that optimizes the encoding scheme given the side-information
map of the clients was introduced by Birk and Kol [6] and further developed by Bar-Yossef et al.
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in [5]. Motivating applications include satellite transmission of large files (e.g. video on demand),
where a slow uplink may be used to inform the server of the side-information map, namely the
identities of the files currently stored at each client due to past transmissions. The goal of the
server is then to issue a shortest possible broadcast that allows every client to decode its target file
while minimizing the overall latency. See [5,6,9] and the references therein for further applications
of the model and an account of various heuristic/rigorous Index Coding protocols.

The basic setting of the problem (see [2]) is formalized as follows: the server holds n messages
x1, . . . , xn ∈ Σ where |Σ| > 1, and there are m receivers R1, . . . , Rm. Receiver Rj is interested in
one message, denoted by xf(j), and knows some subset N(j) of the other messages. A solution of
the problem must specify a finite alphabet ΣP to be used by the server, and an encoding scheme
E : Σn → ΣP such that, for any possible values of x1, . . . , xn, every receiver Rj is able to decode the
message xf(j) from the value of E(x1, . . . , xn) together with that receiver’s side-information. The
minimum encoding length ` = dlog2 |ΣP |e for messages that are t bits long (i.e. |Σ| = 2t) is denoted
by βt(G), where G refers to the data specifying the communication requirements, i.e. the functions
f(j) and N(j). As noted in [19], due to the overhead associated with relaying the side-information
map to the server the main focus is on the case t� 1 and namely on the following broadcast rate.

β(G) 4= lim
t→∞

βt(G)
t

= inf
t

βt(G)
t

(1.1)

(The limit exists by sub-additivity.) This is interpreted as the average asymptotic number of
broadcast bits needed per bit of input, that is, the asymptotic broadcast rate for long messages. In
Network Coding terms, β is the vector capacity whereas β1 is a scalar capacity.

An important special case of the problem arises when there is exactly one receiver for each
message, i.e. m = n and f(j) = j for all j. In this case, the side-information map N(j) can
equivalently be described in terms of the binary relation consisting of pairs (i, j) such that xj ∈ N(i).
These pairs can be thought of as the edges of a directed graph on the vertex set [n] or, in case
the relation is symmetric, as the edges of an undirected graph. This special case of the problem
(which we will hereafter identify by stating that G is a graph) corresponds to the original Index
Coding problem introduced by Birk and Kol [6], and has been extensively studied due to its rich
connections with graph theory and Ramsey theory. These connections stem from simple relations
between broadcast rates and other graph-theoretic parameters. Letting α(G), χ(G) denote the
independence and clique-cover numbers of G, respectively, one has

α(G) ≤ β(G) ≤ β1(G) ≤ χ(G) . (1.2)

The first inequality above is due to an independent set being identified with a set of receivers with
no mutual information, whereas the last one due to [5, 6] is obtained by broadcasting the bitwise
XOR of the vertices per clique in the optimal clique-cover of G.

1.1 History of the problem

The framework of graph Index Coding and its scalar capacity β1 were introduced in [6], where
Reed-Solomon based protocols hinging on a greedy clique-cover (related to the bound β1 ≤ χ)
were proposed and empirically analyzed. In a breakthrough paper [5], Bar-Yossef et al. proposed a
new class of linear index codes based on a matrix rank minimization problem. The solution to this
problem, denoted by minrk2(G), was shown to achieve the optimal linear scalar capacity over GF (2)
and in particular to be superior to the clique-cover method, i.e. β1 ≤ minrk2 ≤ χ. The parameter
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minrk2 was extended to general fields in [19], where arguments from Ramsey Theory showed that
for any ε > 0 there is a family of graphs on n vertices where β1 ≤ nε while minrk2 ≥ n1−ε for
any fixed ε > 0. The first proof of a separation β < β1 for graphs was presented by Alon et al.
in [2]; the proof introduces a new capacity parameter β∗ such that β ≤ β∗ ≤ β1 and shows that
the second inequality can be strict using a graph-theoretic characterization of β∗. In addition,
the paper studied hypergraph Index Coding (i.e. the general broadcasting with side information
problem, as defined above), for which several hard instances were constructed — ones where β = 2
while β∗ is unbounded and others where β∗ < 3 while β1 is unbounded. The first proof of a
separation α < β for graphs is presented in a companion paper [7]; the proof makes use of a new
technique for bounding β from below using a linear program whose constraints express information
inequalities. The paper then uses lexicographic products to amplify this separation, yielding a
sequence of graphs in which the ratio β/α tends to infinity. The same technique of combining
linear programs with lexicographic products also leads to an unbounded multiplicative separation
between non-linear and vector-linear Index Coding in hypergraphs.

As is clear from the foregoing discussion, the prior work on Index Coding has been highly
successful in bounding the broadcast rate above and below by various parameters (all of which
are, unfortunately, NP-hard to compute) and in coming up with examples that exhibit separations
between these parameters. However it has been less successful at providing general techniques that
allow the determination (or even the approximation) of the broadcast rate β for large classes of
problem instances. The following two facts starkly illustrate this limitation. First, the exact value
of β(G) remained unknown for every graph G except those for which trivial lower and upper bounds
α(G), χ(G) coincide. Second, it was not known whether the broadcast rate β could be approximated
by a polynomial-time algorithm whose approximation ratio improves the trivial factor n (achieved
by simply broadcasting all n messages) by more than a constant factor.1

In this paper, we extend and apply the linear programming technique recently introduced in [7]
to obtain a number of new results on Index Coding, including resolving both of the open questions
stated in the preceding paragraph. The following two sections discuss our contributions, first to
the general problem of broadcasting with side information, and then to the case when G is a graph.

1.2 New techniques for bounding and approximating the broadcast rate

The technical tool at the heart of our paper is a pair of linear programs whose values bound β above
and below. The linear program that supplies the lower bound was introduced in [7] and discussed
above; the one that supplies the upper bound is strikingly similar, and in fact the two linear
programs fit into a hierarchy defined by progressively strengthening the constraint set (although
the relevance of the middle levels of this hierarchy to Index Coding, if any, is unclear).

Theorem 1. Let G be a broadcasting with side information problem, having n messages and m

receivers. There is an explicit sequence of n information-theoretic linear programs, each one a
relaxation of its successors, whose respective solutions b1 ≤ b2 ≤ . . . ≤ bn are such that:

(i) The broadcast rate β satisfies b2 ≤ β ≤ bn, and both of the inequalities can be strict.
(ii) When G is a graph, the extreme LP solutions b1 and bn coincide with the independence number

α(G) and the fractional clique-cover number χf (G) respectively.

As a first application of this tool, we obtain the following pair of algorithmic results.
1When G is a graph, it is not hard to derive a polynomial-time o(n)-approximation from (1.2).

3



Capacities Best previous New separation Appears in
compared bounds in graphs results Section

β − α Θ
(
n0.56

)
Θ(n) 2.4

β vs. χf
β ≤ no(1)

χf ≥ n1−o(1)

β = 3
χf = Ω(n1/4)

4.1

β1 − β ≈ 0.32 Θ(n) 2.4

β∗ − β — Θ(n) 2.4

Table 1: New separation results for Index Coding capacities in n-vertex graphs

Theorem 2. Let G be a broadcasting with side information problem, having n messages and m

receivers. Then there is a polynomial time algorithm which computes a parameter τ = τ(G) such
that 1 ≤ τ(G)

β(G) ≤ O
(
n log log n

log n

)
. There is also a polynomial time algorithm to decide whether β(G) = 2.

In fact, the O
(
n log log n

log n

)
approximation holds in greater generality for the weighted case, where

different messages may have different rates (in the motivating applications this can correspond e.g.
to a server that holds files of varying size). The generalization is explained in Section 3.2.

1.3 Consequences for graphs

In Section 5 we demonstrate the use of Theorem 1 to derive the exact value of β(G) for various
families of graphs by analyzing the LP solution b2. As mentioned above, the exact value of β(G)
was previously unknown for any graph except when the trivial lower and upper bounds — α(G) and
χ(G) — coincide, as happens for instance when G is a perfect graph. Using the stronger lower and
upper bounds b2 and bn, we obtain the exact value of β(G) for all cycles and cycle-complements:
β(Cn) = n/2 and β(Cn) = n/bn

2 c. In particular this settles the Index Coding problem for the 5-
cycle investigated in [2, 5, 7], closing the gap between b2(C5) = 2.5 and β∗(C5) = 5− log2 5 ≈ 2.68.
These results also provide simple constructions of networks with gaps between vector and scalar
Network Coding capacities.

We also use Theorem 1 to prove separation between broadcast rates and other graph parameters.
Our results, summarized in Table 1, improve upon several of the best previously known separations.
Prior to this work there were no known graphs G where β1(G) − β(G) ≥ 1. (For the more
general setting of broadcasting with side information, multiplicative gaps that were logarithmic
in the number of messages were established in [2].) In fact, merely showing that the 5-cycle
satisfies 2 ≤ β < β1 = 3 required the involved analysis of an auxiliary capacity β∗, discussed
earlier in Section 1.1. With the help of our linear programming bounds (Theorem 1) we supply in
Section 2.4 a family of graphs on n vertices where β1 − β is linear in n, namely β = n/2 whereas
β1 = (1− 1

5 log2 5− o(1))n ≈ 0.54n.

We turn now to the relation between β(G) and χf (G), the upper bound provided by our LP
hierarchy. As mentioned earlier, Lubetzky and Stav [19] supplied, for every ε > 0, a family of
graphs on n vertices satisfying β(G) ≤ β1(G) < nε while χf (G) > n1−ε, thus implying that χf (G)
is not bounded above by any polynomial function of β(G). We strengthen this result by showing
that χf (G) is not bounded above by any function of β(G). To do so, we use a class of projective
Hadamard graphs due to Erdős and Rényi to prove the following theorem in Section 4.1.
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Theorem 3. There exists an explicit family of graphs G on n vertices such that β(G) = 3 whereas
the Index Coding encoding schemes based on clique-covers cost at least χf (G) = Θ(n1/4) bits.

Recall the natural heuristic approach to Index Coding: greedily cover the side-information graph
G by r ≥ χ(G) cliques and send the XORs of messages per clique for an average communication
cost of r. A similar protocol based on Reed-Solomon Erasure codes was proposed by [6] and was
empirically shown to be effective on large random graphs. Theorem 3 thus presents a hard instance
for this protocol, namely graphs where β = O(1) whereas χ(G) is polynomially large.

2 Linear programs bounding the broadcast rate

In this section we present linear programs that bound the broadcast rate β below and above, using
an information-theoretic analysis. We demonstrate this technique by determining β(C5) precisely;
later, in Section 5, we determine β precisely for various infinite families of graphs.

2.1 The LP hierarchy

Numerous results in Network Coding theory bound the Network Coding rate (e.g., [1,10,15,16,23])
by combining entropy inequalities of two types. The first is purely information-theoretic and holds
for any set of random variables; the second is derived from the graph structure. An important
example of the second type of inequality, that we refer to as “decoding”, enforces the following: if
a set of edges A cuts off a set of edges B from all the sources, then any information on edges in B
is determined by information on edges in A. We translate this idea to the setting of Index Coding
in order to develop stronger lower bounds for the broadcast rate.

Definition 2.1. Given a broadcasting with side information problem and subsets of messages A,B,
we say that A decodes B (denoted A  B) if A ⊆ B and for every message x ∈ B \ A there is a
receiver Rj who is interested in x and knows only messages in A (i.e. xf(j) = x and N(j) ⊆ A).

Remark 2.2. For graphs, A B if A ⊆ B and for every v ∈ B \A all the neighbors of v are in A.

If we consider the Index Coding problem on G and a valid solution E , then the relation A B

implies H(A, E(x1, . . . , xn)) ≥ H(B, E(x1, . . . , xn)), since for each message in B \ A there is a
receiver who must be able to determine the message from only the messages in A and the public
channel E(x1, . . . , xn). (Here and in what follows we denote by H(X,Y ) the joint entropy of the
random variables X,Y .) Combining these decoding inequalities with purely information-theoretic
inequalities, one can prove lower bounds on the entropy of the public channel, a process formalized
by a linear program (that we denote by B2) whose solution b2 constitutes a lower bound on β.
(See [7, 25] for more on information-theoretic LPs.) Interestingly, B2 fits into a hierarchy of n
increasing linear programs such that the last LP in the hierarchy gives an upper bound on β.

Definition 2.3. For a broadcasting with side information problem on a set V of n messages,
the β-bounding LP hierarchy is the sequence of LPs, denoted by B1,B2,B3, . . . ,Bn with solutions
b1, b2, . . . , bn, given by:
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k-th level of the LP hierarchy for the broadcast rate
minimize X(∅)
subject to:

X(V ) ≥ n (initialize)
X(∅) ≥ 0 (non-negativity)
X(S) + |T \ S| ≥ X(T ) ∀S ⊆ T ⊆ V (slope)
X(T ) ≥ X(S) ∀S ⊆ T ⊆ V (monotonicity)
X(A) ≥ X(B) ∀A,B ⊆ V : A B (decode)∑

T⊆R(−1)|R\T |X(T ∪ Z) ≤ 0
∀R ⊆ V : 2 ≤ |R| ≤ k

∀Z ⊆ V : Z ∩R = ∅ (|R|-th order submodularity)

Remark 2.4. The above defined 2nd order submodularity inequalities are equivalent to the classical
submodularity inequalities whereby X(S) +X(T ) ≥ X(S ∩ T ) +X(S ∪ T ) for all S, T .

Theorem 1 traps β in the solution sequence of the above-defined hierarchy and characterizes its
extreme values for graphs. The proofs of these results appear in Section 2.2, and in what follows
we first outline the arguments therein and the intuition behind them.

As mentioned above, the parameter b2 is the entropy-based lower bound via Shannon inequal-
ities that is commonly used in the Network Coding literature. To see that indeed β ≥ b2 we
interpret a solution to the broadcasting problem as a feasible primal solution to B2 via the assign-
ment X(A) = H(A∪ E(x1, . . . , xn)). The proof that α(G) = b1(G) for graphs is similarly based on
constructing a feasible primal solution to B1, this time via the assignment X(A) = |A|+ max{|I| :
I is an independent set disjoint from A}. (The existence of this primal solution justifies the in-
equality b1 ≤ α; the reverse inequality is an easy consequence of the decoding, initialization, and
slope constraints.)

To establish that β(G) ≤ bn(G) when G is a graph we will show that bn(G) = χf (G), the
fractional clique-cover number ofG, while χf (G) is an upper bound on β. For a general broadcasting
network G we will follow the same approach via an analog of χf for hypergraphs. It turns out that
there are two natural generalizations of cliques and clique-covers in the context of broadcasting
with side information.

Definition 2.5. A weak hyperclique of a broadcasting problem is a set of receivers J such that for
every pair of distinct elements Ri, Rj ∈ J , f(i) belongs to N(j). A strong hyperclique is a subset of
messages T ⊆ V such that for any receiver Rj that desires xf(j) ∈ T we have that T ⊆ N(j)∪{f(j)}.

A weak fractional hyperclique-cover is a function that assigns a non-negative weight to each
weak hyperclique, such that for every receiver Rj , the total weight assigned to weak hypercliques
containing Rj is at least 1. A strong fractional hyperclique-cover is defined the same way, except
that the weights are assigned to strong hypercliques and the coverage requirement is applied to
messages rather than receivers. In both cases, the size of the hyperclique-cover is defined to be the
sum of all weights.

Observe that if T is any set of messages and J is the set of all receivers desiring a message in
T , then T is a strong hyperclique if and only if J is a weak hyperclique. However, it is not the
case that every weak hyperclique can be obtained from a strong hyperclique T in this way.
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Observe also that if J is a weak hyperclique and each of the messages xf(j) (Rj ∈ J ) is a single
scalar value in some field, then broadcasting the sum of those values provides sufficient information
for each Rj ∈ J to decode xf(j). This provides an indication (though not a proof) that β is
bounded above by the weak fractional hyperclique cover number. The proof of Theorem 1(i) in fact
identifies bn as being equal to the strong fractional hyperclique-cover number, which is obviously
greater than or equal to its weak counterpart. The role of the nth-order submodularity constraints
is that they force the function F (S) ∆= X(S) − |S| to be a weighted coverage function. Using this
representation of F it is not hard to extract a fractional set cover of V , and the sets in this covering
are shown to be strong hypercliques using the decoding constraints.

Finally, we will show that one can have β > b2 using a construction based on the Vámos matroid
following the approach used in [11] to separate the corresponding Network Coding parameters. As
for showing that one can have β < bn, we will in fact show that one can have β < b3 ≤ bn.

We believe that the other parameters b3, . . . , bn−1 have no relation to β, e.g. as noted above we
show that there is a broadcasting instance for which β < b3 and thus b3 is not a lower bound on β.

2.2 Proof of Theorem 1

In this section we prove Theorem 1 via a series of claims. The main inequalities involving the
broadcast rate β are shown in §2.2.1 whereas the constructions demonstrating that these inequalities
can be strict appear in §2.2.2.

2.2.1 Bounding the broadcast rate via the LP hierarchy

We begin by familiarizing ourselves with the framework of the LP-hierarchy through proving the
following straightforward claim regarding the LP-solution b1 and the graph independence number.

Claim 2.6. If G is a graph then the LP-solution b1 satisfies b1(G) = α(G).

Proof. In order to show that b1(G) ≥ α(G), let I be an independent set of maximal size in G.
Now, V \ I  V implies that X(V \ I) ≥ X(V ) ≥ n is true for any feasible solution. Additionally,
X(V \ I) ≤ X(∅) + |V \ I|. Combining these together, we get X(∅) ≥ |V | − |V \ I| = |I| = α(G).
To prove b1(G) ≤ α(G) we present a feasible solution to the primal attaining the value α(G),

X(S) = |S|+ max{|I| : I is an independent set disjoint from S} , (2.1)

We verify that the solution is feasible by checking that it satisfies all the constraints of B1. The
fact that X(V ) = n implies the initialization constraint is satisfied. To prove the slope constraint,
for S ⊆ T ⊆ V let I, J be maximum-cardinality independent sets disjoint from S, T respectively.
Note that J itself is disjoint from S, implying |J | ≤ |I|. Thus we have

X(T ) = |T |+ |J | = |S|+ |T \ S|+ |J | ≤ |S|+ |T \ S|+ |I| = X(S) + |T \ S|.

Note also that I \ T is an independent set disjoint from T , hence it satisfies |I \ T | ≤ |J |. Thus

X(T ) = |T |+ |J | ≥ |T |+ |I \ T | = |T ∪ I| ≥ |S ∪ I| = |S|+ |I| = X(S),

which verifies monotonicity. Finally, to prove decoding let A,B be any vertex sets such that A B.
Consider G \ A, the induced subgraph of G on vertex set V \ A. Every vertex of B \ A is isolated
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in G \ A, and consequently if I is a maximum-cardinality independent set disjoint from B, then
I ∪ (B \A) is an independent set in G \A. Therefore,

X(A) ≥ |A|+ |I|+ |B \A| = |B|+ |I| = X(B) . �

We next turn to showing that b2 is a lower bound on the broadcast rate.

Claim 2.7. The LP-solution b2 satisfies b2(G) ≤ β(G).

Proof. Let G be a broadcasting with side information problem with n messages V and m receivers.
Consider the message P = E(x1, . . . , xn) that we send on the public channel to achieve β. Denote
by H the entropy function normalized so that H(xi) = 1 for all i. This induces a function from the
power set of V ∪ P to R where H(S) = |S| for any subset of messages S and H(P ) = β.

Now, let X(S) = H(S, P ) for S ⊆ V . We will show that X satisfies all the constraints of the
LP B2, implying X it is a feasible solution B2.

First, X(V ) ≥ n since H(V, P ) = H(V ) and our normalization has H(V ) = n. Non-negativity
holds because H(P ) ≥ 0. The X(·) values satisfy monotonicity and submodularity because entropy
does. Slope is implied by the fact that entropy is submodular (that is, H(S, P ) + H(T \ S) ≥
H(T, P )) together with our normalization. Finally, decoding is satisfied because the coding solution
is valid: each receiver Rj can determine its sought information from N(j) and the public channel.

This solution gives X(∅) = H(P ) = β and since the LP is stated as a minimization problem it
implies that β is an upper bound on its solution b2. �

Next we prove that β ≤ bn. For every instance G of the broadcasting with side information
problem, define χf (G) to be the minimum size of a strong fractional hyperclique-cover; this para-
meter specializes to the fractional clique-cover number when G is a graph. To prove β ≤ bn we first
show that β ≤ χf , and then that χf = bn.

Claim 2.8. For any broadcasting problem with side information, G, we have β(G) ≤ χf (G).

Proof. Let C be the set of strong hypercliques in G = (V,E). If χf ≤ w then there is a finite
collection of ordered pairs {(S, xS) : S ∈ C} where the xS ’s are positive rational numbers satisfying∑

S∈C
xS = w , and

∑
S∈C: x∈S

xS ≥ 1 for all x ∈ V .

Let q be a positive integer such that each of the numbers xS (S ∈ C) is an integer multiple of 1/q.
Set p = qw, noting that p is also a positive integer. Letting yS = qxS for every S ∈ C, we have:∑

S∈C
yS = p , and

∑
S∈C: x∈S

yS ≥ q for all x ∈ V . (2.2)

Replacing each pair (S, yS) with yS copies of the pair (S, 1) if necessary, we can assume that yS = 1
for every S. Similarly, replacing each S by a proper subset if necessary, we can assume that the
inequality (2.2) is tight for every x. (Note that this step depends on the fact that the collection
of strong hypercliques, C, is closed under taking subsets.) Altogether we have a sequence of sets
S1, S2, . . . , Sp, each of which is a strong hyperclique in G, such that every message occurs in exactly
q of these sets.
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From such a set system it is easy to construct an index code where every message has q bits (i.e.
Σ = {0, 1}q) and the broadcast utilizes p bits (i.e. ΣP = {0, 1}p). Indeed, for each message x ∈ V
let j1(x) < j2(x) < · · · < jq(x) denote the indices such that x ∈ Sj for j ∈ {j1(x), j2(x), . . . , jq(x)}.
If the bits of message x are denoted by b1(x), b2(x), . . . , bq(x) then for each 1 ≤ i ≤ p the i-th bit
of the index code is computed by taking the sum (modulo 2) of all bits bk(z) such that z ∈ Si and
i = jk(z). Receiver R = (S, x) is able to decode the kth bit of x by taking the jk(x)-th bit of the
index code and subtracting various bits belonging to other messages x′ ∈ Sjk(x). All of these bits are
known to R since Sjk(x) is a strong hyperclique containing x. This confirms that β(G) ≤ p/q = w,
as desired. �

It remains to characterize the extreme upper LP solution:

Claim 2.9. The LP-solution bn satisfies bn(G) = χf (G).

Proof. The proof hinges on the fact that the entire set of constraints of Bn gives a useful structural
characterization of any feasible solution X. Once we have this structure it will be simple to infer
the required result.

Lemma 2.10. A vector X satisfies the slope constraint and the i-th order submodularity constraints
for i ∈ {2, . . . , n} if and only if there exists a vector of non-negative numbers w(T ), defined for
every non-empty set of messages T , such that X(S) = |S|+

∑
T :T 6⊆S w(T ) for all S ⊆ V .

The proof of this fact is similar to a characterization of a weighted coverage function. While
much of the proof is likely folklore, we include it in Section 6 for completeness.

Given this fact we now prove that bn(G) ≥ χf (G) by showing that any solution X having the
form stated in Lemma 2.10 is a fractional coloring of G. Thus, for the remainder of this subsection,
X refers to a solution of Bn having value bn(G) and w refers to the associated vector of non-negative
numbers whose existence is guaranteed by Lemma 2.10.

Fact 2.11. For every message x ∈ V ,
∑

T3xw(T ) = 1.

To see this, observe that monotonicity and decoding imply thatX(V \{x}) = X(V ). Lemma 2.10
implies that the right-hand-side is n while the left-hand-side is n− 1 +

∑
T3xw(T ).

Fact 2.12. For every receiver Rj, if x denotes xf(j), then
∑

T : x∈T ⊆N(j)∪{x}w(T ) = 1.

Indeed, monotonicity and decoding imply that X(N(j)∪{x}) = X(N(j)). Lemma 2.10 implies
that the right side and left side differ by 1−

∑
T : x∈T ⊆N(j)∪{x}w(T ).

For a message x, let N(x) =
⋂

j:x=xf(j)
N(j) be the intersection of the side information for every

receiver who wants to know x. By combining Facts 2.11 and 2.12 we find that if w(T ) is positive
then T is contained in N(x) ∪ {x} for every x in T . Thus, we can infer the following:

Corollary 2.13. If w(T ) > 0 then the set of receivers desiring messages in T is a strong hyperclique.

Now, to prove bn(G) ≤ χf (G) we show that if a vector w gives a feasible fractional coloring then
X(S) = |S|+

∑
T :T 6⊆S w(T ) is feasible for the LP Bn. By the argument made in the proof of Claim

2.8 we can assume without loss of generality that
∑

T3uw(T ) = 1 ∀u ∈ V . X has value equal to the
fractional coloring because X(∅) =

∑
T w(T ). Further, Lemma 2.10 implies that X satisfies the i-th

order submodularity constraints and slope. It trivially satisfies initialization and non-negativity.
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To show that X satisfies monotonicity it is sufficient to prove that X(S ∪ {u}) ≥ X(S) for all
S ⊆ V, u ∈ V \S. By definition, we have X(S ∪{u})−X(S) = 1−

∑
T : u∈T 6⊆S w(T ). Additionally,

we know
∑

T : u∈T 6⊆S w(T ) ≤
∑

T :u∈T w(T ) = 1, where the last equality is because w is a fractional
coloring. Finally, for the decoding constraints, it is sufficient to show that X(A) ≥ X(A ∪ {x})
for A = N(j) where Rj is a receiver who desires x. By definition of X, X(A) − X(A ∪ {x}) =∑

T : x∈T ⊆N(j)∪{x}w(T ) − 1. Also,
∑

T : x∈T ⊆N(j)∪{x}w(T ) =
∑

T3xw(T ) = 1 because T with
w(T ) > 0 is a strong hyperclique. �

2.2.2 Strict lower and upper bounds for the broadcast rate

Claim 2.14. There exists a broadcasting with side information instance G for which β(G) < b3(G).

Proof. The construction is an extremely simple instance with only three messages {a, b, c} and
three receivers ({a}, b), ({b}, c), and ({c}, a). It is easy to see that there is a valid solution in which
Σ = {0, 1}, ΣP = {0, 1}2, the encoding function is given by a ⊕ b, b ⊕ c. Thus β ≤ 2. However,
using the 3rd-order submodularity constraint we have that

X(ab) +X(bc) +X(ac) +X(∅) ≥ X(abc) +X(a) +X(b) +X(c).

Combining that with decoding inequalities

X(a) ≥ X(ab) , X(b) ≥ X(bc) , X(c) ≥ X(ac) ,

together with the initialization inequality X(abc) ≥ 3 now gives us that b3 = X(∅) ≥ 3. �

Claim 2.15. There exists a broadcasting instance G for which b2(G) < β(G).

Proof. We construct an instance G such that β ≥ 45
11 whereas b2 = 4. The instance is constructed

from the well-known Vámos matroid, used e.g. in [11] to show that Shannon inequalities do not
suffice to prove tight bounds for network coding problems.

Definition 2.16. The Vámos matroid is an eight-element rank-four matroid whose ground set is
E = {a, b, c, d, w, x, y, z} and whose dependent sets are all the subsets of cardinality at least five as
well as the four-element sets {b, c, x, y}, {a, c, w, y}, {a, b, w, x}, {c, d, y, z}, and {b, d, x, z}.

We use the following framework of [7] (where it was used to establish a polynomial gap between
linear and non-linear index coding rates) to obtain a broadcasting instance from the Vámos matroid.
Given a matroid M with a rank function r, create a message for each element of the ground-set of
M , and create receivers for each circuit. That is, receivers are in one-to-one correspondence with
pairs (T, e) such that r(T, e) = r(T ), and there is no subset T ′ ⊂ T for which r(T ′, e) = r(T ′). (This
amounts to having |C| receivers for each circuit C in M .) Using this construction, the matroid
rank function can be used to give a primal solution to our LP B2 and thus an upper bound on b2.
A similar yet slightly more complicated transformation from matroids to broadcasting instances
was given in [21]. Our construction is (essentially) a subset of the one appearing there.

We begin by showing that b2 = 4. First, we prove that the function r′(A) = r(A) + 4 is a valid
primal solution to B2. To show this we must simply verify all the constraints of our LP. Initialization
and non-negativity are trivial: r′(V ) = r(V ) + 4 = 8 and r′(∅) = 4 ≥ 0. Slope is satisfied since
adding a single element to a subset of a matroid can increase the rank by at most one. It is well
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known that rank functions (and therefore rank functions offset by a constant) satisfy monotonicity
and submodularity. Decoding holds as we defined our receivers precisely so that they represent
matroid dependencies. Since r′ gives a feasible primal solution, we infer that b2 ≤ r′(∅) = 4.

To see that b2 ≥ 4, let A be the set of messages corresponding to a four-element independent set.
Now, applying the decoding inequalities for each circuit that contains A and combining them using
submodularity, we get that X(A) ≥ X(E). Summing and canceling that with the slope constraint
X(∅) + 4 ≥ X(A) and the initialization constraint X(E) ≥ 8 gives X(∅) ≥ 4.

We will next show that β ≥ 45
11 by combining the inequalities used in B2 with a non-Shannon-

type inequality due to Zhang and Yeung [26].

Theorem 2.17 ([26]). The following is a non-Shannon-type information inequality:

3H(AC)+3H(AD) + 3H(CD) +H(BC) +H(BD)

≥ 2H(C) + 2H(D) +H(AB) +H(A) +H(BCD) + 4H(ACD) . (2.3)

Following the approach of [11], we apply the above inequality to sets A = {d, z}, B = {a,w},
C = {b, x} and D = {c, y}. Observe that the rank function does not satisfy this inequality since
the sets on the left-hand-side are each dependent sets of size four, giving a total rank of 33, yet on
the right-hand-side we have six sets with rank 4 and five with rank 2, giving a total rank of 34.

Let T be a variable that ranges over all of the four-element dependent sets appearing on the
left side of (2.3) and let P = E(x1, . . . , xn) be our optimal encoding. Summing and rearranging the
following inequalities will produce the desired result:

11× [H(P ) + 3 ≥ H(T, P )] (slope , decode)

11H(T, P ) ≥ 6H(V, P ) + 2H(bx, P ) + 2H(cy, P ) +H(dz, P ) (non-Shannon , decode)

4× [H(P ) + 2 ≥ H(ad, P )] (slope)

H(P ) + 2 ≥ H(ab, P ) (slope)

2× [H(ad, P ) +H(bx, P ) ≥ H(V, P ) +H(P )] (submod , decode)

2× [H(ad, P ) +H(cy, P ) ≥ H(V, P ) +H(P )] (submod , decode)

H(ab, P ) +H(dz, P ) ≥ H(V, P ) +H(P ) (submod , decode)

11× [H(V, P ) ≥ 8] (initialize) .

Altogether, β ≥ H(P ) ≥ 45
11 while b2 = 4, completing the proof of the Claim 2.15. �

2.3 The broadcast rate of the 5-cycle

As stated in Theorem 1, whenever the LP-solution b2 equals χf we obtain that β is precisely this
value, hence one may compute the broadcast rate (previously unknown for any graph) via a chain
of entropy-inequalities. We will demonstrate this in Section 5 by determining β for several families
of graphs, in particular for cycles and their complements (Theorem 5.1). These seemingly simple
cases were previously studied in [2, 5] yet their β values were unknown before this work.

To give a flavor of the proof of Theorem 5.1, we provide a proof-by-picture for the broadcast rate
of the 5-cycle (Figure 1), illustrating the intuition behind choosing the set of inequalities one may
combine for an analytic lower bound on β. The inequalities in Figure 1 establish that β(C5) ≥ 5

2 ,
thus matching the upper bound β(C5) ≤ χf (C5) = 5

2 .
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Figure 1: A proof-by-picture that β(C5) = 5
2 . Variables marked by highlighted subsets of vertices,

e.g. the first submodularity application applies the LP constraint X({3, 4, 5}) + X({2, 3, 4}) ≥
X({2, 3, 4, 5})+X({3, 4}). Final outcome is a proof that β(C5) ≥ X(∅) with 3X(∅)+5 ≥ X(∅)+10.

We note that odd cycles on n ≥ 5 vertices as well as their complements constitute the first
examples for graphs where the independence number α is strictly smaller than β. Corollary 2.18
will further amplify the gap between these parameters.

2.4 Corollaries for vector/scalar index codes

Prior to this work and its companion paper [7] there was no known family of graphs where α 6= β,
and one could conjecture that for long enough messages the broadcast rate in fact converges to the
independence number, the largest set of receivers that are pairwise oblivious. We now have that
the 5-cycle provides an example where α = 2 while β = 5

2 , however here the difference β − α < 1
could potentially be attributed to integer-rounding, e.g. it could be that α = bβc.

Such was also the case for the best known difference between the vector capacity β and the
scalar capacity β1. The best lower bound on β1−β in any graph was again attained by the 5-cycle
where it was slightly less than 1

3 , and again in the constrained setting of graph Index Coding we
could conjecture that β1 = dβe.

The following corollary of the above mentioned results refutes these suggestions by amplifying
both these gaps to be linear in n. The separation between α and β was further strengthened in the
companion paper [7], where we obtained a gap of a polynomial factor between these parameters.

Corollary 2.18. There exists a family of graphs G on n vertices for which β(G) = n/2 while
α(G) = 2

5n and β1(G) = (1− 1
5 log2 5+o(1))n ≈ 0.54n. Moreover, we have β∗(G) = (1−o(1))β1(G).

To prove this result we will use the direct-sum capacity β∗. Recall that this capacity is defined
to be β∗(G) = limt→∞

1
tβ1(t ·G) = inft 1

tβ1(t ·G) where t ·G denotes the disjoint union of t copies
of G. This parameter satisfies β ≤ β∗ ≤ β1. Similarly we let G +H denote the disjoint union of
the graphs G,H. We need the following simple lemma.
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Lemma 2.19. The parameters β and β∗ are additive with respect to disjoint unions, that is for
any two graphs G,H we have β(G+H) = β(G) + β(H) and β∗(G+H) = β∗(G) + β∗(H).

Proof of lemma. The fact that β∗ is additive w.r.t. disjoint unions follows immediately from the
results of [2]. Indeed, it was shown there that for any graph G on n vertices β∗(G) = log2 χf (C(G))
where C = C(G) is an appropriate undirected Cayley graph on the group Zn

2 . Furthermore, it was
shown that C(G + H) = C(G) ·∨C(H), where ·∨ denotes the OR-graph-product. It is well-known
(see, e.g., [13, 17]) that the fractional chromatic number is multiplicative w.r.t. this product, i.e.
χf (G ·∨H) = χf (G)χf (H) for any two graphs G,H. Combining these statements we deduce that

2β∗(G+H) = χf (C(G+H)) = χf (C(G) ·∨C(H)) = χf (C(G))χf (C(H)) = 2β∗(G)+β∗(H) .

We shall now use this fact to show that β is additive. The inequality β(G+H) ≤ β(G) + β(H)
follows from concatenating the codes for G and H and it remains to show a matching upper bound.

As observed by [19], the Index Coding problem for an n-vertex graph G with messages that are
t bits long has an equivalent formulation as a problem on a graph with tn vertices and messages
that are 1-bit long; denote this graph by Gt (formally this is the t-blow-up of G with independent
sets, i.e. the graph on the vertex set V (G)× [t], where (u, i) and (v, j) are adjacent iff uv ∈ E(G)).
Under this notation βt(G) = β1(Gt). Notice that (G+H)t = Gt+Ht for any t and furthermore that
s ·Gt is a spanning subgraph of Gst for any s and t, in particular implying that β1(s ·Gt) ≥ β1(Gst).

Fix ε > 0 and let t be a large enough integer such that β(G+H) ≥ βt(G+H)/t− ε. Further
choose some large s such that β∗(Gt) ≥ β1(s ·Gt)/s− ε and β∗(Ht) ≥ β1(s ·Ht)/s− ε. We now get

β(G+H) + ε ≥ β1(Gt +Ht)/t ≥ β∗(Gt +Ht)/t = β∗(Gt)/t+ β∗(Ht)/t ,

where the last inequality used the additivity of β∗. Since

β∗(Gt)/t ≥ β1(s ·Gt)/st− ε ≥ β1(Gst)/st− ε ≥ β(G)− ε

and an analogous statement holds for β∗(Ht)/t, altogether we have β(G+H) ≥ β(G)+β(H)− 3ε.
Taking ε→ 0 completes the proof of the lemma. �

Proof of Corollary 2.18. Consider the family of graphs on n = 5k vertices given by G = k · C5.
It was shown in [2] that β∗(C5) = 5− log2 5, which by definition implies that β∗(G) = (5− log2 5)k
and β1(G) = β∗(G) + o(k). At the same time, clearly α(G) = 2k and combining the fact that
β(C5) = 5

2 with Lemma 2.19 gives β(G) = 5k/2 = n/2, as required. �

The above result showed that the difference between the broadcast rate β and the Index Coding
scalar capacity β1 can be linear in the number of messages. We now wish to use the gap between
β and β1 to infer a gap between the vector and scalar Network Coding capacities.

Corollary 2.20. For any k ≥ 1 there exists a Network Coding instance on 5k + 2 vertices where
the ratio between the vector and scalar-linear capacities is precisely 1.2 while the ratio between the
vector and scalar capacities converges to 1− 1

2 log2 5 ≈ 1.07 as k →∞.

Proof. It is well known (e.g. [22]) that an n-vertex graph Index Coding instance G can be translated
into a capacitated network H on 2n+ 2 vertices via a reduction that preserves linear encoding. It
thus suffices to bound the ratio of the corresponding Index Coding capacities.
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For k ≥ 1 consider the graph G consisting of k disjoint 5-cycles. Corollary 2.18 established that
β(G) = 5k/2 whereas β1(G) = (5− log2 5+o(1))k where the o(1)-term tends to 0 as k →∞. At the
same time, it was shown in [5] that the scalar-linear Index Coding capacity over GF (2) coincides
with a parameter denoted by minrk2(G), and as observed in [19] this extends to any finite field F as
follows: For a graph H = (V,E) we say that a matrix B indexed by V over F is a representation of
H over F if it has nonzero diagonal entries (Buu 6= 0 for all u ∈ V ) whereas Buv = 0 for any u 6= v

such that uv /∈ E. The smallest possible rank of such a matrix over F is denoted by minrkF(H).
For the 5-cycle we have minrkF(C5) ≤ χ(C5) = 3 by the linear clique-cover encoding and this is
tight by as minrkF(C5) ≥ dβ(C5)e = 3. Finally, minrkF is clearly additive w.r.t. disjoint unions of
graphs by its definition and thus minrkF(G) = 3k as required. �

3 Approximating the Broadcast Rate

This section is devoted to the proof of Theorem 2, on polynomial-time algorithms for approximating
β and deciding whether β = 2. Working in the setting of a general broadcast network is somewhat
delicate and we begin by sketching the arguments that will follow.

In the simpler case of undirected graphs, a o(n)-approximation to β is implied by results of [3,8,
24] that together give a polynomial time procedure that finds either a small clique-cover or a large
independent set (see Remark 3.1). To get an approximation for the general broadcasting problem we
will apply a similar technique using analogues of independent sets and clique-covers that give lower
and upper bounds respectively on the general broadcasting rate. The analogue of an independent
set is an expanding sequence — a sequence of receivers where the ith receiver’s desired message
is unknown to receivers 1, . . . , i − 1. The clique-cover analogue is a weak fractional hyperclique-
cover (see Definition 2.5). In the remainder of this section, whenever we refer to hypercliques or
hyperclique-covers we always mean weak hypercliques and weak hyperclique-covers.

We will prove that there is a polynomial time algorithm that outputs an expanding sequence of
size k or reports a fractional hyperclique-cover of size O

(
kn1−1/k

)
; the approximation follows by

setting k appropriately. We will argue that either we can partition the graph and apply induction or
else the side-information map is dense enough to deduce existence of a small fractional hyperclique-
cover. The proof of the latter step deviates significantly from the techniques used for graphs, and
seems interesting in its own right. We will give a simple procedure to randomly sample hypercliques
and use it to produce a valid weight function for the hyperclique-cover by defining the weight of a
hyperclique to be proportional to the probability it is sampled by the procedure.

To prove the second part of Theorem 2 we will prove that a structure called an almost alternating
cycle (AAC) constitutes a minimal obstruction to obtaining a broadcast rate of 2. The proof makes
crucial use of Theorem 1, calculating the parameter b2 for AAC’s to prove that their broadcast rate
is strictly greater than 2. Furthermore, the proof reduces finding an AAC to finding the transitive
closure of a particular relation, which is polynomial time computable.

3.1 Approximating the broadcast rate in general networks

We now present a nontrivial approximation algorithm for β for a general network described by a
hypergraph (that is, the most general framework where there are m ≥ n receivers).

Remark 3.1. In the setting of undirected graphs a slightly better approximation algorithm for β
is a consequence of a result of Boppana and Halldorsson [8], following the work of Wigderson [24].
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In [8] the authors showed an algorithm that finds either a “large” clique or a “large” independent set
in a graph (where the size guarantee involves the Ramsey number estimate). A simple adaptation of
this result (Proposition 2.1 in the Alon-Kahale [3] work on approximating α via the ϑ-function) gives
a polynomial-time algorithm for finding an independent set of size tk(m) = max

{
s :

(
k+s−2
k−1

)
≤ m

}
in any graph satisfying χ(G) ≥ n/k+m. In particular, taking m = n/k with k = 1

2 log n we clearly
have tk(m) ≥ k for any sufficiently large n and obtain that either χ(G) < 4n/ log n or we can find
an independent set of size 1

2 log n in polynomial-time.

We use the following notation: the n message streams are identified with the elements of
[n] = V . The data consisting of the pairs {(N(j), f(j))}m

j=1 is our directed hypergraph instance.
When referring to the hypergraph structure itself (rather than the corresponding index coding
problem) we will refer to elements of V as vertices and we will refer to pairs (N(j), f(j)) as directed
hyperedges. For notational convenience, we denote S(j) = N(j) ∪ {f(j)}.

An expanding sequence of size k is a sequence of receivers j1, . . . , jk such that

f(j`) 6∈
⋃
i<`

S(i) (3.1)

for 1 ≤ ` ≤ k. For a hypergraph G, let α(G) denote the maximum size of an expanding sequence.

Lemma 3.2. Every hypergraph G satisfies the bound β(G) ≥ α(G).

Proof. The proof is by contradiction. Let j1, . . . , jk be an expanding sequence and suppose that
there is an index code that achieves rate r < k. Let J = {j1, . . . , jk}. For b = log2 |Σ| we have

|Σ|k = 2bk > 2br ≥ |ΣP |.

Let us fix an element x∗i ∈ Σ for every i 6∈ {f(j) : j ∈ J}, and define Ψ to be the set of all
~x ∈ Σn that satisfy xi = x∗i for all i 6∈ {f(j) : j ∈ J}. The cardinality of Ψ is |Σ|k, so the
Pigeonhole Principle implies that the function E , restricted to Ψ, is not one-to-one. Suppose that
~x and ~y are two distinct elements of Ψ such that E(~x) = E(~y). Let i be the smallest index such that
xf(ji) 6= yf(ji). Denoting ji by j, we have xk = yk for all k ∈ N(j), because N(j) does not contain
f(j`) for any ` ≥ i, and the components with indices ji, ji+1, . . . , jk are the only components in
which ~x and ~y differ. Consequently receiver j is unable to distinguish between message vectors ~x, ~y
even after observing the broadcast message, which violates the condition that j must be able to
decode message f(j). �

Lemma 3.3. Let ψf (G) denote the minimum weight of a fractional weak hyperclique-cover of G.
Every hypergraph G satisfies the bound β(G) ≤ ψf (G).

Proof. The linear program defining ψf (G) has integer coefficients, so G has a fractional hyperclique
cover of weight w = ψf (G) in which the weight w(J ) of every hyperclique J is a rational number.
Assume we are given such a fractional hyperclique-cover, and choose an integer d such that w(J ) is
an integer multiple of 1/d for every J . Let C denote a multiset of hypercliques containing d ·w(J )
copies of J for every hyperclique J . Note that the cardinality of C is d · w.

For any hyperclique J , let f(J ) denote the set
⋃

j∈J {f(j)}. For each i ∈ [n], let Ci denote the
sub-multiset of C consisting of all hypercliques J ∈ C such that i ∈ f(J ). Fix a finite field F such
that |F| > dw. Define Σ = Fd and ΣP = Fd·w. Let {ξJP }J∈C be a basis for the dual vector space
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Σ∗
P and let {ξJi }J∈Ci be a set of dual vectors in Σ∗ such that any d of these vectors constitute a

basis for Σ∗. (The existence of such a set of dual vectors is guaranteed by our choice of F with
|F| > dw ≥ d.)

The encoding function is defined to be the unique linear function satisfying

ξJP (E(x1, . . . , xn)) =
∑

i∈f(J )

ξJi (xi) ∀J .

For each receiver j, if i = f(j), the set of dual vectors ξJi with j ∈ J compose a basis of Σ∗, hence
to prove that j can decode message xi it suffices to show that j can determine the value of ξJi (xi)
whenever j ∈ J . This holds because the public channel contains the value of

∑
`∈f(J ) ξ

J
` (x`), and

receiver j knows that value of ξJ` (x`) for every ` 6= i in f(J ) because ` ∈ N(j). �

We now turn our attention to bounding the ratio ψf (G)/α(G) for a hypergraph G. Our goal
is to show that this ratio is bounded by a function in o(n). To begin with, we need an analogue
of the lemma that undirected graphs with small maximum degree have small fractional chromatic
number.

Lemma 3.4. If G is a hypergraph with n vertices, and d is a natural number such that for every
receiver j, |S(j)|+ d ≥ n, then ψf (G) ≤ 4d+ 2.

Proof. Let us define a procedure for sampling a random subset T ⊆ [n] and a random hyperclique
J as follows. Let π be a uniformly random permutation of [n + d], let i be the least index such
that π(i+ 1) > n, and let T be the set {π(1), π(2), . . . , π(i)}. (If π(1) > n then i = 0 and T is the
empty set.) Now let J be the set of all j such that f(j) ∈ T ⊆ S(j). (Note that J is indeed a
hyperclique.)

For any hyperclique J let p(J ) denote the probability that J is sampled by this procedure and
let w(J ) = (4d+ 2) · p(J ). We claim that the weights w(·) define a fractional hyperclique-cover of
G, or equivalently, that for every receiver j, P(f(j) ∈ T ⊆ S(j)) ≥ 1

4d+2 . Let U(j) denote the set
{f(j)}∪ ([n] \ S(j))∪ ([n+ d] \ [n]) . The event E = {f(j) ∈ T ⊆ S(j)} occurs if and only if, in the
ordering of U(j) induced by π, the first element of U(j) is f(j) and the next element belongs to
[n+ d] \ [n]. Thus,

P(E) =
1

|U(j)|
· d

|U(j)| − 1
.

The bound P(E) ≥ 1
4d+2 now follows from the fact that |U(j)| ≤ 2d+ 1. �

Lemma 3.5. If G is a hypergraph and α(G) ≤ k, then ψf (G) ≤ 6k · n1−1/k. Moreover, there is
a polynomial-time algorithm, whose input is a hypergraph G and a natural number k, that either
outputs an expanding sequence of size k + 1 or reports (correctly) that ψf (G) ≤ 6k · n1−1/k.

Proof. The proof is by induction on k. In the base case k = 1, either G itself is a hyperclique
or there is some pair of receivers j, j′ such that f(j) is not in S(j′). In that case, the sequence
j1 = j′, j2 = j is an expanding sequence of size 2.

For the induction step, for each hyperedge j define the set D(j) = {f(j)} ∪ ([n] \ S(j)) and
let j1 be a hyperedge such that |D(j)| is maximum. If |D(j1)| ≤ n1−1/k + 1, then the bound
|S(j)| + n1−1/k ≥ n is satisfied for every j and Lemma 3.4 implies that ψf (G) < 4n1−1/k + 2 ≤
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6n1−1/k. Otherwise, partition the vertex set of G into V1 = [n] \ S(j1) and V2 = S(j1), and
for i = 1, 2 define Gi to be the hypergraph with vertex set Vi and edge set Ei consisting of all
pairs (N(j) ∩ Vi, f(j)) such that (N(j), f(j)) is a hyperedge of G with f(j) ∈ Vi. (We will call
such a structure the induced sub-hypergraph of G on vertex set Vi.) If G1 contains an expanding
sequence j2, j3, . . . , jk+1 of size k, then the sequence j1, j2, . . . , jk+1 is an expanding sequence of
size k + 1 in G. (Moreover, if an algorithm efficiently finds the sequence j2, j3, . . . , jk+1 then it
is easy to efficiently construct the sequence j1, . . . , jk+1.) Otherwise, by the induction hypothesis,
G1 has a fractional hyperclique-cover of weight at most 6(k − 1)|V1|1−1/(k−1) ≤ 6(k − 1)|V1|n−1/k.
Continuing to process the induced sub-hypergraph on vertex set V2 in the same way, we arrive at
a partition of [n] into disjoint vertex sets W1,W2, . . . ,W` of cardinalities n1, . . . , n`, respectively,
such that for 1 ≤ i < `, the induced sub-hypergraph on Wi has a fractional clique-cover of weight
at most 6(k − 1)nin

−1/k, and for i = ` the induced sub-hypergraph on Wi satisfies the hypothesis
of Lemma 3.4 with d = n1−1/k and consequently has a fractional hyperclique-cover of weight at
most 6n1−1/k. The lemma follows by summing the weights of these hyperclique-covers. �

Combining Lemmas 3.2, 3.3, 3.5, we obtain the approximation algorithm asserted by Theorem 2.

3.2 Extending the algorithm to networks with variable source rates

The aforementioned approximation algorithm for β naturally extends to the setting where each
source in the broadcast network has its own individual rate. Namely, the n message streams are
identified with the elements of [n] = V , where message stream i has a rate ri, and the problem input
consists of the vector (r1, . . . , rn) and the pairs {(N(j), f(j))}m

j=1. Thus the input is a weighted
directed hypergraph instance. An index code for a weighted hypergraph consists of the following:

• Alphabets ΣP and Σi for 1 ≤ i ≤ n,
• An encoding function E :

∏n
i=1 Σi → ΣP ,

• Decoding functions Dj : ΣP ×
∏

i∈N(j) Σi → Σf(j).

The encoding and decoding functions are required to satisfy

Dj(E(σ1, . . . , σn), σN(j)) = σf(j)

for all j = 1, . . . ,m and all (σ1, . . . , σn) ∈
∏n

i=1 Σi. Here the notation σN(j) denotes the tuple
obtained from a complete n-tuple (σ1, . . . , σn) by retaining only the components indexed by elements
of N(j). An index code achieves rate r ≥ 0 if there exists a constant b > 0 such that |Σi| ≥ 2b·ri

for 1 ≤ i ≤ n and |ΣP | ≤ 2b·r. If so, we say that rate r is achievable. If G is a weighted hypergraph,
we define β(G) to be the infimum of the set of achievable rates.

The first step in generalizing the proof given in the previous subsection to the case where the ri’s
are non-uniform is to properly extend the notions of hypercliques and expanding sequences. A weak
fractional hyperclique cover of a weighted hypergraph will now assign a weight w(J ) to every weak
hyperclique J such that for every receiver j,

∑
J3j w(J ) ≥ rf(j) (cf. Definition 2.5 corresponding

to rf(j) = 1). As before, the weight of a fractional weak hyperclique-cover is given by
∑

J w(J )
and for a weighted hypergraph G we let ψf (G) denote the minimum weight of a fractional weak
hyperclique-cover. An expanding sequence j1, . . . , jk is defined as before (see Eq. 3.1) except now
we associate such a sequence with the weight

∑k
`=1 rf(j`) and the quantity α(G) will denote the

maximum weight of an expanding sequence (rather than the maximum cardinality).

With these extended defintions, the proofs in the previous subsection carry unmodified to the
weighted hypergraph setting with the single exception of Lemma 3.5, where the assumption that the
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hypergraph is unweighted was essential to the proof. In what follows we will qualify an application
of that lemma via a dyadic partition of the vertices of our weighted hypergraph according to their
weights ri.

Assume without loss of generality that 0 ≤ ri ≤ 1 for every vertex i ∈ [n], and partition the
vertex of set G into subsets V1, V2, . . . such that Vs contains all vertices i such that 2−s < ri ≤ 21−s.

Let Gs denote the induced hypergraph on vertex set Vs. For each of the nonempty hypergraphs
Gs, run the algorithm in Lemma 3.5 for k = 1, 2, . . . until the smallest value of k(s) for which an
expanding sequence of size k(s) + 1 is not found. If G◦

s denotes the unweighted version of Gs, then
we know that

α(Gs) ≥ 2−sα(G◦
s) ≥ 2−sk(s)

ψf (Gs) ≤ 21−sψf (G◦
s) ≤ 2−s · 12k(s)n1−1/k(s).

In addition, for each i ∈ Vs the set of hyperedges containing i constitutes a hyperclique, which
implies the trivial bound

ψf (Gs) ≤
∑
i∈Vs

ri ≤ 21−s|Vs|.

Combining these two upper bounds for ψf (Gs), we obtain an upper bound for ψf (G):

ψf (G) ≤
∞∑

s=1

ψf (Gs) ≤
∞∑

s=1

2−s ·min
{

12k(s)n1−1/k(s), 2|Vs|
}
. (3.2)

We define τ(G) to be the right side of (3.2). We have described a polynomial-time algorithm to
compute τ(G) and have justified the relation ψf (G) ≤ τ(G), so it remains to show that τ(G)/α(G) ≤
cn

(
log log n

log n

)
for some constant c.

The bound τ(G) ≤ n follows immediately from the definition of τ , so if α(G) ≥ log n
log log n there is

nothing to prove. Assume henceforth that α(G) < log n
log log n , and define w to be the smallest integer

such that 2w · α(G) > log n
2 log log n . We have

τ(G) ≤
w∑

s=1

2−s · 12k(s)n1−1/k(s) +
∞∑

s=w+1

21−s · |Vs|

≤ 12n
w∑

s=1

2−sk(s)n−1/k(s) + 2−w · n

< 12nα(G)
w∑

s=1

n−1/k(s) + 2nα(G)
(

log log n
log n

)
, (3.3)

with the last line derived using the relations 2−sk(s) ≤ α(Gs) ≤ α(G) and 2−w < α(G)
(2 log log n

log n

)
.

Applying once more the fact that 2−sk(s) ≤ α(G), we find that n−1/k(s) ≤ n−1/(2s·α(G)). Substitut-
ing this bound into (3.3) and letting α denote α(G), we have

τ(G)
α(G)

≤ 2n
(

log log n
log n

)
+ 12n

(
n−1/2α + n−1/4α + · · ·+ n−1/2wα

)
.

In the sum appearing on the right side, each term is the square of the one following it. It now
easily follows that the final term in the sum is less than 1/2, so the entire sum is bounded above
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by twice its final term. Thus

τ(G)
α(G)

≤ 2n
(

log log n
log n

)
+ 24n · n−1/2wα. (3.4)

Our choice of w ensures that 2wα ≤ log n
log log n hence n−2−wa ≤ n− log log n/ log n = (log n)−1. By

substituting this bound into (3.4) we obtain

τ(G)
α(G)

≤ n

(
2 log log n

log n
+

24
log n

)
,

as desired.

3.3 Proof of Theorem 2, determining whether the broadcast rate equals 2

Let G be an undirected graph with independence number α = 2. Clearly, if G is bipartite then
χ(G) = 2 and so β(G) = 2 as well. Conversely, if G is not bipartite then it contains an odd cycle,
the smallest of which is induced and has k ≥ 5 vertices since the maximum clique in G is α(G) = 2.
In particular, Theorem 5.1 implies that β(G) ≥ β(Ck) = k

bk/2c > 2. We thus conclude the following:

Corollary 3.6. Let G be an undirected graph on n vertices whose complement G is nonempty.
Then β(G) = 2 if and only if G is bipartite.

A polynomial time algorithm for determining whether β = 2 in undirected graphs follows as
an immediate consequence of Corollary 3.6. However, for broadcasting with side information in
general — or even for the special case of directed graphs (the main setting of [5,6]) — it is unclear
whether such an algorithm exists. In this section we provide such an algorithm, accompanied by
a characterization theorem that generalizes the above characterization for undirected graphs. To
state our characterization we need the following definitions. As in Section 3.1 we use S(j) to denote
the set N(j) ∪ {f(j)}. Additionally, we introduce the notation T (j) to denote the complement of
S(j) in the set of messages. When referring to the message desired by receiver Rj , we abbreviate
xf(j) to x(j). Henceforth, when referring to a hypergraph G = (V,E), we assume that for each
edge j ∈ E, the hypergraph structure specifies the vertex f(j) and both of the sets S(j), T (j).

Definition 3.7. If G = (V,E) is a directed hypergraph and S is a set, a function F : V → S is
said to be G-compatible if for every edge j ∈ E, there are two distinct elements t, u ∈ S such that
F maps every element of T (j) to t, and it maps f(j) to u.

Definition 3.8. If G = (V,E) is a directed hypergraph, an almost alternating (2n+1)-cycle in
G is a sequence of vertices v−n, v−n+1, . . . , vn, and a sequence of edges j0, . . . , jn, such that for
i = 0, . . . , n, the vertex f(ji) is equal to vi−n and the set T (ji) contains vi, as well as vi+1 if i < n.

Theorem 3.9. For a directed hypergraph G the following are equivalent:

(i) β(G) = 2
(ii) There exists a set S and a G-compatible function F : V → S.
(iii) G contains no almost alternating cycles.

Furthermore there is a polynomial-time algorithm to decide if these equivalent conditions hold.

Proof. (i)⇒(iii): The contrapositive statement says that if G contains an almost alternating cycle
then β(G) > 2. Let v−n, . . . , vn be the vertices of an almost alternating (2n + 1)-cycle with edges
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j0, . . . , jn. To prove β(G) > 2 we manipulate entropy inequalities involving the random variables
{xi : −n ≤ i ≤ n} and y, where xi denotes the message associated to vertex vi normalized to have
entropy 1, and y denotes the public channel. For S ⊆ {y, x−n, . . . , xn}, let H(S) denote the entropy
of the joint distribution of the random variables in S, and let H(S) denote H(S). Let Si:j denote
the set {xi, xi+1, . . . , xj}.

For 0 ≤ i ≤ n− 1, we have

H(y) + (2n− 2) ≥ H({xi−n, xi, xi+1}) = H({xi, xi+1}) = H(Si:i+1) , (3.5)

where the second equation holds because receiver ji can decode message xi−n = x(ji) given the
value y and the values xk for k ∈ N(ji). Using submodularity we have that for 0 < j < n,

H(S0:j) +H(Sj:j+1) ≥ H(S0:j+1) +H(xj) = H(S0:j+1) +H(∅) = H(S0:j+1) + 2n+ 1 . (3.6)

Summing up (3.6) for j = 1, . . . , n− 1 and canceling terms that appear on both sides, we obtain

n−1∑
j=0

H(Sj:j+1) ≥ H(S0:n) + (n− 1)(2n+ 1) . (3.7)

Summing up (3.5) for i = 0, . . . , n− 1 and combining with (3.7) we obtain

nH(y) + n(2n− 2) ≥ H(S0:n) + (n− 1)(2n+ 1) . (3.8)

Now, observe that

H(S0:n) + n− 1 ≥ H(x0, xn) ≥ H(xn) ≥ H(∅) = 2n+ 1 . (3.9)

Summing (3.8) and (3.9), we obtain

nH(y) + 2n2 − n− 1 ≥ 2n2 + n

and rearranging we get H(y) ≥ 2 + n−1, from which it follows that β(G) ≥ 2 + n−1.

(iii)⇒(ii): Define a binary relation ] on the vertex set V by specifying that v]w if there exists an
edge j such that {v, w} ⊆ T (j). Let ∼ denote the transitive closure of ]. Define F to be the quotient
map from V to the set S of equivalence classes of ∼. We need to check that F is G-compatible.
For every edge j ∈ E, the definition of relation ] trivially implies that F maps all of T (j) to a
single element of S. The fact that it maps f(j) to a different element of S is a consequence of
the non-existence of almost alternating cycles. A relation f(j) ∼ v for some v ∈ T (j) would imply
the existence of a sequence v0, . . . , vn such that v0 = f(j), vn = v, and vi]vi+1 for i = 0, ..., n − 1.
If we choose ji for 0 ≤ i < n to be an edge such that T (ji) contains vi, vi+1 (such an edge exists
because vi]vi+1) and we set jn = j and vi−n = f(ji) for i = 0, . . . , n− 1, then the vertex sequence
v−n, . . . , vn and edge sequence j0, . . . , jn constitute an almost alternating cycle in G.

Computing the relation ∼ and the function F , as well as testing that F is G-compatible, can
easily be done in polynomial time, implying the final sentence of the theorem statement.

(ii)⇒(i): If F : V → S is G-compatible, we may compose F with a one-to-one mapping from
S into a finite field F, to obtain a function φ : V → F that is G-compatible. The public channel
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broadcasts two elements of F, namely:

y =
∑

v

xv

z =
∑

v

φ(v)xv

Receiver Rj now decodes message x(j) as follows. Let c denote the unique element of F such that
φ(v) = c for every v in T (j). Using the pair (y, z) from the public channel, Rj can form the linear
combination

cy − z =
∑

v

[c− φ(v)]xv.

We know that every v ∈ T (j) appears with coefficient zero in this sum. For every v ∈ N(j), receiver
Rj knows the value of xv and can consequently subtract off the term [c − φ(v)]xv from the sum.
The only remaining term is [c − φ(x(j))]x(j). The coefficient c − φ(x(j)) is nonzero, because φ is
G-compatible. Therefore Rj can decode x(j). �

4 The gap between the broadcast rate and clique cover numbers

4.1 Separating the broadcast rate from the extreme LP solution bn

In this section we prove Theorem 3 that shows a strong form of separation between β and its upper
bound bn = χf . Not only can we have a family of graphs where β = O(1) while χf is unbounded,
but one can construct such a family where χf grows polynomially fast with n.

Proof of Theorem 3. The following family of graphs (up to a small modification) was introduced
by Erdős and Rényi in [12]. Due to its close connection to the (Sylvester-)Hadamard matrices when
the chosen field has characteristic 2 we refer to it as the projective-Hadamard graph H(Fq):

1. Vertices are the non-self-orthogonal vectors in the 2-dimensional projective space over Fq.
2. Two vertices are adjacent iff their corresponding vectors are non-orthogonal.

Let q be a prime-power. We claim that the projective-Hadamard graph H(Fq) on n = n(q)
vertices satisfies β = 3 while χf = Θ(n1/4). The latter is a well-known fact which appears for
instance in [4,20]. Showing that χf ≥ (1−o(1))n1/4 is straightforward and we include an argument
establishing this for completeness.

The fact that β ≥ 3 follows from the fact that the standard basis vectors form an independent
set of size 3. A matching upper bound will follow from the minrkF parameter defined in Section 2.4:
Let F be some finite field and let ` = minrkF(G) be the length of the optimal linear encoding over
F for the Index Coding problem of a graph G with messages taking values in F. Broadcasting
`dlog2 |F|e bits allows each receiver to recover his required message in F and so clearly β ≤ `. It
thus follows that dβ(G)e ≤ minrkF(G) for any graph G and finite field F.

Here, dealing with the projective-Hadamard graph H, let B be the Gram matrix over Fq of
the vectors corresponding to the vertices of H. By definition the diagonal entries are nonzero and
whenever two vertices u, v are nonadjacent we have Buv = 0. In particular B is a representation
for H over Fq which clearly has rank 3 as the standard basis vectors span its entire row space.
Altogether we deduce that β(H) = 3 whereas χf = Θ(n1/4), as required.
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The fact that χf ≥ (1 − o(1))n1/4 will follow from a straightforward calculation showing that
the clique-number of H is at most (1 + o(1))q3/2 = (1 + o(1))n3/4.

Consider the following multi-graph G which consists of the entire projective space:

1. Vertices are all vectors of the 2-dimensional projective space over Fq.
2. Two (possibly equal) vertices are adjacent iff their corresponding vectors are orthogonal.

Clearly, G contains the complement of the Hadamard graph H(Fq) as an induced subgraph and it
suffices to show that α(G) ≤ (1 + o(1))q3/2.

It is well-known (and easy) that G has N = q2 + q + 1 vertices and that every vertex of G is
adjacent to precisely q+ 1 others. Further observe that for any u, v ∈ V (G) precisely one vertex of
G belongs to {u, v}⊥ (as u, v are linearly independent vectors). In other words, the codegree of any
two vertices in G is 1. We conclude that G is a strongly-regular graph (see e.g. [14] for more details
on this special class of graphs) with codegree parameters µ = ν = 1 (where µ is the codegree of
adjacent pairs and ν is the codegree of non-adjacent ones). There are thus precisely 2 nontrivial
eigenvalues of G given by 1

2((µ − ν) ±
√

(µ− ν)2 + 4(q + 1− ν)) = ±√q, and in particular the
smallest eigenvalue is λN = −√q. Hoffman’s eigenvalue bound (stating that α ≤ −mλm

λ1−λm
for any

regular m-vertex graph with largest and smallest eigenvalues λ1, λm resp., see e.g. [14]) now shows

α(G) ≤ −NλN

(q + 1)− λN
=

(q2 + q + 1)
√
q

q −√
q + 1

= q3/2 + q +
√
q ,

as required. �

In addition to demonstrating a large gap between χf and β on the projective-Hadamard graphs,
we show that even in the extreme cases where G is a triangle-free graph on n vertices, in which
case χf (G) ≥ n/2, one can construct Index Coding schemes that significantly outperform χf . We
prove this in Section 4.2 by providing a family of triangle-free graphs on n vertices where β ≤ 3

8n.

4.2 Broadcast rates for triangle-free graphs

In this section we study the behavior of the broadcast rate for triangle-free graphs, where the upper
bound bn on β is at least n/2. The first question in this respect is whether possibly β = bn in this
regime, i.e. for such sparse graphs one cannot improve upon the fractional clique-cover approach
for broadcasting. This is answered by the following result.

Theorem 4.1. There exists an explicit family of triangle-free graphs on n vertices where χf ≥ n/2
whereas the broadcast rate satisfies β ≤ 3

8n.

The following lemma will be the main ingredient in the construction:

Lemma 4.2. For arbitrarily large integers n there exists a family F of subsets of [n] whose size
is at least 8n/3 and has the following two properties: (i) Every A ∈ F has an odd cardinality.
(ii) There are no distinct A,B,C ∈ F that have pairwise odd cardinalities of intersections.

Remark 4.3. For n even, a simple family F of size 2n with the above properties is obtained by
taking all the singletons and all their complements. However, for our application here it is crucial
to obtain a family F of size strictly larger than 2n.
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Remark 4.4. The above lemma may be viewed as a higher-dimensional analogue of the Odd-
Town theorem: If we consider a graph on the odd subsets with edges between those with an odd
cardinality of intersection, the original theorem looks for a maximum independent set while the
lemma above looks for a maximum triangle-free graph.

Proof of lemma. It suffices to prove the lemma for n = 6 by super-additivity (we can partition a
ground-set [N ] with N = 6m into disjoint 6-tuples and from each take the original family F).

Let U1 =
{
{x} : x ∈ [5]

}
be all singletons except the last, and U2 =

{
A∪{6} : A ⊂ [5] , |A| = 2

}
.

Clearly all subsets given here are odd.

We first claim that there are no triangles on the graph induced on U2. Indeed, since all subsets
there contain the element 6, two vertices in U2 are adjacent iff their corresponding 2-element subsets
A,A′ are disjoint, and there cannot be 3 disjoint 2-element subsets of [5].

The vertices of U1 form an independent set in the graph, hence the only remaining option for a
triangle in the induced subgraph on U1 ∪ U2 is of the form {x}, (A ∪ {6}), (A′ ∪ {6}). However, to
support edges from {x} to the two sets in U2 we must have that x belongs to both sets, and since
x 6= 6 by definition we must have x ∈ A ∩ A′. However, we must also have A ∩ A′ = ∅ for the two
vertices in U2 to be adjacent, contradiction.

To conclude the proof observe that adding the extra set [5] does not introduce any triangles,
since U1 is an independent set while [5] is not adjacent to any vertex in U2 (its intersection with any
set (A ∪ {6}) ∈ U2 contains precisely 2 elements). Altogether we have |F| = 5 +

(
5
2

)
+ 1 = 8

3n. �

Proof of Theorem 4.1. Let F be the family provided by the above lemma and consider the graph
G whose N vertices are the elements of F with edges between A,B whose cardinality of intersection
is odd. By definition the graph G is triangle-free and we have χf (G) ≥ N/2.

Next, consider the binary matrix M indexed by the vertices of G where MA,B = |A ∩ B|
(mod 2). All the diagonal entries of M equal 1 by the fact that F is comprised of odd subsets only,
and clearly M is a representation of G over GF (2). At the same time, M can be written as FFT

where F is the N × n incidence-matrix of the ground-set [n] and subsets of F . In particular we
have that rank(M) ≤ rank(F ) ≤ n over GF (2). This implies that minrk2(G) ≤ n and the proof is
now concluded by the fact that β(G) ≤ minrk2(G). �

Remark 4.5. The construction of the family of subsets F in Lemma 4.2 relied on a triangle-free
15-vertex base graph H which is equivalent to the Peterson graph with 5 extra vertices added to
it, each one adjacent to one of the independent sets of size 4 in the Peterson graph.

Having discussed the relation between β and bn for sparse graphs we now turn our attention to
the analogous question for the other extreme end, namely whether β = b1 when b1 = α attains its
smallest possible value (other than in the complete graph) of 2.

4.3 Graphs with a broadcast rate of nearly 2

We now return to the setting of undirected graphs, where the class of {G : β(G) = 2} is simply the
complements of nonempty bipartite graphs, where in particular Index Coding is trivial. It turns
out that extending this class to {G : β(G) < 2 + ε} for any fixed small ε > 0 already turns this
family of graphs to a much richer one, as the following simple corollary of Theorem 1 shows. Recall
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that the Kneser graph with parameters (n, k) is the graph whose vertices are all the k-element
subsets of [n] where two vertices are adjacent iff their two corresponding subsets are disjoint.

Corollary 4.6. Fix 0 < ε < 1
2 and let G be the complement of the Kneser(n, k) graph on N =

(
n
k

)
vertices for n = (2 + ε)k. Then β(G) ≤ 2 + ε whereas χ(G) ≥ (ε/2) logN .

Proof. Using topological methods, Lovász [18] proved that the Kneser graph with parameters (n, k)
has chromatic number n − 2k + 2, in our case giving that χ(G) = εk + 2 ≤ (ε/2) logN (with the
last inequality due to the fact that N ≥ [e(2+ε)]k and so k ≥ 1

2 logN). At the same time, it is well
known that G satisfies χf = n/k (its maximum clique corresponds to a maximum set of intersecting
k-subsets, which has size ω =

(
n−1
k−1

)
by the Erdős-Ko-Rado Theorem, and being vertex-transitive

it satisfies χf = N/ω). The bound β ≤ bn = χf given in Theorem 1 thus completes the proof. �

5 Establishing the exact broadcast rate for families of graphs

5.1 The broadcast rate of cycles and their complements

The following theorem establishes the value of β for cycles and their complements via the LP
framework of Theorem 1.

Theorem 5.1. For any integer n ≥ 4 the n-cycle satisfies β(Cn) = n/2 whereas its complement
satisfies β(Cn) = n/bn/2c. In both cases β1 = dβe while α = bβc.

Proof. As the case of n even is trivial with all the inequalities in (1.2) collapsing into an equality
(which is the case for any perfect graph), assume henceforth that n is odd. We first show that
β(Cn) = n/2. Putting n = 2k + 1 for k ≥ 2, we aim to prove that b2 ≥ k + 1/2, which according
to Theorem 1 will imply the required result since clearly χf = k + 1/2.

Denote the vertices V of the cycle by 0, 1, . . . , 2k. Further define:

E = {i : i ≡ 0 mod 2 , i 6= 2k} (Evens) ,

O = {i : i ≡ 1 mod 2} (Odds) ,

E+ = {i : i ≤ 2k − 2} (Evens decoded) ,

O+ = {i : 1 ≤ i ≤ 2k − 1} (Odds decoded) ,

M = {i : 1 ≤ i ≤ 2k − 2} (Middle) .

Next, consider the following constraints in the LP B2:

X(∅) + k ≥ X(E) (slope)

X(∅) + k ≥ X(O) (slope)

X(∅) + 1 ≥ X({2k}) (slope)

X(E) ≥ X(E+) (decode)

X(O) ≥ X(O+) (decode)

X(E+) +X(O+) ≥ X(V ) +X(M) (submod , decode)

X(M) +X({2k}) ≥ X(V ) +X(∅) (submod , decode)

2X(V ) ≥ 2(2k + 1) (initialize) .
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Summing and canceling we get 2X(∅) + 2k + 1 ≥ 4k + 2, implying X(∅) ≥ k + 1/2. The main
idea of this proof, as with the ones to follow, is that we input some sets of vertices and then apply
decoding to the sets as well as combine them together using submodularity to eventually output
X(V ) and X(∅).

It remains to treat complements of odd cycles. Let H = AACn be the complement of a directed
odd almost-alternating cycle on n vertices (as defined in Section 3.3). Treating Cn as a directed
graph (replacing each edge with a bi-directed pair of edges) it is clearly a spanning subgraph of H,
hence β(Cn) is at least as large as β(H). The proof in Section 3.3 establishes that β(H) ≥ n

bn/2c ,
translating to a lower bound on β(Cn). The matching upper bound follows from the fact that due
to Theorem 1 we have β(Cn) ≤ χ(Cn) = n

bn/2c . �

5.2 The broadcast rate of cyclic Cayley Graphs

In this section we demonstrate how the same framework of the proof of Theorem 5.1 may be applied
with a considerably more involved sequence of entropy-inequalities to establish the broadcast rate of
two classes of Cayley graphs of the cyclic group Zn. Recall that a cyclic Cayley graph on n vertices
with a set of generators G ⊆ {1, 2, . . . , bn/2c} is the graph on the vertex set {0, 1, 2, . . . , n − 1}
where (i, j) is an edge iff j − i ≡ g (mod n) for some g ∈ G.

Theorem 5.2. For any n ≥ 4, the 3-regular Cayley graph of Zn has broadcast rate β = n/2.

Theorem 5.3 (Circulant graphs). For any integers n ≥ 4 and k < n−1
2 , the Cayley graph of Zn

with generators {±1, . . . ,±k} has broadcast rate β = n/(k + 1).

To simplify the exposition of the proofs of these theorems we make use of the following definition.

Definition 5.4. A slice of size i in Zn indexed by x is the subset of i contiguous vertices on the
cycle given by {x+ j (mod n) : 0 ≤ j < i}.

Proof of Theorem 5.2. It is not hard to see that for a cyclic Cayley graph to be 3-regular it
must have two generators, 1 and n/2, and n must be even. If n is not divisible by four, then it is
easy to check that there is an independent set of size n/2 and χf is also n/2. Thus, it immediately
follows that β = n/2. For 3-regular cyclic Cayley graphs where n is divisible by four, α is strictly
less than n/2. So to prove that β = n/2 we use the LP B2 to show b2 ≥ n/2, implying β ≥ n/2.

Let 0, 1, 2, . . . , 4k− 1 be the vertex set of the graph. We assume that any solution X has cyclic
symmetry. That is, X(S) = X({s+ i|s ∈ S}) for all i ∈ [0, 4k− 1]. This assumption is without loss
of generality because we can take any LP solution X and find a new one X ′ that is symmetric and
has the same value by setting X ′(S) = 1

4k

∑4k−1
i=0 X({s+ i|s ∈ S}). All the constraints are feasible

for X ′ because each is simply the average of 4k feasible constraints.

In our proof we will be using the following subsets of vertices:

[i] = {0, 1, 2, . . . , i− 1} (a slice of size i)

D = {0, 2, . . . , 2k − 4, 2k − 2, 2k + 1, 2k + 3, . . . , 4k − 5, 4k − 3}
D+ = {0, 1, 2, . . . , 2k − 4, 2k − 3, 2k − 2, 2k + 1, 2k + 2, 2k + 3, . . . , 4k − 4, 4k − 3} .

Observe from Figure 2 that D  D+. Also note that D+ is missing only four vertices, two on
each side almost directly across from each other, and |D| = 2k − 1.
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Figure 2: A 3-regular cyclic Cayley graph on 4k vertices. Highlighted vertices mark the set D used
in the proof of Theorem 5.2.

Similar to our proof for the 5-cycle, we will prove b2 ≥ n/2 by listing a sequence of constraints
in the LP B2 that sum and cancel to give us X(∅) ≥ n/2. However, this proof differs from the
5-cycle proof because we list inequalities implied not only by the constraints in our LP but also
our assumption of cyclic symmetry. The fact that any two slices of size i have the same X value is
used heavily in the sequence of inequalities that make up our proof.
First, we create 2k − 1 X(D+) terms on the right-hand-side:

(2k − 2) +X(∅) ≥ X(D \ {0}) (slope)

X([1]) +X(D \ {0}) ≥ X(D+) +X(∅) (submod , decode)

(2k − 2)((2k − 1) +X(∅) ≥ X(D+)) (slope , decode)

Now, we apply submodularity to slices of size i = 2 . . . 2k and an X(D+) term — canceling all the
X(D+) terms we created on the right-hand-side in the previous step. We pick our slices so that
the union is a slice missing only two vertices, and the intersection is a slice of size i− 1.

X(D+) +X([2k]) ≥ X([4k − 2]) +X([2k − 1])

X(D+) +X([2k − 1]) ≥ X([4k − 2]) +X([2k − 2])
...

X(D+) +X([2]) ≥ X([4k − 2]) +X([1])

If we sum and cancel the inequalities listed so far we have:

2k(2k − 2) + (2k − 2)X(∅) +X([2k]) ≥ (2k − 1)X([4k − 2])
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Now, we combine all 2k − 1 of the X([4k − 2]) terms to get full cycles.

2X([4k − 2]) ≥ X(V ) +X([4k − 3])

X([4k − 3]) +X([4k − 2]) ≥ X(V ) +X([4k − 4])

X([4k − 4]) +X([4k − 2]) ≥ X(V ) +X([4k − 5])
...

X([2k + 1]) +X(H[4k − 2]) ≥ H(V ) +H([2k])

Now, we are left with:
2k(2k − 2) + (2k − 2)X(∅) ≥ (2k − 2)X(V )

We can apply the constraint X(V ) ≥ n, yielding:

2k(2k − 2) + (2k − 2)X(∅) ≥ (2k − 2)4k

thus X(∅) ≥ 2k for any feasible solution, implying b2 ≥ 2k = n/2. �

Proof of Theorem 5.3. It is easy to check that χf for these graphs is n/(k+1), so it is sufficient
to prove that b2 ≥ n/(k + 1). As we did in the proof of Theorem 5.2 we will assume that our
solution X has cyclic symmetry. Suppose that n mod (k + 1) ≡ j. Now, consider dividing the
cycle into sections of size k + 1 and let S be the set of vertices consisting of the first k in each
complete section (|S| = k(n− j)/(k+ 1)). Then by decoding X(S) = X([−j]) where [−j] is a slice
of size n− j. We will also use [j] to denote a set of size j, as in the proof of Theorem 5.2. Observe
that if j = 0 then this observation alone completes the proof.

Lemma 5.5. (k + 1)X[−j] +X[k] ≥ (k + 1)[−j − 1] +X(∅)

Proof. The following inequalities are true by submodularity and the cyclic symmetry of X. In each
inequality we apply submodularity to two slices, say of size s and t, s ≤ t, overlapping such that
their intersection is a slice of size s− 1 and their union a slice of size t+ 1.

X([−j]) +X([−j]) ≥ X([−j + 1]) +X([−j − 1])

X([−j]) +X([−j − 1]) ≥ X([−j + 1]) +X([−j − 2])

X([−j]) +X([−j − 2]) ≥ X([−j + 1]) +X([−j − 3])
...

X([−j]) +X([−j − (k − 1)]) ≥ X([−j + 1]) +X([−j − k])

X([−j − k]) +X([k]) ≥ X(∅) +X([−j + 1]) (submod , decode).

Adding up all of these inequalities gives us the desired inequality. �

Now, if we sum together the following string of inequalities we get the bound we want on X(∅).
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Essentially, we iteratively apply our Lemma to get us to the trivial j = 0 case.

k(n− j) + (k + 1)X(∅) ≥ (k + 1)X([−j]) (slope , decode)

jk + jX(∅) ≥ jX([k]) (slope)

(k + 1)X([−j]) +X([k]) ≥ (k + 1)X([−j − 1]) +X(∅) (by Lemma 5.5)

(k + 1)X([−j − 1]) +X([k]) ≥ (k + 1)X([−j − 2]) +X(∅) (by Lemma 5.5)
...

(k + 1)X([−1]) +X([k]) ≥ (k + 1)X(V ) +X(∅) (by Lemma 5.5)

(k + 1)X(V ) ≥ (k + 1)n .

This completes the proof. �

5.3 The broadcast rate of specific small graphs

For any specific graph one can attempt to solve the second level of the LP-hierarchy directly to
yield a possibly tight lower bound β ≥ b2. The following corollary lists a few examples obtained
using an AMPL/CPLEX solver.

Fact 5.6. The following graphs satisfy b2 = β = χf :

(1) Petersen graph (Kneser graph on
(
5
2

)
vertices): n = 10, α = 4 and β = 5.

(2) Grötzsch graph (smallest triangle-free graph with χ = 4): n = 11, α = 5 and β = 11
2 .

(3) Chvatal graph (smallest triangle-free 4-regular graph with χ = 4): n = 12, α = 4 and β = 6.

6 Coverage functions: a proof of Lemma 2.10

Lemma 2.10 (§ 2.2) will readily follow from establishing the following Lemmas 6.1 and 6.2, as it
is easy to verify that the slope constraints and the i-th order submodularity constraints in our LP
are equivalent to the inequalities in Eq. (6.1).

Lemma 6.1. A vector X, indexed over all subsets of the groundset V , satisfies

∀R 6= ∅,∀Z ∩R = ∅,
∑
T⊆R

(−1)|R\T |X(T ∪ Z) ≤
{

1 if |R| = 1
0 otherwise

(6.1)

if and only if it satisfies:

∀R ⊆ V,R 6= ∅,
∑
T⊆R

(−1)|T |(X(R \ T )− |R \ T |) ≤ 0 . (6.2)

Lemma 6.2. A vector X, indexed over all subsets of the ground-set V , satisfies (6.2) if and only
if there exists a vector of non-negative numbers w(T ), defined for every non-empty vertex set T ,
such that X(S) = |S|+

∑
T :T 6⊆S w(T ) ∀S ⊆ V .

Proof of Lemma 6.1. First, we claim that X satisfies (6.2) if and only if it satisfies:

∀R ⊆ V,R 6= ∅,
∑
T⊆R

(−1)|R\T |X(T ) ≤
{

1 if |R| = 1 ,
0 otherwise.

(6.3)
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Starting with the inequalities (6.2), observe that we get an equivalent set of inequalities when
we switch the roles of T and R\T , as it is essentially summing over the complements of T instead of
T . Additionally, for |R| ≥ 2 we can remove the constant term because it is equal to the alternating
sum ±

∑k
i=1(−1)k

(|R|
k

)
k = 0. If |R| = 1 then the constant term is one.

Now, we show the equivalence of (6.3) and (6.1). Clearly, if X satisfies (6.1) then it satisfies
(6.3) because the inequalities in the latter are a subset of the inequalities in the former. Now, we
show by induction on the size of Z that (6.3) implies (6.1). Our base case, |Z| = 0 holds trivially.
We assume that (6.3) implies (6.1) for |Z| < |Z∗| and show the following inequality holds:

∑
T⊆R∗

(−1)|R
∗\T |X(T ∪ Z∗) ≤

{
1 if |R| = 1
0 otherwise

(?)

By our inductive hypothesis, Eq. (6.3) implies the following two inequalities from (6.1):

R = R∗ ∪ {z} , Z = Z∗ \ {z} , (I)

R = R∗ , Z = Z∗ \ {z} (II)

for some z ∈ Z∗. It is easy to see that (?)− (II) = (I), thus we can derive (?) from (I), (II). �

Proof of Lemma 6.2. Suppose there exists a vector of non-negative numbers w(T ), defined for every
non-empty vertex set T , such that X(S) = |S|+

∑
T :T 6⊆S w(T ) ∀S ⊆ V as in the statement of our

Lemma. Then rearranging, we have:

X(S)− |S| =
∑

T :T 6⊆S

w(T ) =
∑

T :T∩S 6=∅

w(T ) ∀S ⊆ V

Now, define F (S) = X(S)− |S|.

Lemma 6.3. The set function F satisfies

∀R ⊆ V,R 6= ∅,
∑
T⊆R

(−1)|T |F (R ∪ T ) ≤ 0. (6.4)

if and only if there exists a vector of non-negative numbers w(T ), defined for every non-empty
vertex set T , such that

F (S) =
∑

T :T∩S 6=∅

w(T ) ∀S ⊆ V. (6.5)

Remark 6.4. A set function F is called a weighted set cover function if it can be written as in
Eq. (6.5).

Plugging in X(S)−|S| for F (S) and noting that R ∪ T = R\T it is easy to see that Lemma 6.3
implies our desired result. Thus, it remains to prove Lemma 6.3.

Proof of Lemma 6.3. In this proof we will be working with vectors and matrices whose rows and
columns are indexed by subsets of V . Let n = |V |, N = 2n. Expressing F and w as vectors with
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N − 1 components (ignoring the component corresponding to the empty set), this equation can be
written in matrix form as

F = Mw,

where M is the (N − 1)-by-(N − 1) matrix defined by

MTS =

{
1 if T ∩ S 6= ∅
0 otherwise.

We shall see below that M is invertible. It follows that F can be written as in Eq. (6.5) if and only
if M−1F is a vector w with non-negative components.

To prove that M is invertible and to obtain a formula for the entries of the inverse matrix, let
L be the N -by-N matrix defined by

LTS =

{
1 if T ∩ S 6= ∅
0 otherwise.

In other words, L is the matrix obtained from M by adding a top row and a left column consisting
entirely of zeros. Let us define another matrix K by

KTS = 1− LTS =

{
1 if T ∩ S = ∅
0 otherwise.

We can now begin to make progress on inverting these matrices, using the observation that both
K and K + L can be represented as Kronecker products of 2-by-2 matrices. Specifically,

K =
(

1 1
1 0

)⊗n

, K + L =
(

1 1
1 1

)⊗n

.

The inverse of ( 1 1
1 0 ) is

(
0 1
1 −1

)
. We may now make use of the fact that Kronecker products commute

with matrix products, to deduce that

L

(
0 1
1 −1

)⊗n

= (K + L)
(

0 1
1 −1

)⊗n

−K

(
0 1
1 −1

)⊗n

=
[(

1 1
1 1

) (
0 1
1 −1

)]⊗n

−
[(

1 1
1 0

) (
0 1
1 −1

)]⊗n

=
(

1 0
1 0

)⊗n

−
(

1 0
0 1

)⊗n

.

Examine the matrices occurring on the left and right sides of the equation above, and consider the
submatrix obtained by deleting the left column and top row. On the right side, we obtain −I,
where I denotes the (N − 1)-by-(N − 1) identity matrix. On the left side we obtain M ·A, where A
is the matrix obtained from

(
0 1
1 −1

)⊗n by deleting the left column and top row. This implies that
M is invertible and its inverse is −A. Moreover, one can verify that the entries of −A are given by

−ATS =

{
0 if T ∪ S 6= V

(−1)|T∩S| if T ∪ S = V.
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Recall that a set function F can be expressed as it is in Eq. (6.5) if and only if M−1F has
non-negative entries. Now that we have derived an expression for M−1 we find that this criterion
is equivalent to stating that for all nonempty sets R ⊆ V ,∑

S : T∪S=V

(−1)|T∩S|F (S) ≤ 0.

This condition is equivalent to Eq. (6.2) because every set S such that T ∪ S = V can be uniquely
written as the disjoint union of two sets T and R = T ∩ S. This completes the proof of Lemma 6.3
and subsequently proves Lemmas 6.2 and 2.10. �

7 Open problems

While our work sheds light on the relationship between the broadcast rate, β, the information-
theoretic lower bound b2, and other parameters of index coding problems — as well as on the
computational complexity of computing or approximating β — it also leaves many appealing open
questions on both of these topics. The following is a partial list of such questions.

• What is the largest possible (multiplicative) gap between β and the lower bound b2? Sec-
tion 2.2.2 gives an example where β/b2 ≥ 45/44, but we know of no examples with a greater
multiplicative gap than this.

• Recalling that the linear program for b2 contains exponentially many constraints, is there an
efficient algorithm for computing b2?

• Our results include a polynomial time algorithm for determining whether β = 2 for any
broadcasting network. A major open problem is establishing the hardness of determining
whether β < C for a given graph G and real C > 0. While no such hardness result is known,
presumably this problem is extremely difficult e.g. it is unclear whether it is even decidable.

• In an effort to approximate β, we give an efficient multiplicative o(n)-approximation algorithm
for the general broadcasting problem. Can one obtain an approximation of β (even for case
of undirected graphs) within a multiplicative constant of n1−ε for some fixed ε > 0?

• Using certain projective-Hadamard graphs introduced by Erdős and Rényi, we show that the
broadcast rate can be uniformly bounded while its upper bound bn is polynomially large. Is
the scalar capacity β1 of these graphs unbounded as the field characteristic q tends to ∞?
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