
rithms,

]. This

ore, the

uces the

sing data

proving

-14940.
Compressed Domain Processing of JPEG-encoded images1

Brian C. Smith, Cornell University

Lawrence A. Rowe, University of California at Berkeley

Abstract

This paper addresses the problem of processing motion-JPEG video data in the compressed domain. The operations

covered are those where a pixel in the output image is an arbitrary linear combination of pixels in the input image,

which includes convolution, scaling, rotation, translation, morphing, de-interlacing, image composition, and

transcoding. This paper further develops an approximation technique called condensation to improve performance

and evaluates condensations in terms of processing speed and image quality. Using condensation, motion-JPEG

video can be processed at near real-time rates on current generation workstations.

1 Introduction

Processing video data is problematic due to the high data rates involved. Television quality video requires

approximately 100 GBytes for each hour, or about 27 MBytes for each second. Such data sizes and rates severely

stress storage systems and networks and make even the most trivial real-time processing impossible without special

purpose hardware. Consequently, most video data is stored in a compressed format.

While compression decreases storage and network costs, it increases processing cost because the data must be

decompressed first. The overhead of decompression is enormous: today’s sophisticated compression algo

such as JPEG or MPEG, require between 150 and 300 instructions per pixel for decompression [1

corresponds to a rate of 2.7 billion instructions for each second of NTSC quality video processed. Furtherm

data must often be compressed after processing, incurring additional overhead.

One way to circumvent these problems is to process the video data in compressed form. This technique red

amount of data that must be processed and avoids complex compression and decompression. Decrea

volume has the side effect of increasing data locality and more effectively using the processor cache, im

performance further.

1.This research was supported by the National Science Foundation under grants DCR-85-07256 and MIP-90
Page 1

In a previous paper [2], we showed how to perform scalar and pixel-wise addition or multiplication directly on

motion-JPEG video. In this paper, we extend this work to show how a wider class of operations, where each pixel

in the output image is a linear combination of several pixels in the input image, can be computed in the compressed

domain. Doing so is challenging because such operations often cross JPEG block boundaries. We address this

problem by writing the operations as tensors to capture the block structure of the compressed image data. We then

show how to express JPEG compression and decompression as tensors, allowing the compressed domain equivalent

of the image operator to be computed.

Unfortunately, the resulting operation turns out to be no faster than spatial domain processing. Consequently, we

develop an approximation technique called condensation the introduces a dead-zone in the compressed domain

operator. Condensation dramatically reduces the cost of computing an image, but degrades its quality. This speed/

quality trade-off is studied in section 5. A prototype implementation shows that this technique runs at rates

approaches real-time on current generation computers. For example, a smoothing filter can be applied to a 320 by

240 JPEG-encoded image in about 75 milliseconds on a DEC alpha workstation, which is approximately 12 frames

per second.

The rest of this paper is organized as follows. Section 2 shows how to express images, JPEG compression, JPEG

decompression, and image operations as tensors. In section 3 we combine these tensors to construct a single linear

operator that can be applied to compressed video images. Section 4 describes an approximation technique, called

thresholding condensation, that allows the operators to be efficiently computed. In section 5, we report the results

of an experimental implementation of these techniques, in section 6 we discuss applications of this technique, and

in section 7 we compare our work with related work and suggest directions for future research.

2 Images, Image Processing, and JPEG as Tensors

Image Representation and Manipulation

A gray scale image, f, is conventionally represented as an matrix of pixels fαβ, where α and β specify the row and

column position of the pixel. Many operations on images can be expressed using linear combinations of these
Page 2

pixels. For instance, one way to express a smoothing operation is this: a pixel in the output image g is half the value

of the corresponding pixel in the input image f plus one-eighth the sum of the four neighboring pixels:

 (EQN 1)

or, in the operation of shrinking an image by a factor of two, each pixel in g is the average of four pixels in f:

 (EQN 2)

If the coefficients in these operations are gathered in a four dimensional matrix, T, the output image g is the product

of T and the input image f:

For example, in equation 1, T is

and in equation 2, T is

T is a fourth rank tensor (a four dimensional matrix) that maps a second rank tensor (a two dimensional matrix --

the input image f) into another second rank tensor (the output image f). We make no assumptions about the

structure of T, although in practice, T is very sparse, since in most image processing operations an output pixel

depends on few input pixels. The tensor representation is quite flexible. Since each output pixel is a distinct linear

combination of the input pixels, it can capture image processing operations not easily expressed in other

formulations. For example, T can represent an operator that blurs one part of an image and sharpens another, or an

operator that performs different affine transformations on different parts of the image, as in morphing.

gαβ
fα 1– β, fα β 1–, fα 1+ β, fα β 1+,+ + +

8

fα β,
2

----------+=

gαβ
f2α 2β, f2α 1+ 2β, f2α 2β 1+, f2α 1+ 2β 1+,+ + +

4
--=

gγδ Tαβγδfαβ
αβ
∑=

Tαβγδ

1 2⁄
1 8⁄
1 8⁄

0







=

α γ= β δ=if and
α γ= β δ 1±=if and
α γ 1±= β δ=if and

otherwise

Tαβγδ
1 4⁄

0



= γ α 2⁄= δ β 2⁄=if and

otherwise
Page 3

Suppose we want to apply T directly on a JPEG-encoded image (JPEG is described in the next section). One

problem that arises is that T may cross block boundaries. To capture this block structure, we represent f as a fourth

rank tensor fxyij, with α = 8x+i and β= 8y+j. The first pair of indices, x and y, specify the block address, and the

second pair, i and j, specify the pixel offset within the block, as shown in figure 1. Images that represented this way

are called block-oriented images.

To capture block structure in tensor operators, we convert the fourth rank tensor Tαβγδ into an eighth rank tensor

Txyijwzuv, with the correspondence α = 8x+i, β= 8y+j, γ= 8w+u, and δ= 8z+v. This new tensor maps one block-

oriented image to another

which we can abbreviate g = Tf.

T is an eighth rank tensor that maps a fourth rank tensor (the input image f, in block representation) into another

fourth rank tensor (the output image f). To understand T, the idea of a block transform (BT) is introduced. A BT

maps one 8x8 block of pixels to another. To compute a block in an output image g, BTs are applied to the each

input block in f and the transformed blocks are summed pixel-wise. T is four dimensional array of BTs, with two

indices specifying the output block (w,z), and two specifying the input block (x,y).

For example, consider scaling a 32x16 pixel image f to a 16x8 image g (a shrink-by-2 operation), as shown in figure

2. To compute the left block in g, 8 BTs are applied to the blocks in f. The resulting blocks, shown in the top of the

figure, are added pixel-wise to produce the output block. This strategy is repeated to the right block in g.

JPEG compression as a tensor

Having shown how to express images and their operators as tensors, we now turn to the task of expressing JPEG

compression and decompression as a tensor. To do so, we have to rearrange the steps of the baseline JPEG

algorithm slightly. Briefly, JPEG divides an image into 8x8 blocks and applies six steps to each block. Step one

applies the discrete cosine transform (DCT) to the block. Step two orders the 64 DCT coefficients into a 64 element

vector using a zig-zag scan, a heuristic to place the low frequency coefficients early in the vector. Step three scales

gwzuv Txyijwzuvfxyij
xyij

∑=
Page 4

the result by dividing each coefficient by a constant. A different constant is used for each coefficient. These

constants are usually arranged in a table, called the quantization table. Step four rounds the result to the nearest

integer. Step five run length encodes the vector, and step six computes the difference between the DC value of this

block and the DC value of the previous block (DPCM) and applies an entropy coding technique (either Huffman or

arithmetic) to the result.

In most formulations, steps three and four are taken together and called quantization. We split them apart so that the

first three steps can be combined into a linear operator, J, since the DCT, zig-zag scanning, and scaling are all linear

operations.

With the first three steps combined, JPEG compression is the four step process as shown in figure 3. The first step

applies the linear transformation J to each 8 x 8 pixel block f in the input image. The output is a 64 element vector

F. The second step rounds each element of F to the nearest integer. The third step produces a sparse vector

representation of F (called the semi-compressed, or SC, vector) using run length encoding, and the final step applies

DPCM to the DC component and entropy encodes the SC-vector.

Decompression of a block, also depicted in figure 3, entropy decodes the JPEG bitstream, inverts the DPCM to

recover the SC-vector, and applies the linear transformation J-1 to recover an approximation of the original pixel

values.

The JPEG operator J is the composition of three linear operations: 1) a discrete cosine transform (DCT), 2) zig-zag

scanning, and 3) scaling. If we write these steps as the tensors D, Z, and S, the J is given by

 (EQN 3)

D is a fourth rank tensor whose elements are

 (EQN 4)

with

Jijl SklZuvkDijuv
u v k, ,
∑=

Dijuv
1
4
---A u()A v()

2i 1+()uπ
16

--------------------------cos
2j 1+()bπ

16
--------------------------cos=
Page 5

 (EQN 5)

Z is a third rank tensor whose elements are all 0 or 1. It is similar in spirit to a permutation matrix, since its function

is to rearrange data. It’s elements are

 (EQN 6)

and S is a diagonal, second rank tensor

 (EQN 7)

where the vector q is derived from the JPEG quantization table.

J-1 is the inverse of J, and is similarly defined.

 (EQN 8)

where D-1 is the IDCT

 (EQN 9)

S-1 is a diagonal operator:

 (EQN 10)

and Z-1 is the inverse zig-zag operator:

 (EQN 11)

A α() 1 2⁄
0




= if α=0
otherwise

Zuvk
1

0



= if zigzag[u,v]= k
otherwise

Skl
1 q k[]⁄

0



= l k=if
otherwise

Jijl
1–

Duvij
1–

Zuvk
1–

Skl
1–

u v k, ,
∑=

Duvij
1– 1

4
---A u()A v() 2i 1+()uπ

16
--------------------------cos

2j 1+()vπ
16

--------------------------cos=

Skl
1– q k[]

0



= l k=if
otherwise

Zuvk
1– 1

0



= if zigzag[u,v]= k
otherwise
Page 6

J is a third rank tensor that maps a second rank tensor (an 8x8 pixel block) into a first rank tensor (a 64 element

vector), as shown in figure 3. This mapping is expressed in the equation . Similarly, J-1 is a third

rank tensor that reverse this mapping, using .

The special structure of Z and S (and their inverses) allow use to compute J and J-1 efficiently. The C code in

figure 4 shows a function, InitOperators, which computes J and J-1 and stores the result in two three

dimensional lookup tables, one for each operator. The code uses three externally defined arrays, zzu, zzv, and qt,

which encode the permutation specified by zig-zag ordering and the quantization tables, respectively.

3 Compressed Domain Processing

Having formulated images, processing, JPEG compression, and JPEG decompression as tensors, these steps are

easily combined. Consider the process of processing a JPEG compressed grayscale image. With the processing

specified by the tensor T, the following steps, illustrated in figure 5, are needed:

1. Decompress the input bitstream to form the SC image. The SC image is a two dimensional array of first rank

tensors called SC-vectors. The SC-vectors are denoted Fxy or Hwz, for the input or output image, respec-

tively, and may be sparsely encoded. Each SC-vector corresponds to an 8x8 pixel block in the decompressed

image. The subscripts specify the block offset.

2. Convert each SC-vector to an 8x8 block of pixels by applying J-1: fxy = J-1Fxy.

3. Compute each 8x8 pixel block in the output image using the block transforms Twzxy:

4. Convert the output image to the SC representation using Hwz = Jhwz.

5. Round, run-length, DPCM, and entropy encode Hwz.

Steps 2, 3, and 4 can be combined:

 (EQN 12)

The term in parentheses is the compressed domain equivalent of the block transform Twzxy:

Fl Jijlfij
i j,
∑=

fij Jijl
1–
Fl

l
∑=

hxy Twzxyfxy
xy
∑=

Hxy J Twzxy J 1– Fxy()
xy

∑
 
 
 

JTwzxyJ 1–()Fxy
xy

∑= =
Page 7

τwzxy = JTwzxyJ-1 (EQN 13)

τwzxy is a block transform that computes an SC-vector in the output directly from the SC-vectors in the input. Using

τwzxy, images can be processed in the compressed domain, as shown in figure 6. The steps are:

1. Decompress the input bitstream to form the SC image.

2. Compute each output SC-vector using the block transform τwzxy: .

3. Round, run-length, DPCM, and entropy encode Hwz.

Each SC-vector in the output (Hwz) is computed by multiplying each SC-vector in the input (Fxy) by it

corresponding block transform (τwzxy) and accumulating. Since SC-vectors are first rank tensors (i.e., vectors, or

one dimensional arrays), and the block transforms τwzxy are second rank tensors (i.e., matrices, or two dimensional

arrays), the structure of the calculation is a sum of matrix/vector multiples.

Returning to the example of shrinking a 32x16 image (4x2 blocks) to a 16x8 image (2x1 blocks), to compute the

left SC-vector, H00 (figure 7), the SC-vectors F00, F01, F02, F03, F10, F11, F12, and F13 are multiplied by the block

transforms τ0000, τ0001, τ0002, τ0003, τ0010, τ0011, τ0012, and τ0013, respectively:

H00 = τ0000*F00 + τ0001*F01 + τ0002*F02 + τ0003*F03 + τ0010*F10 + τ0011*F11 + τ0012*F12 + τ0013*F13

Since, in shrink by 2, the right most four blocks in F do not affect H00, the block transforms τ0002, τ0003, τ0012, and

τ0013 are zero and can be ignored for efficiency. The other four block transforms, τ0000, τ0001, τ0010, and τ0011, are

64 by 64 matrices. To give you some intuition for what these matrices look like, the first sixteen rows and columns

of τ0000 are shown in the top of figure 4. A scatter plot showing the positions of the non-zero elements of τ0000 is

shown in the bottom of figure 4.

This example illustrates an important property of τ: most of the τwzxy are zero. This property allows the

computation of output images to be performed efficiently. It holds for many compressed domain image operators,

since in most image processing a pixel in the output image is a function of only a few pixels in the input.

Hxy τwzxyFxy
xy
∑=
Page 8

Despite the spareness of τ, the compressed domain operation is still slow. To see why, recall that the output SC-

vector is the sum of a sequence of matrix/SC-vector multiplies. Each SC-vector has 64 elements, and each of the

multiplying matrices are 64x64, so 4K multiply/add operations are required for each matrix/SC-vector multiply.

With several such terms, the operation count gets large. For example, shrink-by-2 requires four matrix/SC-vector

multiplies per output block, so 16K multiply/add operations are required for each output block. Thus, an average of

16K/64 = 256 multiplies is required per pixel (since each SC-vector represents 64 pixels), which is more expensive

than the spatial domain operation.

Since the SC-vectors are stored in a run length encoded format and typically sparse, sparse matrix techniques can be

used to reduce the number of multiplies. But the computation is still too expensive to compute in real-time on

general purpose workstations. The next section develops an approximation technique that reduces this cost to a few

multiplies per pixel.

4 Condensation

This section describes a technique, called condensation, that approximates compressed domain operators so they

can be efficiently computed. Condensation modifies the operator τ to produce a new operator τ′ such that τ′ is

sparse and when τ′ is used to compute an effect, the result will be nearly identical to that computed using τ. In other

words, if H=τF and H’ =τ’F, then .

Since τ’ is sparse and the input vectors F are sparse, the resulting computation can be implemented efficiently. Two

properties, one of τ and one of the input vectors, make condensation possible.

1. Most elements of τ have small absolute values [1]. For example, 90% of the elements in shrink-by-2 have an

absolute value less than 0.05. You can see this by examining figure 4.

2. The input vectors F are sparse, and non-zero values are typically small integers. This property is expected,

since the DCT concentrates the energy of the image into a few coefficients. Furthermore, JPEG quantizes

high frequency components aggressively, leading to the small absolute values of these elements.

These two properties allow us to approximate τ as a sparse tensor as follows. An element in an output SC-vector is

a linear combination of elements in a set of input SC-vectors. The elements themselves are small integers, and the

H H ′≈
Page 9

no
coefficients of this linear combination are stored in τ. Small elements of τ, called insignificant elements, will have

little effect on the value of this sum, since they will be multiplied by small integers, and the result will be rounded

off anyway in the next step (figure 6). In other words, why go to the trouble of computing the output to several

decimal points if you are going to throw away the fraction anyway?

We can exploit this observation by setting insignificant elements in τ to zero. Doing so will reduce the number of

operations required to compute H, but at the price of a small error in the output. Such errors are likely to be

undetected because JPEG compression introduces the same type of loss. Since the majority of the elements of τ are

insignificant (property 1), this optimization should save a large number of arithmetic operations. We call this

process of setting elements of τ to zero condensation. In effect, condensation introduces a dead zone into the

operator: elements in the operator below a threshold are set to zero. The question is: what elements of τ can we

safely set to zero?

To answer this question, let us formulate the concept of condensation more precisely. Recall that the value of an

output vector H is computed as a sum of matrix/SC-vector multiplies:

 (EQN 14)

Let N be the number of matrix/SC-vector multiplies in this sum (e.g., N=4 for shrink-by-2). If we use the condensed

operator τ’ instead of τ, the error in Hwz is

 (EQN 15)

where ∆τ is the tensor composed of insignificant elements of τ. The worst case error occurs when all elements inF

are at their maximum value. In thresholding condensation, the tensors τ are condensed by guaranteeing that

element in ∆Hwz will never exceed a parameter maxerr in a worst-case scenario. If we let maxk denotes the worst-

case (i.e., the largest) value of the kth element of the SC-vector, the heuristic to zero an element of τ is

 (EQN 16)

Hwz τxywzFxy
xy

∑=

∆Hwz τxywzFxy
xy

∑ τ'xywzFxy
xy

∑– ∆τ'xywzFxy
xy

∑= =

τwzxykl
maxerr

64 N maxk× ×-------------------------------------<
Page 10

Maxk can be chosen statistically using data gathered from a large set of images [1]. These ideas lead directly to the

following algorithm

Algorithm (Thresholding Condensation)

1. max: array [0..63] of integer;

2. N := number of transform tensors

3. for each tensor τ

4. for k := 0 to 63 do begin

5. threshold := maxErr/(64*N*max[k]);

6. for l := 0 to 63 do

7. if (τ[l][k] <= threshold) then

8. τ[l][k] = 0.0;

9. end

In this code, the array τ is a block transform tensor and max stores the largest expected value of an AC component

of any SC-vector (see appendix A). In lines 7-8, any insignificant element, as specified by equation 16, is set to zero.

The threshold is set so that the error in the output is bounded by maxerr. Unfortunately, when large values of

maxerr are used, the block transform matrices τwzxy cannot be condensed independently. To see why, suppose you

had an operator with N=3 (i.e., the output SC-vector is a linear combination of three input SC-vectors), and the

value of the first AC component of the output SC-vector is given by

H1 = 2A0 -B0 -C0

where A0, B0, and C0 are the DC components of the three input SC-vectors. If A0 = B0 = C0, the terms cancel and

H1 is zero. Now, suppose condensation uses a threshold such that the two terms with B0 and C0 drop out. Then the

new value for H1 is H1 = 2A0. Since A0 is the DC component, A0 can be large, and in such a case the output

component H1 will be large and result in highly visible artifacts in the output. Figure 9 shows a solid gray image

filtered with a gaussian blur filter where each compressed domain tensor in the filter was condensed independently
Page 11

using thresholding condensation. The pattern of dots are artifacts caused by setting AC components of the output

SC-vector, such as H1, to relatively large values (the output should be uniform gray).

This problem can be solved by introducing the concept of tensor bias. The tensor bias of τ is defined as

 (EQN 17)

Intuitively, tensor bias is a measure of how much the cross-block terms in equation 14 tend to cancel each other out

when the tensor is used to compute the output block at w, z. In the example above, bwz(0,1) is 2 - 1 - 1 = 0 before

condensation, and bwz(0,1) is 2 after condensation. The change in tensor bias means that terms that cancelled each

other out before condensation do not do so afterwards, resulting in artifacts such as those in figure 9.

We can remove these artifacts by adding the constant bias constraint to condensation: the tensor bias after

condensation should be the same as before. To implement the constant bias constraint, we calculate and store the

bias of the tensor before applying a condensation algorithm, condense the tensor, and then adjust the remaining non-

zero elements to restore the bias to its previous value. More precisely, we adjust the elements in the tensors by

distributing the change in bias δb equally among the non-zero elements remaining in the tensor after condensation.

If no elements remain, a randomly selected tensor absorbs the change in bias. δb is given by

 (EQN 18)

5 Implementation and Experimental Results

This section describes a set of experiments we performed to evaluate the effectiveness of compressed domain

processing using condensation. The experiments characterize both the performance of the technique and the quality

of the images computed using condensed operators. We first describe the implementation and then report the

performance results.

Our implementation is divided into two phases. In phase one, the compressed domain tensor τ is computed,

condensed, and stored in a file. In the second phase, τ is read from a file, the JPEG stream is entropy decoded to

recover the SC-image, τ is applied to the SC-vectors to compute the output SC-image, and the result is encoded as a

JPEG bitstream. Phase one is executed off-line, whereas phase two operates in real-time. Since we are not

bwz k l,() τwzxykl
xy

∑=

δbwzkl bwz k l,() b’wz k l,()–=
Page 12

 the

f block

ed
concerned with the speed of off-line processing, our implementation is optimized for phase two. In practice, phase

one takes a few seconds on a typical workstation.

To make phase two efficient, we must develop a data structure for efficiently calculating the output SC-image from

the input SC-image. This calculation can be written:

1. for all w, z in the output image

2. zero the output SC-vector Hwz

3. for all x, y in the input image such that τwzxy is not all zero

4. Compute Fxy*τwzxy and add the result to Hwz

An efficient data structure will exploit the sparseness of the operators and the SC-vectors, and the redundancy in the

block transforms. We used the data structures are diagrammed in figure 10. The SC-vectors of Fxy are stored in the

SparseVector data type. Each SparseVector has a field indicating the size of the array and an array of (index, value)

pairs, which indicate the position and value of the SC-vector’s non-zero elements. Each matrix τwzxy is stored in a

SparseMatrix data structure, consisting of an array of 64 pointers to SparseVectors indexed by k. The SparseVectors

in a SparseMatrix correspond to the columns of a block transform τkl. In this usage, index specifies the row index l

and value contains τkl. In our implementation, each unique SparseMatrix is stored in a table called

SparseMatrixTable, and offsets in this table are used to reference a particular SparseMatrix. The set o

transforms needed to compute an output SC-vector is stored in a linked list of SparseMatrixRefs. A

SparseMatrixRef is a tuple (x, y, num) where x and y indicate the block coordinates of the source SparseVector Fxy

used in line 4, and num indicates the offset of the matrix τwzxy in the SparseMatrixTable. The entire compress

domain tensor is stored in the TransformTable, a two dimensional array of such lists.

1. for all w, z in the output image
Page 13

 does it

n

neration

uality of

the input

late an

r

alues of
2. zero the output SC-vector H;

3. SparseMatrixRef = TransformTable[w,z];

4. while (SparseMatrixRef != NULL)

5. SparseMatrix = SparseMatrixTable[SparseMatrixRef->n]

6. ApplyBlockTransform (F[SparseMatrixRef->x, SparseMatrixRef->y], SparseMatrix, H);

7. SparseMatrixRef = SparseMatrixRef->next;

ApplyBlockTransform multiplies an SC-vector (its first parameter) by a sparsely encoded block transform (its

second parameter) and accumulates the result in its third parameter.

The advantage of this representation is that it exploits the sparseness of τ, it enables the inner loop of the

compressed domain processing algorithm to be efficiently implemented, and it allows matrices to be shared. This

last property allows operators with repeated tensors, such as convolutions, to be stored efficiently.

Experimental Results

Having sketched the data structures used in the implementation, we now answer the question “how well

work?” This question gives rise to two questions: 1) how does the maxerr parameter of thresholding condensatio

affect the quality of the output image and 2) how fast can an operation be computed on a current ge

workstation? We will answer these questions in turn.

The maxerr parameter in thresholding condensation affects the time needed to compute the result and the q

the result. Experiments showed maxerr to be a non-intuitive measure. For example, with maxerr = 2000, reasonable

quality images were produced. This is because thresholding condensation used worse case values for

blocks, which rarely occur. Further investigation showed the average number of multiplies needed to calcu

output vector, which is a function of maxerr, provided a more meaningful measure of condensation than maxerr.

We evaluated the distortion introduced by thresholding condensation for two operations: the blur operation, which

convolves the image with a 7x7 Gaussian filter, and the shrink-by-2 operation, which shrinks an image by a facto

of 2 along each dimension. In the experiment, 12 condensed operators, corresponding to 12 different v
Page 14

d

densed

ith the

 with the

e the

d image

 good,

ndensed

h of the

nd blur

d for our

ytes of

age at

out 3 fps.

uced by

y-2 and
maxerr, were created for each test operator using thresholding condensation. We applied the resulting operators to

98 randomly selected grayscale images and measured two values: the average number of multiplies required to

calculate an output vector and the signal-to-noise ratio (SNR) of the resulting images. SNR is defined as

where rms(•) is the root mean squared over the image, C is the image calculated using the condensed tensor, anO

is the image using the original (uncondensed) tensor.

Figure 11 show the effect of condensation on shrink-by-2. The left image was computed with the uncon

operator (1100 mults/vector), and the right image was computed with the condensed operator at SNR=33 (about 330

mults/vector). Figure 12 shows the effect of condensation on blur. The top image was computed w

uncondensed operator (about 5200 multiplies for each output vector), and the bottom image was computed

condensed operator at SNR=30 (about 90 multiplies for each output vector). These figures are intended to giv

reader an intuitive feeling for the artifacts introduced by condensation and the relationship between SNR an

quality. Subjective evaluation by the authors indicate that at an SNR of about 30, the output quality is quite

and at an SNR above 35, the output image is essentially identical to the image computed using the unco

operator. At SNR values less than 30, the quality of the image degrades rapidly. Figure 13 shows a grap

mean SNR for blur and shrink-by-2 as a function of the number of multiplies.

Table 1 compares the performance of the image space method with our implementation using shrink-by-2 a

at various levels of condensation. The experiments were performed on the same test suite of 98 images use

earlier experiments. The tests used a prototype implementation on a DEC 3000/400 workstation with 64 MB

memory. The table shows that, with reasonable quality output, shrink-by-2 can be applied to a 640x480 im

about 5 frames per second (fps) on our test workstation, and blur can be applied to the same image at ab

Shrink-by-2 is faster that blur because the image produced by shrink-by-2 is smaller than the image prod

blur, which speeds image encoding. The results scale approximately linearly with image area, so shrink-b

blur can be applied to 320x240 images at about 20 fps and 12 fps, respectively

SNR 10
rms O()

rms C O–()------------------------------log=
Page 15

Tables 2 and 3 show the results of profiling our implementation using the two test operators. The table divides the

total execution time into four phases: Huffman Decoding, Huffman Encoding, Operator Application, and Overhead.

Huffman Decoding is the time spent reading and decoding the JPEG file into SC-vectors. Huffman Encoding is the

time spent encoding the output, including quantization, run length coding, DPCM, and bitstream generation.

Operator Application is the time spent computing the product of the condensed operator and input SC-vectors, and

Overhead is the time spent in control flow. In the blur transformation, less than half the time is spent in application

of the condensed operator. For shrink-by-2, only about a quarter of the time is spent in operator application. The

rest of the time is spent in overhead and in entropy coding operations. These results indicate that limited

performance gains are possible by further condensation.

6 Applications

Using the techniques developed in this paper, many important image and video processing problems can be

computed in the compressed domain:

1. Geometric operations. Image warping that use such operations such as translation, rotation, scaling, shear-

ing, and other affine transformations can be expressed using tensors[3]. For example, in scaling a 640 by

480 image to 320 by 240, each pixel in the output image is the average (i.e., a linear combination) of the cor-

responding pixels in the input image.

2. Finite impulse response (FIR) filters used in signal processing are can be expressed using tensors. Such oper-

ations, which include smoothing, embossing effects, edge detection, and image enhancement, can be conve-

niently represented using convolution [4]. The convolution function specifies the linear combination of

pixels in the input image that are used to calculate a pixel in the output image.

3. De-interlacing. In this operation, two images, called the odd and even fields, are combined to form a single

frame. The fields contain sample data from every other line in the video source. A frame is formed by inter-

leaving lines from two fields. To express this operation as a tensor, the two fields are first scaled by a factor

of two in the vertical dimension, with the missing lines set to 0 (black). The two resulting frames can then be

added together pixel-wise to create the deinterlaced frame.

4. Sampling conversion. Video is often represented as a luminance and two chrominance channels. The lumi-
Page 16

nance channel is a gray scale image, whereas the chrominance channels contain the extra information neces-

sary to produce a color image. To reduce storage and bandwidth costs, chrominance channels are often

sampled at a different resolution than the luminance channel. For example, MPEG [5] uses 4:2:0 sampling,

where the luminance image is stored at 352x240 resolution but the chrominance images are stored at

176x120 resolution. Other standards use different sampling, such as 4:2:2. To transform 4:2:2 video to 4:2:0

video, the chrominance images must be down-sampled, a process analogous to image scaling.

5. Morphing is a striking video effect where objects in two video sequences are deformed and the images are

cross-dissolved to create the illusion that one object is transforming into another [6]. The effect is achieved

by applying affine transformations to sections of each image pair, which can be expressed as a tensor. The

pixels in the resulting images are then multiplied by a scalar constant and added together.

6. Image composition. In video composition, multiple video inputs are combined to form a single video output

(e.g., chroma key). Such a compositions can be expressed using a combination of image translation and scal-

ing on the input images, pixel-wise multiplication with a mask image, and pixel-wise additions [7, 8]. This

type of video mixing has been proposed as the basis for next generation video conferencing systems that cre-

ate a virtual conference table, where camera inputs from other conference participants are mixed to form a

composite signal that displays the other attendees seated around a table [9].

In practice, the memory needed to store the compressed domain tensor τ is too large to be practical unless the

spatial domain operation exhibits enough symmetry that the block transforms can be shared. Of the examples

above, only those that use image warping, such as morphing and general affine geometric transforms, are

impractical for this reason.

7 Related Work

Image and video data processing in the spatial domain is a well studied field. The work in this field can be divided

into hardware designs for video processing [10, 11, 12], applications that perform video processing off-line [13, 14,

15], and software techniques and algorithms for image processing [3, 4, 7, 16]. Work on processing video data in

the compressed domain has seen less study. Chitprasert and Rao developed a restricted form of the convolution

theorem for the DCT similar to the DFT convolution theorem [17]. Chang and Messerschmitt have developed a
Page 17

ge case

d using

tors, and

f other

 of other

ad to

estion is

veloped

PEG, it

 servers
technique for compositing motion compensated video in the compressed domain [8, 18]. Their work can be viewed

as a special case of a translational operator coupled with factoring for improved efficiency. More recently,

Natarajan and Bhaskaran [19] have found an efficient method for the special case of the shrink-by-2 operation in

the compressed domain operator. Their method approximates the elements in the compressed domain operator

using powers of two, allowing the result to be computed using only shifts and adds. Shen and Sethi have similarly

examined inner block transforms, operations whose range is confined to a single 8 by 8 block [20]. Arman has

developed a technique to detect scene changes in motion-JPEG compressed video data in the DCT domain [21].

Seales has examined the problem of object recognition in the compressed domain [22]. Broadhead and Owen have

extended these techniques MPEG compressed audio data [23].

Many extensions are possible to the work presented in this paper. Condensation algorithms can be developed that

improve the overall image quality using better metrics for finding insignificant elements than thresholding

condensation. For example, the first author’s dissertation [1] explored an algorithm that bounds the avera

error rather than the worst case error. Unfortunately, the results were no better than those obtaine

thresholding condensation.

The technique of expressing compression and transformation as linear operators, composing the opera

condensing them to produce good approximations of the operator can be applied to a wide variety o

transform-based coding strategies (e.g., wavelet encoding). An interesting research question is how the use

transforms will affect the trade-off of output quality and computation time. Careful study in this area might le

good transcoding techniques that efficiently convert between different compressed representations.

Finally, rather than asking “how fast can I process data in this compressed format?” perhaps a better qu

“can a compression format be developed that allows fast processing?” If a compression format can be de

that allows rapid processing and transcoding to popular compression standards such as motion-JPEG or M

would make an excellent format for secondary storage on video servers with heterogenous clients. Video

could then store a single format and convert it to the appropriate client format in real time.
Page 18

References
1. B. C. Smith, Implementation Techniques for Continuous Media Systems and Applications, Ph. D. Dissertation,

University of California, Berkeley, CA, September 1994.

2. B. C. Smith, L. A. Rowe, Algorithms for Manipulating Compressed Images, IEEE Computer Graphics and Appli-

cations, September 1993, Volume 13, Number 5, pp 34-42.

3. J. D. Foley, et. al., Computer Graphics: Principles and Practice, second edition, Reading, Mass. Addison-Wesley,

1990.

4. A.K.Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Inc. Edglewood Cliffs, New Jersey, 1989

5. D. Le Gall, MPEG:A Video Compression Standard for Multimedia Applications, Communications of the ACM,

April 1991, Volume 34, Number 4, pp 46-58

6. T. Bier, S. Neely, Feature-Based Image Metamorphosis, Computer Graphics, July 1992, Volume 26, Number 2,

pp 35-42

7. T. Porter, T. Duff, Compositing Digital Images, Computer Graphics, July 1984, Volume 18, Number 3, pp 253-

259.

8. S. F. Chang, W. L. Chen, D.G. Messerschmitt, Video Compositing in the DCT Domain, IEEE Workshop on Visual

Signal Processing and Communications, Raleigh, NC, September 1992, pp. 138-143

9. D. Boyer, M. Lukacs, The Personal Presence System - A Wide Area Network Resource for the Real Time COmpo-

sition of Multipoint Multimedia Communications, Proceedings of the Second ACM International Conference on

Multimedia, October 1994, San Francisco, Calif.

10. K. Chen, C. Svensson, A 512-Processor Array Chip for Video/image Processing, Pixels to Features II. Parallelism

in Image Processing. Proceedings of a Workshop, Bonas, France, August 1990

11. L. G. Chen, et. al., A Real-time Video Signal Processing Chip, IEEE Transactions on Consumer Electronics, May

1993, Volume 39, Number 2:82-92.
Page 19

12. H. Yamauchi, et. al. A Highly Parallel Single Chip DSP Architecture for Video Signal Processing, 1991 Interna-

tional Conference on Acoustics, Speech and Signal Processing New York, NY, Volume 2, pp 197-200

13. J.W. Klingler, L.T. Andrews, C. Vaughan, Fusion of Digital Image Processing and Video on the Desktop, Digest

of Papers. COMPCON 92. Thirty-Seventh IEEE Computer Society International Conference, San Francisco, CA,

February 1992

14. E. Holsinger, Avid Media Suite Pro 2.0, MacWEEK Volume 8, Number 4, Jan 24, 1994, pp 40.

15. J. Wolfskill, Video Editor Makes PC Premiere, Windows Magazine, February 1994, Volume 5, Number 2, pp 116

16. B. K. P. Horn, Robot Vision, MIT Press, Cambridge, Mass, 1986

17. B. Chitprasert, K. R. Rao, Discrete Cosine Transform Filtering, Signal Processing, Volume 19, Number 3, pp.

233-245, March 1990

18. S. F. Chang, D. G. Messerschmitt, A New Approach to Decoding and Compositing Motion Compensated DCT-

Based Images, IEEE Intern. Conf. on Accoustics, Speech, and Signal Processing, Minneapolis, Minnesota, pp.

V421-V424, April 1993.

19. B. Natarajan, V. Bhaskaran, A Fast Approximate Algorithm for Scaling Down Digital Images in the DCT Domain,

unpublished manuscript, Hewlett-Packard Laboratories, Palo Alto, CA.

20. B. Shen, I. Sethi, Inner-block operations on compressed images, to appear in Proceedings of the Third ACM In-

ternational Conference on Multimedia, November 1995, San Francisco, Calif.

21. F. Arman, A. Hsu, M. Y. Chiu, Image Processing on Compressed Data for Large Video Databases, Proceedings

of the First ACM International Conference on Multimedia, August 1993, Anaheim, Calif.

22. B. Seales, Vision and Multimedia: Object Recognition in the Compressed Domain, unpublished manuscript, avail-

able from ftp://sarod.dcs.uky.edu/pub/papers/seales/compressed.nofig.ps.gz.

23. M. A. Broadhead, C. B. Owen, Direct Manipulation of MPEG Compressed Digital Audio, to appear in Proceed-

ings of the Third ACM International Conference on Multimedia, November 1995, San Francisco, Calif.

24. FTP archive at URL ftp://ftp.funet.fi/pub/amiga/graphics/pics
Page 20

25. W. B Pennebaker, J. L. Mitchell, JPEG still image data compression standard, Van Nostrand Reinhold, New York,

1992.

Appendix A

This appendix lists the experimentally determined values for maxK used in thresholding condensation in section 4.

The data was gathered by examining 622 images from 14 categories stored on an FTP archive [24], compressed

using the default quantization tables presented in Annex K of the JPEG standard [25]. The value maxK[i]

indicates the largest value of the SC-vector element F[i] seen in all 622 images. Thus, maxK[i] represents a

practical upper limit of the absolute value of F[i].

int max[64] = {
255, 128, 128, 128, 128, 128, 128, 112,
119, 128, 74, 70, 82, 88, 77, 40,
 58, 51, 50, 47, 52, 28, 28, 36,
 37, 36, 54, 34, 28, 28, 25, 24,
 25, 18, 20, 21, 9, 12, 16, 14,
 19, 22, 21, 19, 12, 11, 13, 11,
 10, 9, 7, 11, 11, 13, 12, 10,
 7, 6, 10, 6, 9, 9, 7, 9};
Page 21

Operator Test Conditions Time (seconds) Speedup

Blur SNR = 25 0.290 43.4

Blur SNR = 30 0.331 38.0

Blur Not Condensed 4.45 2.83

Blur Image Space 12.6 1

Shrink-by-2 SNR = 25 5.36 0.141

Shrink-by-2 SNR = 30 3.74 0.202

Shrink-by-2 Not Condensed 2.30 0.328

Shrink-by-2 Image Space 1 0.755

Table 1: Speed of the blur and shrink-by-2 operation
Page 22

Test Conditions
Huffman
Decoding

Huffman
Encoding

Operator
Application

Overhead

SNR = 25 16% 21% 39% 24%

SNR = 30 13% 19% 45% 23%

Not Condensed 1% 2% 95% 2%

Table 2: Breakdown of time in computing the blur operation
Page 23

Test Conditions
Huffman
Decoding

Huffman
Encoding

Operator
Application

Overhead

SNR = 25 47% 20% 23% 10%

SNR = 30 42% 18% 31% 9%

Not Condensed 15% 7% 75% 3%

Table 3: Breakdown of time in computing the shrink-by-2 operation
Page 24

Figure 1: Block-oriented Pixel Addressing

x i

j
y

Page 25

y

Figure 2: Shrink-by-2 example

f (32x16 pixels)

g (16x8 pixels)

w
z

8 BTs

Σ

Σ

x
8 BTs
Page 26

Entropy

Figure 3: The JPEG compression/decompression process

011011...

Input Image

f F integer
vector

SC
vector

J Round RLE

DPCM +

Coding
7272 72 74

7373 74 75

7274 73 75

7170 69 68

36.2

1.3

0.4

-0.8

0.0

36

1

0

-1

0 Entropy
Decoding +

36

1

-1

0

0

0

1

0

8

8

64

Apply J-1
DPCM
Page 27

#define PI 3.14159265358979323846
#define SQRT2 1.4142135623730950488
#define A(u) ((u)? 0.5 : 0.5/SQRT2)
static double J[8][8][64], Jinv[64][8][8], C[8][8];

InitOperators () {
int i, j, k, u, v;
double tmp;

for (i=0; i<8; i++) {
for (u=0; u<8; u++) {

C[i][u] = A(u)*cos((2*i+1)*u*PI/16.0);
}

}

for (k=0; k<64; k++) {
u = zzu[k];
v = zzv[k];
for (i=0; i<8; i++) {

for (j=0; j<8; j++) {
tmp = C[i][u]*C[j][v];
J[i][j][k] = tmp/quantTable[k];
Jinv[k][i][j] = tmp*quantTable[k];

}
}

}
}

Figure 4: C code for computing J and its inverse, Jhat
Page 28

011011...

Huffman
Decode +

72717073

73737273

75747372

70707069

Figure 5: Graphical depiction of Spatial Domain Processing

011011... Round

DPCM +

Encode 72727274

73737475

72747375

71706968

36.2

1.3

0.4

-0.8

0.0

36

1

0

-1

0

36

1

-1

0

0

0

1

0

36

1

-1

0

0

0

1

0
x

y

RLE

SC image

J-1

J

Fxy fxy

hwzHwz

Txywz

x

y

gray image

w

z

gray image

w

z

SC image

DPCM

Huffman
Page 29

011011...

011011... Round
36.2

1.3

0.4

-0.8

0.0

36

1

0

-1

0

36

1

-1

0

0

0

1

0

36

1

-1

0

0

0

1

0
x

y

RLE

SC image

Fxy

Hwx

τxywz

w

z

SC image
Figure 6: Graphical depiction of Compressed Domain Processing

Huffman
Decode +

DPCM +

Encode

DPCM

Huffman
Page 30

Figure 7: Shrink-by-2 filtering in the compressed domain

G

w
z

Σ 8 blocks

8 BTs

τ0000F00 τ0001F01 τ0002F02 τ0003F03

τ0010F10 τ0011F11 τ0012F12 τ0013F13

τ0100F00 τ0101F01 τ0102F02 τ0103F03

τ0110F01 τ0111F11 τ0112F12 τ0113F13

y

x

F00 F01 F02 F03

F10 F11 F12 F13

Σ 8 blocks

8 BTs

36

1

-1

0

0

0

1

0

36

1

-1

0

0

0

1

0

G00 G01
Page 31

 0.250 0.330 0.302 0.000 0.274 0.000 -0.080 0.000 0.000 -0.091 0.000 -0.068 0.000 -0.061 0.000 0.021

 0.000 0.102 0.000 0.000 0.085 0.270 0.133 0.175 0.000 0.000 0.000 -0.021 0.000 0.102 0.000 -0.024

 0.000 0.000 0.102 0.210 0.092 0.000 0.000 0.000 0.205 0.166 0.000 0.124 0.000 -0.020 0.000 0.000

 0.000 0.000 -0.020 0.000 -0.018 0.000 0.000 0.000 0.000 0.119 0.180 0.088 0.000 0.004 0.000 0.000

 0.000 0.000 0.000 0.000 0.042 0.000 0.000 0.086 0.092 0.000 0.000 0.056 0.180 0.050 0.000 0.000

 0.000 -0.016 0.000 0.000 -0.013 0.000 0.074 0.000 0.000 0.000 0.000 0.003 0.000 0.057 0.096 0.044

 0.000 0.007 0.000 0.000 0.006 0.000 -0.020 0.000 0.000 0.000 0.000 -0.001 0.000 -0.015 0.000 0.041

 0.000 0.000 0.000 0.000 -0.008 0.000 0.000 0.000 -0.018 0.000 0.000 -0.011 0.000 0.036 0.000 0.000

 0.000 0.000 0.000 0.000 -0.008 0.000 0.000 -0.016 0.000 0.000 0.000 0.037 0.000 -0.009 0.000 0.000

 0.000 0.000 0.006 0.000 0.005 0.000 0.000 0.000 0.000 -0.020 0.000 -0.015 0.000 -0.001 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.006 0.000 0.000 0.000 -0.008 0.000 0.003 0.000 0.000

 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 -0.008 0.000 -0.007 0.000 0.000

 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.007 0.000 0.000 0.004 0.000 -0.008 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 -0.012 0.000 0.000 -0.010 0.000 0.034 0.000 0.000 0.000 0.000 0.002 0.000 0.026 0.000 -0.068

Figure 8: First 16 rows and columns of τ0000kl for shrink-by-2 operation, and structure of
its non-zero elements

k

l

Page 32

Figure 9: Gray image filtered with blur without constant bias
Page 33

w

z

x y nil

0.2
0.4

-1.3
0.6

0
1
3
7

0.1
-0.5
0.3

1
2
4

NIL

l τ(k,l)

k

Figure 10: Data structures used in the implementation

numx y num

•••
•••

•••

x

y

1
-3
2

-1

0
1
3
6

SparseVectorF[x,y]

index value

SparseMatrixTable

SparseMatrix

SparseMatrixRef

n: 4

TransformTable
Page 34

Figure 11: Effect of condensation for shrink-by-2. Top: uncondensed (1100 mults/vector).
Bottom: condensed at SNR=30 (330 mults/vector)
Page 35

Figure 12: Effect of condensation for blur. Top: uncondensed (5270 mults/vector).
Bottom: condensed at SNR=33 (90 mults/vector)
Page 36

Figure 13: SNR of blur (left) and shrink-by-2 (right) vs. number of multiplies

20

40

60

0 200 400 600 800 1000 1200

S
N

R

mults

20

40

60

80

0 1000 2000 3000 4000

S
N

R

mults

Blur Shrink-by-2
Page 37

	Compressed Domain Processing of JPEG-encoded image...
	Abstract
	1 Introduction
	2 Images, Image Processing, and JPEG as Tensors
	Image Representation and Manipulation
	JPEG compression as a tensor

	3 Compressed Domain Processing
	4 Condensation
	5 Implementation and Experimental Results
	Experimental Results

	6 Applications
	7 Related Work

	References
	Appendix A

