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ABSTRACT
In nature, one finds large collections of different protein se-
quences exhibiting roughly the same three-dimensional struc-
ture, and this observation underpins the study of structural pro-
tein families. In studying such families at a global level, a
natural question to ask is how close to “optimal” the native
sequences are in terms of their energy. We therefore define
and compute the evolutionary capacity of a protein structure
as the total number of sequences whose energy in the struc-
ture is below that of the native sequence. An important aspect
of our definition is that we consider the space of all possible
protein sequences, i.e. the exponentially large set of all strings
over the 20-letter amino acid alphabet, rather than just the set
of sequences found in nature.

In order to make our approach computationally feasible, we
develop randomized algorithms that perform approximate enu-
meration in sequence space with provable performance guar-
antees. We draw on the area of rapidly mixing Markov chains,
by exhibiting a connection between the evolutionary capacity
of proteins and the number of feasible solutions to the Knap-
sack problem. This connection allows us to design an algo-
rithm for approximating the evolutionary capacity, extending a
recent result of Morris and Sinclair on the Knapsack problem.
We present computational experiments that show the method
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to be effective in practice on large collections of protein struc-
tures. In addition, we show how to use approximations to the
evolutionary capacity to compute a statistical mechanics no-
tion of “evolutionary temperature” on sequence space.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems; J.3 [Life and Med-
ical Sciences]: Biology and genetics

General Terms
Algorithms

Keywords
protein structure, evolutionary networks, approximate count-
ing, rapidly mixing Markov chains

1. INTRODUCTION
One of the more striking recent observations in the field of

structural biology is the profound redundancy in the sequence-
to-structure map for proteins: while it remains a general be-
lief that the sequence of amino acids in a protein uniquely de-
termines the protein’s three-dimensional shape under physio-
logical conditions, the converse (a given structure implying a
unique sequence) is far from true. Rather, a very limited num-
ber (about 500) of fundamentally different families of protein
structures have been found experimentally, and large numbers
of different protein sequences, even with little sequence simi-
larity, can adopt essentially the same three-dimensional struc-
ture [17, 20].

This redundancy reflects the way in which molecular evolu-
tion has “explored” the space of sequences for a given struc-
ture. How thorough has this process of exploration been? Is
molecular evolution “incomplete” — has it only been able
to sample from a small portion of the space of feasible se-
quences? At present, we have very little understanding of
these types of questions, in large part because of the scale at
which such questions must be addressed. To reason about the



extent to which evolution has filled out the range of feasible
proteins, we need techniques for working with the space of
all possible protein sequences — not simply the set of all se-
quences observed in nature, but the vastly larger set of all n-
letter strings over the 20-symbol amino acid alphabet, for n
equal to the lengths of typical proteins.

In this paper, we develop techniques for analyzing sequence
space at a global level, using physically realistic protein energy
functions, and we report on findings about the organization of
this space relative to the collection of known protein folds.
Our methods utilize ideas from statistical mechanics, treating
sequence space as a large ensemble of varying energies; we
combine these ideas with algorithmic techniques from the area
of approximate counting.

Underlying our analysis is the notion of a sequence–structure
fitness function, which defines the energy of each sequence in
a fixed structure σ. Letting N(E) denote the number of amino
acids sequences with energy at most E in the structure σ then
defines a characteristic sequence distribution function N(·),
which in turn lets us determine the following two fundamental
quantities:

Evolutionary Capacity. Consider the native sequence Xσ for
the structure σ, and define the native energy Eσ to be the
energy of Xσ in the structure σ. The quantity N(Eσ)
is then simply the number of sequences that would have
energy in σ no greater than that of the actual native se-
quence. We refer to N(Eσ) as the evolutionary capacity
of the structure σ, because it reflects how far the current
state of molecular evolution on σ is from the “energetic
optimum.”

The Temperature of Evolution. There is more to the picture
than just variation in energy: while individual sequences
of extremely low energy may be more favorable, se-
quences of higher energy are much more numerous, and
this trade-off is a qualitative reflection of a balance be-
tween energy and entropy in sequence space. Given the
distribution function N , one can use methods from sta-
tistical physics to capture this trade-off quantitatively
via an evolutionary analogue of “temperature,” and thereby
obtain insight into the probability of finding sequences
of different energy values.

This analysis rests on evaluating the distribution function
N(·), whose definition requires implicit enumeration of the
full space of n-letter strings of amino acids. Finding ways
of approximating N is thus a fundamental first step toward
deeper analysis of the space.

The present work. Our first main result is a fully-polynomial,
randomized approximation scheme for the sequence distribu-
tion function N , where the sequence-structure energy is com-
puted according to an arbitrary local fitness function that uses
only single-site terms. Such fitness functions, including the
THOM2 function [14] that we focus on for our experiments
here, are widely used in practice because they can be evalu-
ated very quickly on a per-sequence basis.

More specifically, given a structure of length n, a target en-
ergy E, and an error parameter ε, we provide an algorithm
that approximates N(E) with high probability to within a fac-
tor of 1 + ε, in time that is polynomial in n and ε−1. The

problem, and our algorithm, are closely related to the problem
of approximately counting the number of feasible solutions to
a Knapsack problem — this latter problem was a well-known
open question resolved only recently by Morris and Sinclair
[16]. Evaluating N is a more general problem than counting
Knapsack solutions, however, and the main theoretical con-
tribution of our work is an extension of the Morris-Sinclair
theorem to this more general setting. We then discuss com-
putational experiments in which we examine the function N
associated with different proteins; we use a large dataset of
roughly 3400 protein structures that represent the folds in the
Protein Data Bank [1], and we consider how N varies across
different lengths and characteristic shapes.

We go on to approximately determine an evolutionary tem-
perature, and associated sequence probabilities, for each pro-
tein in the collection. Our computational experiments here
reveal the surprising finding that the distribution of tempera-
tures, over all proteins of length greater than 200 amino acids,
is very sharply concentrated. We suggest qualitative conclu-
sions that one can draw from a roughly constant temperature
across this collection of proteins, concerning the potential ex-
istence of a universal selection mechanism in sequence space.

We also consider the corresponding problems with respect
to pairwise fitness functions, where the energy of a sequence
in a given structure depends on pairwise interactions among
residues that are physically close. While such fitness func-
tions are more expressive, they are also less tractable compu-
tationally; in particular, the approximate evaluation of the dis-
tribution function N becomes provably intractable with gen-
eral pairwise interactions. We develop computational heuris-
tics that appear to be effective in practice for the specific pair-
wise fitness function TE13 [24]; the results are qualitatively
similar to the case of the local fitness function THOM2. The
fact that two very different fitness functions yield such similar
results suggests that our results are not strongly dependent on
particular modeling assumptions.

It should be noted that the fitness of sequences relative to a
structure σ involves two qualitative issues: a sequence should
be energetically favorable with respect to σ, and at the same
time not be even more favorable in a competing structure σ′ 6=
σ. (These are sometimes referred to as positive design and
negative design, respectively.) We make the positive design
aspect explicit, and deal with the negative design aspect only
implicitly, by using fitness functions which have been trained
to favor sequences in their native structures. (In other words,
explicit negative design was used in the construction of the fit-
ness functions.) This is in keeping with the style of analysis
adopted in all the related work discussed below, and hence al-
lows for comparison with this related work. Addressing the
negative design aspect more explicitly is an interesting direc-
tion for further research.

Related work. Influential early work on the use of statis-
tical mechanics techniques for analyzing protein sequences
was done by Shakhnovich and Gutin [20], who considered se-
quence optimization for lattice models and a small set of pro-
teins. Further work on foldability and design in the context
of sequence space was done by Shakhnovich [21], Saven and
Wolynes [19], and Betancourt and Thirumalai [2]. A crucial
distinction, however, is that while this earlier work focused
primarily on model systems, and developed general principles



from a statistical physics perspective, we develop combinato-
rial algorithms with provable approximation guarantees, and
apply these algorithms to the full set of known protein folds.

More recent work by Koehl and Levitt and by Larson et
al. [9, 10] has also considered the sequence-structure relation-
ship at the level of sequence space, using detailed atomic po-
tentials. Again, this leads to a key difference with our work.
While atomic potentials can be more accurate than the simpli-
fied fitness energy functions we use, they are more expensive
to compute and less tractable to use in algorithms and analysis
of the type we develop here; we focus on the more simplified
functions so as to be able to sample the full sequence space
with provable performance guarantees.

2. EVOLUTIONARY CAPACITY UNDER
LOCAL FITNESS FUNCTIONS

We begin by describing the algorithm for approximately
evaluating N with respect to a local fitness function. Let σ
be a protein structure with n sites, and let Sn denote the set
of all strings (i.e. protein sequences) of length n over the al-
phabet of amino acids. Thus |Sn| = 20n . For our purposes,
a fitness function is any function g : Sn → R that assigns a
real number to each protein sequence X = x1x2 · · ·xn, repre-
senting the energy of X in the structure σ. A fitness function
is local if there exist functions gi associated with each posi-
tion i = 1, 2, . . . , n such that g(X) =

Pn

i=1 gi(xi). This
definition is sufficiently general to include any fitness func-
tion evaluating the energy as a sum of individual contributions
from each site, including the THOM2 function that we adopt
for our experiments. We refer the reader to [14] for a complete
description of the THOM2 function.1 The sequence distribu-
tion is defined in terms of g as N(E) = |{X : g(X) ≤ E}|.

To provide some insight into the connection between eval-
uating N and the problem of counting feasible solutions to
the Knapsack problem, we begin with a greatly simplified ver-
sion of our main theorem, showing an equivalence between the
Knapsack problem and evaluating the analogue of the function
N over a two-letter amino acid alphabet. Specifically, let S ′

n

be the set of all n-bit binary strings, g a local fitness function
defined over S ′

n, and N be defined in terms of g as above.
In the form of the Knapsack problem we will be using, there

are n items of non-negative weights a1, . . . , an, and we want
to count how many subsets of these items have total weight at
most b. By using an indicator variable zi that takes the value
1 if item i is included in a subset, and 0 otherwise, we see
that this corresponds to counting the number of 0-1 vectors
z = (z1, . . . , zn) such that

P

i
ziai ≤ b. Morris and Sinclair

give an FPRAS for this problem, i.e. an algorithm which, for
any ε > 0, determines the number of feasible solutions to
an instance of the Knapsack problem with high probability to
within a multiplicative error of (1+ε), in time polynomial in n
and ε−1 [16]. Extending the terminology slightly, we will say
that a FPRAS for the sequence distribution function N is an
algorithm that, given an additional parameter E ≥ 0, performs
as a FPRAS for N(E).

THEOREM 2.1. There is a FPRAS for any sequence dis-
tribution function N with respect to a local fitness function g
over a two-letter alphabet.
1See also the URL cbsu.tc.cornell.edu/software/loopp/index.htm.

Proof. We begin by observing that for each sequence posi-
tion i, there is a “better” and a “worse” choice of xi ∈ {0, 1}
from the point of view of energy minimization; we say that 0 is
better for position i if gi(0) ≤ gi(1), and we say that 1 is bet-
ter otherwise. A sequence X∗ minimizing g can be obtained
simply by choosing the better symbol xi for each position i;
let E∗ = g(X∗) denote the energy of this sequence.

Given an energy bound E, we construct an instance of the
Knapsack problem as follows. We want zi = 0 in the Knap-
sack instance to correspond to the choice of the better sym-
bol for position i, and zi = 1 to correspond to the choice
of the worse symbol, so we set ai = |gi(0) − gi(1)| and
b = E − E∗. Now, a 0-1 vector z forms a feasible solu-
tion to the resulting instance of the Knapsack problem if and
only if the sequence X obtained by choosing the better symbol
in precisely those positions i for which zi = 0 has an energy
of at most E. The number of such sequences is N(E), which
is thus also the number of feasible solutions to the instance of
the Knapsack problem we have constructed; hence, applying
the Morris-Sinclair algorithm, we have a FPRAS for N .

Theorem 2.1 shows the connection to the Knapsack prob-
lem, but our goal is to extend the Knapsack algorithm to gen-
eral functions over a 20-letter alphabet. (Or, more generally,
over a k-letter alphabet.) This introduces new challenges: the
proof of Theorem 2.1 is based on the observation that when
there are just two letters, we can use the decision of whether
or not an item is included in the knapsack to encode the choice
between the letters. But when extending this idea to k > 2
letters, each position i has a lowest-energy symbol x∗

i , and
then effectively k−1 ways of including item i in the knapsack
to varying “extents.” While Morris and Sinclair [16] in fact
develop an extension to Knapsack problems in which each zi

can take values in some set of integers {0, 1, 2, . . . , L}, this
is not enough for our purposes; we are essentially dealing
with the case in which variable zi can take values in the set
{gi(0)− gi(x

∗
i ), gi(1)− gi(x

∗
i ), . . . , gi(k)− gi(x

∗
i )} (where

again, x∗
i is the lowest-energy symbol for position i). We thus

have a generalization where the domain of zi is not uniformly
spaced, and the domains of zi and zj may differ arbitrarily.

We now develop a FPRAS for this more general case. Like
the Morris-Sinclair algorithm, our algorithm is based on a well-
known equivalence between approximate counting and approx-
imately uniform sampling, sketched out below. We refer the
reader to the survey by Jerrum and Sinclair [5] for a very read-
able overview. (The basic idea is also related to the technique
of umbrella sampling from statistical physics [25].)

First, notice that it is easy to determine N(E∗) at the mini-
mum energy E∗ of any sequence: N(E∗) is simply the prod-
uct
Qn

i=1 k∗
i , where k∗

i is the number of distinct symbols that
each minimize the function gi. Suppose that for energies E∗ =
E0 < E1 < E2 < · · · < Em = E, we could approximate
each ratio N(Ei+1)/N(Ei) with high probability to within a
multiplicative error of 1 + O(ε/m). Then we could approx-
imate the value of N(E) to within a multiplicative error of
1 + ε by evaluating the telescoping product

N(E) = N(E0) ·
N(E1)

N(E0)
·
N(E2)

N(E1)
· · · · ·

N(Em)

N(Em−1)
.

To approximate the ratio N(Ei)/N(Ei−1), we sample almost
uniformly from S

(Ei)
n = {X : g(X) ≤ Ei}, and estimate



N(Ei)/N(Ei−1) to be the reciprocal of the fraction of sam-
ples from S

(Ei)
n whose energy is bounded by Ei−1. For this

approach to be efficient, Ei−1 and Ei must be chosen close
enough for a reasonable fraction of samples to fall below Ei−1

in energy; but this is easily taken care of, so we are left with
the problem of sampling almost uniformly from the set of se-
quences S(Ei)

n .
For this sampling, we define a Markov Chain on the set

Ω = S
(Ei)
n as follows (we also write b = Ei for brevity

and compatibility of notation). The start state is any sequence
of minimum energy E∗. Then, for t steps, we perform the
following update on the current sequence X = x1 . . . xn.
Choose a position i and a symbol α, both uniformly at ran-
dom, and let X ′ = x1x2 . . . xi−1α xi+1 . . . xn. If the energy
E(X ′) is bounded by b, then choose X ′ as the next state, oth-
erwise stay at X . This Markov Chain can actually be restated
as a simple random walk on a (directed) graph GΩ: it has node
set Ω, and an arc between any two states (X, X ′) as above
whenever E(X ′) ≤ b; on the other hand, if E(X ′) > b, then
we add a directed self-loop at X . The resulting graph GΩ is
strongly connected, aperiodic (due to self loops), and regular,
so it has the uniform distribution as its unique stationary distri-
bution. Our goal is now to show that the stationary distribution
is approached after a polynomial number t of steps; then, we
can produce fresh almost uniform random samples from S

(Ei)
n

every polynomial number of steps. Chaining back through the
consequences developed above, Markov Chain-based nearly
uniform sampling lets us estimate the ratio N(Ei)/N(Ei−1)
arbitrarily closely in polynomial time, and hence approximate
N(E). In summary, our approximation result follows from

THEOREM 2.2. For any constant δ > 0, there is a num-
ber t that is bounded by a polynomial in n and log δ−1, such
that the following holds: the variation distance between the
uniform distribution and the distribution of the Markov chain
after t′ steps is bounded by δ, for all t′ ≥ t.

Proof. Our proof closely follows the proof by Morris and
Sinclair [16]. It relies on a well-known connection between the
mixing time of a random walk and the edge congestion of an
all-pairs multi-commodity flow. Let f be a multi-commodity
flow on GΩ routing one unit of flow between every ordered
pair of vertices (X, Y ). The congestion of f with respect to
the state space size is C(f) = 1

|Ω|
· maxe f(e). The length

of the longest flow-carrying path is denoted by L(f). Fi-
nally, the mixing time τmix of the random walk is τmix =
maxX0

min{t | ‖Pt′ (X0) − U‖ ≤ 1
4

for all t′ ≥ t}, where
Pt′(X0) denotes the probability distribution of the random
walk starting at node X0 after t′ steps, U is the uniform dis-
tribution, and ‖·‖ is the total variation distance. The following
theorem is a special case of a result by Sinclair [23].

THEOREM 2.3. 1. For any flow f , the mixing time τmix

is bounded from above by 4n(n + 1)C(f)L(f).

2. Within O(τmix · log δ−1) steps, the variation distance is
bounded by δ.

The crux of the proof in [16], and of our proof as well, is
to define an appropriate flow f with congestion C(f) bounded
by a polynomial in n, the number of positions in the string. In
bounding C(f), we do not know the size |Ω| of the state space

— after all, approximating this quantity is our goal in the first
place. To circumvent this problem, we define a mapping from
the units of flow that pass through any given node Z to the
state space Ω, and show that each state is the image of only
polynomially many units of flow.

Flow description. To define a flow, fix two states (sequences)
X = x1 . . . xn and Y = y1 . . . yn, and let GX,Y =

Qn

i=1{xi, yi}.
All of the X-Y flow is routed only through the subgraph in-
duced by GX,Y . Notice that in GX,Y , there are at most two
different characters at each position, so by the same argument
as in Theorem 2.1, we have a direct correspondence with the
Knapsack problem, allowing us to apply the flow construction
by Morris and Sinclair verbatim. However, the analysis has to
be extended somewhat, as any one node in GX,Y may be in
sets GX′,Y ′ for many more states X ′, Y ′ than in the 2-letter
case. Hence, the flow through any one node or edge may be
larger.

If X = x1 . . . xn is a sequence, then we write ξi = gi(xi),
and similarly for Y and Z (using ηi and ζi). We also introduce
convenient set notation for states Z ∈ GX,Y : for any index i,
we write that i ∈ Z iff zi is not the minimum-energy choice
between xi and yi (with an arbitrary tie-breaking toward xi),
i.e. iff ζi > min{ξi, ηi}, or ξi = ηi and zi 6= xi. In the fol-
lowing, we give a brief summary of (a slightly simpler and less
tight version of) the flow construction by Morris and Sinclair.
The full motivation, details, and analysis are beyond the scope
of this paper, and we refer the reader to [16].

For a fixed constant ∆, we let H be the set of 6∆ heavy
indices i ∈ X∪Y , the indices with largest values max{ξi, ηi}
(if |X ∪ Y | < 6∆, then H = X ∪ Y ), and let X ′ = X \
H,Y ′ = Y \ H . Writing M = maxi∈X′∪Y ′{ξi, ηi} (where
the maximum is defined as 0 if X ′ and Y ′ are empty), this
ensures that g(X ′) + g(Y ′) ≤ 2b − 6∆ · M , while X ′ ⊆ X
and Y ′ ⊆ Y . We first define a unit-flow from X ′ to Y ′, and
then show how to turn it into a flow from X to Y .

The flow can be divided into three stages: The first and third
stages define a flow from X ′ to X ′′ (and Y ′′ to Y ′, respec-
tively), where the states X ′′ and Y ′′ satisfy g(X ′′) ≤ b−∆M
and g(Y ′′) ≤ b − ∆M (these states are called not full). Let
I = X ′ ⊕ Y ′ be the set of indices in which X ′ and Y ′

differ, and m = |I| their number. Choose T uniformly at
random from {1, . . . , c1m} (for some constant c1), and per-
form a random walk for T steps on the set of pairs of se-
quences (X ′′, Y ′′) ∈ GX,Y , starting from the pair (X ′, Y ′).
In each step, a position i ∈ I is chosen uniformly at random.
Then, the characters x′′

i and y′′
i at position i of the current

strings (X ′′, Y ′′) are swapped unless this would result in ei-
ther g(X ′′) or g(Y ′′) exceeding the bound b (in which case
the random walk stalls for one step). Morris and Sinclair show
that with constant probability c2, the final states of this random
walk will not be full. If p(X ′′, Y ′′) denotes the probability of
the non-full state (X ′′, Y ′′) being the final state of this ran-
dom walk, then p(X′′,Y ′′)

c2
units of flow are routed from X ′ to

X ′′, and then from Y ′′ to Y ′ (after being routed from X ′′ to
Y ′′ in the second stage).

The second stage defines a flow from X ′′ to Y ′′, along paths
that are obtained by changing characters x′′

i to y′′
i for all po-

sitions i ∈ I (notice that I = X ′ ⊕ Y ′ = X ′′ ⊕ Y ′′). The
key question is in which order to change the characters. For



this purpose, Morris and Sinclair show the existence of ∆-
balanced poly(m)-uniform permutations: distributions over
all permutations Î of I such that (1) min{g(X ′′), g(Y ′′)} −

∆·M ≤ g(X ′′⊕Îk) ≤ max{g(X ′′), g(Y ′′)}+∆·M for any
initial segment Îk of k elements of Î, and (2) for any set U , the
probability that the first |U | elements of Î are exactly the set
U is at most poly(m) ·

`

m

|U|

´−1, i.e. at most by a polynomial

factor larger than if Î were chosen uniformly at random from
among all permutations of I . Each path corresponding to a
balanced permutation carries exactly the fraction of flow that
is the permutation’s probability under the distribution.

Finally, we construct X-Y paths from the X ′-Y ′ paths de-
scribed above. We want the paths to stay as close as possi-
ble to the hyperplane defined by g(Z) ≤ b — to this end,
the (heavy) elements from H are repeatedly added and re-
moved as necessary. Specifically, suppose that the X ′-Y ′ path
adds/removes elements in the order j1, . . . , jl, and that after
processing j1, . . . , jk , the path under consideration is at some
state Z ∈ Ω. If jk+1 is added to Z to obtain the new state Z ′,
then first remove one heavy element h from Z if necessary,
then add jk+1 (i.e. route the flow from Z to Z ∪ {jk+1} if
possible, and from Z through Z \ {h} to Z \ {h} ∪ {jk+1}
if not). If instead jk+1 is removed from Z, then first add one
heavy element h ∈ H to Z whenever possible, afterwards re-
move jk+1. Finally, before processing j1, add as many heavy
elements to X as possible, and after all l indices jk have been
processed, add one element from H ∩ Y to Z if possible, then
remove as many elements from H ∩ X as necessary to add
from H ∩ Y again, and repeat until Y is reached.

Congestion analysis. This construction defines a feasible multi-
commodity flow between all pairs (X, Y ) of vertices in GΩ.
The length of all flow-carrying paths is obviously O(n), so it
remains to bound the edge congestion. In fact, we bound the
amount of flow through any node, which is clearly an upper
bound on the amount of flow through any edge. We define a
mapping from the state space to itself as follows: given a state
Z ∈ GX,Y , its preliminary encoding is Ẑ, where ẑi = xi

whenever zi = yi, and ẑi = yi whenever zi = xi (ẑi is al-
ways well-defined). While Ẑ itself may not be in Ω, its energy
does not exceed b by much: by repeatedly adding heavy items
above, we ensured that there is a heavy index h /∈ Z such that
the addition of h to Z would make it impossible to use the next
edge from Z on the path (which, let us say, adds an index j).
The resulting lower bound g(Z) ≥ b− |ξh − ηh| − |ξj − ηj |,
together with the upper bounds g(X), g(Y ) ≤ b, implies that
g(Ẑ) = g(X)+g(Y )−g(Z) ≤ b+|ξh−ηh|+|ξj−ηj |. From
Ẑ , we obtain Z′ ∈ Ω by setting z′

h to be the one of xh, yh with
smaller gh(·) value, and similarly for z′

j . Our encoding of Z

is (Z′, h, ẑh, j, ẑj), so for any Z, there are at most O(n2|Ω|)
different encodings. Conversely, given Z, Z ′, h, ẑh, j, ẑj , we
can uniquely reconstruct GX,Y (although not necessarily X

and Y themselves), by first reconstructing Ẑ; then, GX,Y =
Q

i{zi, ẑi} = GZ,Ẑ .
Now, fix a node Z, and bound the flow through Z. We

bound separately the contributions from the stages considered
above. During the first and third stage (when there are ran-
dom exchanges between X ′ and Y ′), once we have GX,Y , we
can reconstruct X and Y uniquely if we know which are the

heavy indices H ⊆ H that have been changed starting from
X , and which are the steps j1, . . . , jk taken by the random
walk starting at X ′ until it reached Z. For then, X can be
obtained from Z by changing each character at one of the in-
dices in H, j1, . . . , jk to its other alternative in GX,Y ; Y is
obtained by setting yi 6= xi whenever possible. The amount
of flow sent from X to Y through Z is at most 1

c2
times the

probability that the random walk takes j1, . . . , jk as its first
k steps, i.e. at most 1

c2
m−k. Summing over all choices of

Z′, h, ẑh, j, ẑj , k, j1, . . . , jk, H now gives that the flow in first
and third stage is bounded by

X

Z′,h,ẑh,j,ẑj

X

k

X

j1,...,jk

X

H⊆H

m−k

c2
≤

X

Z′,h,ẑh,j,ẑj

X

k

2|H|

c2

≤ O(poly(n)2|H||Ω|).

In the second stage, we can apply a similar calculation. To
reconstruct X, Y from GX,Y , we need to specify the set H ⊆
H of heavy indices that have been changed, the steps taken by
the first random walk (specified by the number T of steps, and
the actual steps j1, . . . , jT ), and the set U of indices that have
been changed in the first u = |U | steps of the permutation used
for routing the flow. The amount of flow sent along this path is
the probability of choosing the number of steps to be T , choos-
ing exactly j1, . . . , jT as those T steps of the random walk,
and of having the set U be the first u elements of the permuta-
tion. By the almost-uniform property of the permutation, this
probability is at most (c1m)−1 1

c2
m−T ·

`

poly(m) ·
`

m

u

´´−1.
Summing over all such flow-carrying paths gives us the fol-
lowing bound on the total flow through Z:

X

Z′,h,ẑh,j,ẑj

X

T

X

j1,...,jT

X

u

X

U:|U|=u

X

H⊆H

(c1m)−1 1

c2
m−T ·

 

poly(m) ·

 

m

u

!!−1

≤ O(
X

Z′,h,ẑh,j,ẑj

X

T

X

u

2|H|(c1m)−1poly(m))

≤ O(poly(n)2|H||Ω|).

Adding the flow contributions from all three stages, and re-
calling that |H| ≤ 6∆ is bounded by a constant, we obtain that
the total flow through Z, and hence through any edge incident
with Z, is at most poly(n) · |Ω|. Therefore, C(f) = poly(n),
completing the proof.

THEOREM 2.4. There is a FPRAS for any sequence dis-
tribution function N with respect to a local fitness function g
over a k-letter alphabet.

Given Theorem 2.4, we also obtain a FPRAS for the evolu-
tionary capacity of a given structure, simply by approximately
evaluating the function N at the energy of the native sequence.

3. FURTHER COUNTING HEURISTICS

A Normalized Local Fitness Function. One concern about
standard local fitness functions is that the low-energy regions
of sequence space are dominated by simple homopolymers
and other sequences of low complexity. A heuristic approach



to avoid this problem is to normalize the fitness function by
evaluating, for a sequence X , the quantity ĝ = g(X)−g(Xrev),
where Xrev denotes the reverse of sequence X . Such a strat-
egy was proposed in the different context of hidden Markov
models by Karchin et al. [7]. The idea in our case is for Xrev

to play the role of a random sequence of the same composi-
tion as X . Then, homopolymers and other sequences of low
complexity tend to have ĝ values close to 0, while sequences
that are highly adapted to the underlying structure will tend to
have g(X) � g(Xrev).

A crucial point is that ĝ is a local fitness function when-
ever g is, and hence also amenable to our approximation algo-
rithm. To see this, observe that ĝ(X) =

Pn

i=1 ĝi(xi), where
ĝi(xi) = gi(xi) − gn+1−i(xi). In some of the experiments,
we will thus employ normalized THOM2 as well as the stan-
dard THOM2.

Pairwise Fitness Functions. We also investigate the function
N with respect to a class of fitness functions more general
than local functions. We say that a fitness function is pairwise
if there exist functions gi associated with each position i, and
functions gij associated with each pair of positions i < j, such
that g(X) =

Pn

i=1 gi(xi)+
P

i<j
gij(xi, xj). As before, we

define N(E) = |{X : g(X) ≤ E}|.
There is no hope of designing a FPRAS for a general pair-

wise fitness function, assuming P 6= NP . We establish this
via the following theorem, which is similar in spirit to com-
plexity results for Ising models on arbitrary graphs. The proof
is by a reduction from graph k-coloring, and deferred to the
full version.

THEOREM 3.1. For each k ≥ 3, there exist pairwise fit-
ness functions g over k-letter alphabets for which, given a
value E, it is NP-hard to determine whether N(E) > 0.

Despite this hardness result, we have had success in prac-
tice with heuristics to approximate the evolutionary capacity
using the pairwise fitness function TE13. We refer the reader
to [24] for a complete description of TE13.2 Our algorithm
is still based on estimating a sequence of ratios of the form
N(Ei−1)/N(Ei) via sampling. The Markov chain we use
changes a symbol at a single position per step, as in the chain
of Section 2, and while we find it to be effective in experi-
ments, it is an open question whether it has a polynomial mix-
ing rate.

A crucial contrast with the algorithm of Section 2 arises
from the fact that we cannot compute the minimum energy E∗.
We deal with this obstacle by using ratios that telescope up to
a suitably chosen large energy, rather than down to the min-
imum. We first approximate the mean energy E over all se-
quences by direct sampling and averaging, then choose closely-
spaced energies Eσ = E0 < E1 < · · · < Em = E and write

N(Eσ) =
N(E0)

N(E1)
·
N(E1)

N(E2)
· · · · ·

N(Em−1)

N(Em)
· N(Em).

Here, we can evaluate the final term since in practice, there
is always a large constant fraction of sequences both above
and below the mean energy, and hence these fractions can be
estimated by direct sampling.

2See also the URL cbsu.tc.cornell.edu/software/loopp/index.htm.

4. EVOLUTIONARY CAPACITY: COM-
PUTATIONAL EXPERIMENTS

We have used the approximate counting algorithms from
Sections 2 and 3 to determine evolutionary capacities for a
large collection of protein structures, employing the local fit-
ness function THOM2 and the pairwise fitness function TE13.
We note that for the algorithm associated with Theorems 2.2
and 2.4, the bound in Theorem 2.2 is a conservative estimate of
the number of Markov chain steps needed for approximate uni-
formity; while polynomial, it can be quite large for moderately-
sized proteins. Thus, for reasons of efficiency in the computa-
tional experiments, we modified the algorithm to run the sam-
pling procedure for fewer steps than the proof of Theorem 2.2
specifies, relying on standard heuristic tests to determine when
the Markov chain was well-mixed. The results appear to be ro-
bust relative to the number of sampling steps used.

We chose a collection of protein structures selected to cover
the space of all currently known folds. Since the Protein Data
Bank (PDB) [1] has considerable redundancy, we followed
previous work [15] and used a large subset of 3409 proteins
that is less redundant but still represents the known PDB folds
well. This subset differs from the one used in [15] only in
that we omitted the longest proteins (of length greater than
500 amino acids) since some of the more expensive counting
algorithms had poor convergence at this scale.3

To get an initial sense for the way in which N(E) grows
as a function of E for different proteins, we show in the left-
hand side of Figure 1 plots of ln N(E) for 19 different pro-
teins, each of length n = 199 or n = 200. At a coarse level,
the curves are qualitatively similar (and of course, they meet
at N(E) = 20n for sufficiently large energies E), but the ac-
tual shapes of the curves vary significantly across the different
proteins. The curves with the sharper initial slopes are those
for which the low-energy parts of sequence space are more
densely populated, and it is an interesting question to find pre-
cise ways in which the three-dimensional shape of the protein
translates into rough structural features of the ln N(E) curves.

Despite the variation in these curves across proteins of the
same length, we find that evolutionary capacity is still strongly
correlated with protein length. The right-hand plot in Figure 1
shows the evolutionary capacity as a function of length; each
protein in our collection shows up as a single dot in the scat-
terplot, with all of the counting methods from Sections 2 and
3 superimposed. We note the striking amount of agreement
between the capacities computed using THOM2 and TE13;
although they are very different kinds of functions, the points
associated with them in the plot lie approximately on a com-
mon line.

5. THE TEMPERATURE OF EVOLUTION
Given a means of approximately evaluating the function N ,

we can define further thermodynamic quantities on sequence
space, including a notion of evolutionary temperature. We
adopt a style of analysis used to estimate the Boltzmann factor
for a configuration space in statistical mechanics (see e.g. Feyn-
man [3]); in this context, it is useful to consider (discrete) dif-
ference quotients as playing the role of (continuous) deriva-

3The URL www.cs.cornell.edu/∼leonidm/jm list.txt contains
a full list of proteins used.
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Figure 1: Left: ln N(E) as a function of E for 19 different proteins of (approximately) the same length: 1bcp B, 1ber A,
1iak A, 1rgp, 4sbv A, 1am2, 1pd2 1, 1qq2 A, 1qrj B, 1nox, 3pcf E, 1ais B, 1bc9, 1iaa, 1ilm B, 1qn8 A, 1qrn D. Right:
logarithm of evolutionary capacity as a function of length for each of THOM2, normalized THOM2, and TE13.

tives. Thus, for a small number ∆E > 0, we write Ω(E) =
N(E+∆E)−N(E)

∆E
; we refer to Ω(E) as the number density of

sequences, and think of it as playing the role of the derivative
dN
dE

.
Now, consider a selection function G that takes a sequence

at energy E and returns a survival probability G(E). Such a
selection function can be viewed as underpinning the evolu-
tion of sequences adapted to a given structure; using it, we can
ask for the probability of seeing a sequence of energy between
E and E + ∆E. For small ∆E, this is approximately propor-
tional to G(E)(N(E + ∆E) − N(E)) ≈ G(E)Ω(E)∆E,
and so we can write P (E) = G(E)Ω(E) as a probability
density in terms of E.

We assume that sequences at the native energy have been
selected because this is a highly probable value of P (E); if we
thus treat Eσ as the maximizer of P (E) (and hence log P (E)),
we have

d[log P ]

dE

˛

˛

˛

˛

Eσ

=
1

Ω(E)

dΩ

dE
+

1

G(E)

dG

dE

˛

˛

˛

˛

Eσ

= 0 (1)

and hence

−
1

G(E)

dG

dE

˛

˛

˛

˛

Eσ

=
1

Ω(E)

dΩ

dE

˛

˛

˛

˛

Eσ

. (2)

The point is that good approximations to N(E) yield good
approximations to Ω(E); in turn, this lets us approximate dΩ

dE
,

and thus the right-hand side of Equation (2). In summary, we
obtain an approximation for the left-hand side − 1

G(E)
dG
dE

at
E = Eσ, and we refer to this quantity as βσ .

From a statistical mechanics perspective (still in the spirit
of [3]), we recognize the right-hand-side of Equation (2) as
the standard definition of temperature: 1

T
= dS

dE
, where S =

log Ω(E) is the entropy, and hence 1
T

= 1
Ω(E)

dΩ
dE

. It is there-
fore natural to think of βσ as an inverse temperature of selec-
tion: βσ = 1/Tσ .

Using the above derivation, we can approximately compute
Tσ for each structure σ in our collection of proteins. A key

point here is that the temperature is a function of an individual
protein structure, and there is no obvious reason why tempera-
tures should be comparable for different proteins. In Figure 2
we plot temperature as a function of length for each protein
in our collection, using the TE13 fitness function. (Results for
the other functions are similar.) A striking observation that be-
comes clear from these plots is that the plot of the temperature
in fact becomes relatively flat (i.e. roughly constant, though
with large variance) for proteins of length 200 and greater.
While approximately constant temperature was not a priori to
be expected, we comment on some of its potential implications
in the next, concluding section.

6. CONCLUSION
Our analysis of sequence space was based on the distri-

bution function N , and by casting the evaluation of N as a
combinatorial enumeration problem, we were able to develop
Markov Chain-based techniques for approximating it with prov-
able guarantees. We feel that this suggests the potential for
methods from the area of approximate counting to shed light
on further questions about the organization of the set of all
amino acid sequences, a space that is much too large to be
analyzed by more direct methods.

Armed with the ability to approximately evaluate N , we
considered further analogues of thermodynamic quantities, in-
cluding an evolutionary temperature. The sharply peaked dis-
tribution of temperatures across sufficiently long proteins is
perhaps the most surprising finding to emerge from our com-
putational experiments. The general conclusion is that the evo-
lutionary selection function G appears to have the same depen-
dence on energy in the neighborhood of the native state over
an extensive set of proteins. It is not at all obvious that the
“sequence-energy excitation” with respect to the lowest en-
ergy sequence should be comparable across protein families.
This suggests that the mutation mechanism (at least as mea-
sured by stability energy for proteins longer than 200 amino
acids) is approximately universal. Such universality is consis-
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Figure 2: The plot on the left shows native sequence temperature under TE13 as a function of length. The plot on the right
shows a histogram of native sequence temperatures under TE13 for all proteins in the collection of length greater than 200.

tent with two models: (1) connectivity between different clus-
ters in protein space by small mutational steps [13], or (2) a
single mutation mechanism that produces a similar statistical
distribution of sequences in isolated islands of protein space.
While evidence for extensive connectivity has been found in
highly simplified models of protein structure [4, 8, 11, 12],
it has been very difficult to demonstrate this connectivity for
realistic models of proteins. Our method, in contrast, treats
sequence space, which is far too large to analyze directly, by
analogy with a physical system that can be “probed” at various
points to test whether it is well-mixed. The uniformity of the
temperature at these probe points offers evidence for a back-
ground mixing process on distinct protein families, and raises
the question of whether this process is achieved by a uniform
selection mechanism or by direct, though very slow, migration
between protein families over the course of evolution.
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