CoRN.old.Npos_no_group
Require Import CGroups.
Require Export Nposmonoid.
Non-example of a group: ⟨Npos,[+]⟩
There is no inverse for multiplication on the positive natural numbers.Lemma no_inverse_Nposmult : ∀ inv : CSetoid_un_op Npos,
¬ is_inverse Npos_mult ONEpos TWOpos (inv TWOpos).
Proof.
intro inv.
red in |- ×.
unfold is_inverse in |- ×.
intro H.
elim H.
clear H.
intros H1 H2.
clear H2.
set (H3 := no_inverse_Nposmult1) in ×.
elim (H3 (inv TWOpos)).
exact H1.
Qed.
Hence the natural numbers with multiplication do not form a group.
Lemma no_group_Nposmult : ∀ inv : CSetoid_un_op Nposmult_as_CMonoid,
¬ is_CGroup Nposmult_as_CMonoid inv.
Proof.
simpl in |- ×.
intro inv.
red in |- ×.
unfold is_CGroup in |- ×.
intro H.
set (H0 := H (Build_subcsetoid_crr nat_as_CSetoid (fun n : nat ⇒ n ≠ 0) 2 (S_O 1))) in ×.
set (H1 := no_inverse_Nposmult inv) in ×.
apply H1.
exact H0.
Qed.