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Abstract 
A brief description of the protein-folding and inverse-folding problems is provided. 
Design of energy functions for protein recognition based on machine learning approaches 
is discussed. The energy functions are applied to estimate the sequence capacity of all 
known protein folds, and to compute the evolutionary temperature(s) of embedding 
sequences in known protein structures.
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This manuscript is divided into three sections. We start with a brief introduction to 
proteins, continue with the design of energies for recognition of protein folds, and 
conclude with an application to protein evolution, studying the sequence capacity of 
different structures. 
 

I. Introduction 
Proteins are linear polymers that are sometimes cross-linked (via sulfur bonds) but are 
never branched. They serve diverse and numerous functions in the cell as facilitators of 
many biochemical reactions, signaling processes, and providers of essential skeletal 
structures.  These linear polymers consist of 20 different types of monomers that share 
the same backbone atoms (exceptions are proline and glycine) and have different (short) 
side chains. The chemical composition of a protein molecule is determined by the linear 
sequence of amino acids, called the primary structure. The sequence starts at the so-called 
N terminal and ends at the C terminal; the two ends are not equivalent, i.e. running the 
sequence backward does not produce the same protein. Typical lengths of protein 
sequences are a few hundred amino acids. The extremes are a few tens to a few thousands 
of amino acids.  
 
One of the remarkable features of proteins is their ability to fold into a well-defined 
three-dimensional structure in aqueous solutions, the so-called protein-folding problem. 
This manuscript is concerned with a few indirect aspects of this problem. The working 
hypothesis is that the three-dimensional shape is determined uniquely by the sequence of 
the amino acids, and is the thermodynamically stable state. Anfinsen [1] put forward this 
extraordinary hypothesis that protein molecules are stable in isolation with no support 
from other components of the living system. From a computational and theoretical 
viewpoint, the Anfinsen hypothesis makes it possible to define and use in predictions an 
(free) energy function of an isolated protein molecule (in an aqueous solution). This 
function leads to significant simplification and saving of computational resources 
compared to studying a complete cellular environment. The free energy has a global 
minimum that coincides with the three-dimensional structure observed experimentally. 
 
Structures of proteins are classified in terms of secondary structure elements, domains 
and individual chains (tertiary structure), and packing of tertiary structural elements 
(quaternary structure). Secondary structure is determined according to the hydrogen bond 
patterns of the backbone atoms that form small structural elements (ten to twenty amino 
acids). These elements are assembled to form the stable three-dimensional compact 
structure of the protein. Typical elements of secondary structure are the helices and 
sheets, where helices provide local chain structure and beta sheets connect pieces of the 
chain that can be far apart along the sequence (but close in space). The formation of local 
structure restricts the number of allowed conformations of the peptide chain and 
facilitates more accurate and rapid folding compared to a comprehensive search through 
all self-avoiding “walks” of the polymer chain.  
 
Domains are fragments of a protein chain. Each domain includes several secondary 
structure elements and is “self-sustained.” It is expected that the average number of 
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contacts between amino acids that belong to the same domain (the total number of 
contacts in the domains divided by the number of amino acids) is much larger than the 
average number of contacts between amino acids situated at different domains. Domains 
have evolutionary implications. Empirically, domains were shown to swap between genes 
and proteins suggesting an evolutionary mechanism in which a significant segment of one 
protein (a domain) is inserted in, or exchanged with, another protein. This is in contrast to 
the alternative evolutionary mechanism of a point mutation, a process that modifies one 
amino acid at a time. Identifying relevant domains is likely to assist us in the 
characterization of basic building blocks of evolutionary processes and the mechanisms 
that guide them.  
 
A complete (single) protein chain defines the tertiary structure. The quaternary structure 
is an aggregate of a few protein chains that work cooperatively on a biological task. The 
discussion in the present paper considers only isolated chains, and we therefore stop at 
the tertiary structure. This is clearly an approximation since some of the relevant 
interactions arise from nearby chains. Nevertheless, as in to the domain picture, we 
anticipate that at least some of the individual chains are stable and can be studied in 
isolation. 
 
In statistical mechanics the folded conformation of a protein can be found by minimizing 
the potential of mean force that we loosely call the free energy, F . The free energy is 
defined by the following integration: 
 

( ) ( ),
log exp

U X R
F X kT dR

kT
  

= − −  
   
∫                                         (1) 

 
The probability of finding the system in equilibrium specified by a temperature T  at X  
is proportional to ( )exp /F X kT−   . The microscopic potential is ( ),U X R , k  is the 
Boltzmann constant, and T  is the absolute temperature. In equation (1) the free energy is 
a function of a subset of the total number of coordinates, X , which includes (for 
example) bond rotations. The vector R  includes the remaining coordinates that we 
eliminate by the integration on the right hand side equation. Examples of typical 
coordinates of the R  vector are the positions of the solvent (water) molecules, and bond 
vibrations within a protein. The free energy is defined in terms of protein coordinates 
(e.g. torsions) that remain quite large in number. The number of torsions more than 
doubles the number of amino acids in the protein and is therefore between a few 
hundreds to a few thousands for a single protein chain. Since each of the torsions has 
about three rotamer states, a significant entropic contribution to the reduced free energy 
remains and a minimum alone cannot be the whole story. However, in the discussion 
below we do not consider the question of stability or chain entropy (i.e. if the minimum 
of the potential of mean force is sufficiently deep to overcome the entropy of the 
misfolded state). At present we are happy to identify the minimum with the correct 
structure, even if the stability energy is not available. 
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It is clear from equation (1) that for a reasonable microscopic potential ( ),U X R  (so that 

the integral is well defined) the free energy ( )F X  is computable. However, we cannot 

determine for the general case a simple and transferable functional form for ( )F X , even 
if the microscopic potential is known (and this is not guaranteed, either). By transferable 
potentials we mean a single set of parameters for a given type of an amino acid regardless 
of the position of the amino acid along the sequence or the specific protein chain the 
amino acid is embedded in. The transferable formulation is similar in spirit to that of the 
microscopic potential and leads to more general, and simpler parameterization.  
 
Therefore to ensure transferable potentials and ease of computations many applications to 
protein folding assume the functional form of ( )F X , and do not compute it as outlined 
in equation (1). A set of potential parameters is optimized within the preset functional 
form. Assuming an empirical functional form for ( )F X  is a natural extension of the 

approach used for the atomically detailed potential, ( ),U X R . The last is also set 
empirically in most applications to proteins since the full exact calculations (including 
explicitly the electrons in the system) are just too expensive.  Only a limited number of 
calculations (that are severely restricted in time) employ the full electronic structure 
model. For example, the free energy functional below is assumed to be a sum of pair 
interactions between all amino acids, a convenient but an ad-hoc proposition. 
 

( ), ,          ,   ( ,  amino acids)ij i j ij
i j

F F r i j i jα β
>

= ∀∑                                  (2) 

 
The distance between the geometric centers of the amino acid side chains is ijr  [2]. The 
free energy of each interacting pair depends on the distance between the pair, ijr , and 
their type, ,i jα β  (but not their position along the sequence).  
The impact of the averaging formulated in equation (1) is subtle. For example, averaging 
of the solvent interactions yields repulsive potential of mean force between charged 
amino acids even if they have opposite electric charges that attract in vacuum. The 
preferred state of charged amino acids is to be surrounded by water molecules, far from 
the low dielectric medium typical of the interior of proteins. The tendency to be well 
solvated is observed only indirectly (since the solvent is not present explicitly in the 
model), and results in effective repulsion between well solvated (charged) amino acids. 
The hydrophobic (apolar) residues “attract” each other since they disrupt the hydrogen 
bond structure of the water molecules and their aggregation minimizes this effect. These 
interactions are weak, require the cancellation of many large terms, and are difficult to 
reproduce by direct averaging for proteins. The solvent-induced interactions are small in 
magnitude and the integrals in equation (1), which are performed stochastically, may not 
be accurate to the level required to fold proteins.  
An alternative approach that avoids the integration in equation (1), and which we 
consider in the present manuscript (section II), is to “learn” the free energy surface from a 
set of experimentally determined protein structures.  
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We conclude the discussion on energy in the Introduction with another comment from the 
school of skeptics. The hypothesis that the native structures of proteins are global (free) 
energy minima is not always true. Some post-folding modifications (for example, cutting 
a leading peptide, the start of the protein chain) make the global (free) energy minimum 
of the original chain different from the native (modified) structure. A classic example is 
of the protein insulin [3]. Other examples are proteins that do not fold spontaneously and 
require external help of other macromolecules (chaperones) to adopt their correct three-
dimensional shape. Nevertheless, despite the considerable complexity of the biological 
machinery that folds proteins (which suggests that some proteins cannot be studied in 
isolation), we do find numerous proteins that follow the Anfinsen hypothesis. Therefore 
the discussion below, seeking a functional form for the free energy and its global 
minimum, is a valid approach to determine structures of many proteins. 
 
While the path from sequence to structure is considered to be the protein-folding 
problem, the present manuscript focuses on another intriguing question: the inverse 
folding problem. The Anfinsen’s hypothesis argues that every sequence corresponds to 
one unique structure of the protein. Is the reverse true, i.e., can any structure of a protein 
be linked to a unique sequence of amino acids? This question, the reverse of the protein-
folding problem (from structure to sequence), is answered by a definite “no.” There are 
many sequences that are known (experimentally) to fold to the same or similar shapes. 
Consider the Protein Data Bank [4] (PDB http://www.rcsb.org) which is the digital 
repository of protein shapes. The PDB includes 25,960 protein structures as of June 15, 
2004. These structures include many redundant shapes and can be reduced to a few 
hundred distinct protein families. The structural families are defined by shape similarities 
regardless of the amino acid sequences of the compared proteins. Hence, on the average, 
there are hundreds of sequences in the protein databank that fold into the same protein 
shape. The “seed” shape defines a fold family. 
 
Consider another important database of proteins, nr (non-redundant) [x] that includes 
sequences only. A significant fraction of the millions of sequences in the nr database can 
be associated with a known fold family. The observed redundancy in mapping from 
sequences to structures in nr is even larger than the redundancy implied by the PDB. It is 
a mapping from the many (sequences) to the relatively few (structures). Evolutionary 
processes that modify and generate new protein sequences by changing one amino acid at 
a time are “stuck” in the neighborhood of individual structures (islands in sequence 
space) and produce new proteins that have essentially the same shape (note that the 
evolutionary process we consider here is not the domain-swap mentioned earlier). The 
seed shape is used over and over again for alternative sequences. The variations in 
sequences in the neighborhood of a given fold may adjust the function of the protein 
while maintaining the same overall structure. For example, a small change in activity 
would create a modified enzyme with enhanced (or reduced) affinity to the same ligand. 
A large change will use the same structural template for enzymes with different ligands, 
or chemical reactions. Since there are numerous examples of the second kind (large 
change in function) it is difficult to predict protein function based on structure similarity 
only. 
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An intriguing follow-up research direction is of sequence capacity of a structure. Given a 
shape of a protein X  and energy E  (which is a function of the sequence and the 
structure) what is the number of sequences ( ),N E X  that fit this shape with energy lower 
than E ? We will demonstrate that the number of sequences is so large that statistical 
mechanic analysis is suggestive. Following the usual notion of entropy in statistical 
thermodynamics we define a “selection temperature” for the ensemble of sequences that 
fit a particular structural family. We finally speculate on evolutionary implications of our 
work. 
 

II. Energy functions for fold recognition 
For meaningful calculations of macromolecular properties we must have a free energy 
function that weighs the importance of different structures. The lower the free energy, the 
more probable the structure. The design, choice of functional form, and optimization of 
parameters for the free energy function are the focus of the present section. Traditionally, 
energy functions for simulations of condensed phases and macromolecules (and proteins 
are macromolecules) were built according to chemical principles, starting with small 
molecular models, and interpolating to the large macromolecules, such as proteins. A 
typical atomically detailed energy function is of the following form 
 

( ) ( ) ( ), , ,c nU X R U X R U X R= +                                                 (2) 
 
The energy ( ),cU X R  includes the covalent terms: bonds, angles, and torsions. These are 
two, three and four body terms respectively. 
 
 
 
 
 
 
 
Figure 1. A schematic drawing of a polymer chain with covalent degrees of freedom denoted by arrows. A 
“stick” connects two atoms at the edges. A bond term describes the distance between the two atoms. An 
angle (term) is between two connected bonds, and a torsion measures the angle between the planes defined 
by three sequential bonds (the first and the second bond define the first plane, the second and the third 
bonds define the second plane).  
 
Most of the time, the bonds and angles of the protein chain remain near their equilibrium 
values. It therefore makes sense to model the bond and the angles with (stiff) harmonic 
energy terms. An alternative is to use holonomic constraints, and to fix them at their ideal 
values.  
 
In the present paper we do not directly consider the contribution of the covalent part cU  
but focus instead on ( ),nU X R . The covalent term is considered (and enforced) indirectly 
by using a subset of structures that satisfy the holonomic constraints on bonds and angles. 

bond 

angle 
torsion 
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The energy of the above covalent coordinates at their ideal value is zero, which makes it 
unnecessary to add the contributions of the bond and angle energies. 
 
The case of torsions is different from the bonds and the angles. Torsions are allowed to 
change significantly, and are not constrained. However, the torsion energy contribution is 
small and is set to zero in some potential functions, which is the approach we take here. 
An exception to the “rule” of torsions with small energy contribution is rotations around 
double bonds (e.g. amide planes). The rotations around double bonds are fixed at their 
ideal values similarly to the bonds and the angles.  
 
The considerations above leave us with only the non-bonded energy term ( ),nU X r . The 
lower case r  denotes coordinates to be integrated out (e.g. water coordinates) to obtain 
the free energy. The set r  no longer includes bonds and angles that were removed using 
holonomic constraints. The set r  is therefore smaller than R .  
 
As we argued in the introduction, the function ( )F X  may be computed from the detailed 

potential ( ),U X R  or ( ),nU X r  following the integration outlined in equation (1). 
However, this is computationally intractable, and so far no one has done it 
comprehensively and accurately for proteins (even if we are willing to forget about the 
transferability issue). A more pragmatic approach is to accept that a function ( )F X  
exists, and to search for a functional form and parameters that make general physical 
sense, and are successful in identifying the correct folds of proteins. 
 
 
II.1 Statistical potentials 
The idea of statistical potentials was pioneered by Scheraga [5] and popularized by 
Miyazawa and Jernigan [6]. It is probably the most widely functional form of an energy 
function in the protein-folding field. At this point it is useful to introduce some 
probabilistic arguments to motivate the computational approach below. As argued above 
the free energy is directly related to the probability of finding the system at a particular 
state. Consider the following question: what is the probability that in the set of known 
protein folds we will find an amino acid of type ka  in a (given) structural site with 
exposed surface area iA  and secondary structure js ? Here is the formula 
 

( ) ( )
( )

, ,
| ,

,
i j k

k i j
i j

P A s a
P a A s

P A s
=                                              (4) 

 
The probability of the event z  is ( )P z . The amino acid type is ka . We will define the 
secondary structure by a discrete variable js  (0=α  helix, 1=beta sheet structure, 2=3/10 
helix, 3=bend and turn, 4= π  helix, and the rest), and the exposed surface area iA  is 
binned into eight discrete states. Note that the variables iA  and js  take the role of the X  
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coordinate vector that we discussed abstractly in the previous section. Identifying the 
relevant reduced variables is of crucial importance and here we are using our intuition on 
protein structure and energy. A surface term motivates polar residues to be on the surface 
of the protein, and such events should be observed with high frequency. Similarly, 
hydrophobic residues are buried in the protein matrix, a frequent observation.  
 
The above conditional probability is related to the inverse protein-folding problem that 
was mentioned in the introduction. Alternatively, and more related to the protein folding 
problem, we may consider the probability that an amino acid ka  will be found in a 

structural site characterized by ( ),i jA s . We will use the exposed surface area and 
secondary structure as non-bonded variables to describe the state of the protein. 
 

( ) ( )
( )
, ,

, | i j k
i j k

k

P A s a
P A s a

P a
=                                            (5)  

 
For a protein chain with a sequence 1 2... La a a  we write the probability of having a 
sequence of structural sites characterized by ( )( ) ( )1 1 2 2, , ... ,L LA s A s A s  as a product. This 
is clearly an approximation in which we assume no correlation between the sites. 
Nevertheless, let us push a little further in that direction. 
 

( ) ( )( ) ( )
( )1 1 1

1

, ,
, ... , | ... l l l

L L L
l l

P A s a
P A s A s a a

P a=

=∏                          (6) 

 
Since the free energy F , of a state X , is related to the probability of observing that state, 
( ) ( )expP X F X kT∝ −   , we can use reverse engineering and write the free energy of 

folding as 
 

( ) ( )( ) ( ) ( )1 1 1, ... , | ... log , , logL L L l l l l
l l

F A s A s a a kT P A s a kT P a= − +      ∑ ∑         (7) 

 
Note that approximating the probability as a product results in a free energy that is a sum. 
The free energy components depend on the properties of site i  only. Of the two functions 
at the right hand side of equation (7), ( )iP a  is trivial to estimate (and probably irrelevant 
if our focus is on a fixed sequence with only the protein coordinates as variables). The 
more challenging function to estimate is ( )log , ,l l lkT P A s a−    . It is based on averaging 
over all possible conformations of the protein chain and solvent coordinates that are 
consistent with the values of the predetermined secondary structure and surface area 
(equation (1), here we go again).  
 
Besides the technical difficulties, it is important to note that the absolute free energy as 
given in equation (7) is not necessarily what we need. It is more useful to consider the 
free energy difference between the folded and unfolded states, since a protein is always in 
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one of these states and we are attempting to estimate which of the two states is more 
probable.  
 

( )
( )

, ,
log

, ,

F F
lk lk lk

FU F U U U
l lk lk lk

P A s a
F F F kT

P A s a

 
 ∆ = − = −
  

∑ ∑
                               (8) 

 
The index l  runs over the sequence, and k  is used to denote the type of the site 
characterized by surface area, secondary structure, and the amino acid embedded in it. 
The summation in the denominator includes all structures that we assigned to the 
unfolded state.  
The expression in equation (8) is very general, so more details on computability are 
required. To make the formula meatier we need to come up with a feasible computational 
scheme of the free energy per structural site. The first step is to construct a model for the 
unfolded state, since direct summation over all possible unfolded coordinates is 
impossible in practice. In the unfolded state we expect the structural characteristics 
(surface area and secondary structure) to be weakly dependent on the amino acid types. 
We also expect it to be independent of the specific misfolded structure under 
consideration. Hence, rapidly exchanging misfolded structures are expected to be similar 
on the average. Note that we differentiate above between misfolded and unfolded 
structures. Unfolded structures make a larger set than misfolded structures. The last set 
includes non-compact shapes that do not resemble true protein conformations. Misfolded 
structures are protein-like shapes that (nevertheless) are incorrect. This assumption makes 
it possible to estimate the direct sum in the denominator (right hand side of equation (8)) 
using a statistical argument.  
 

( )
( ) ( ) ( )

, ,
log

1 ,

F F
lk lk lk

FU F U U U
l lk lk lk

P A s a
F F F kT

N P A s P a

 
 ∆ = − = −

− ⋅  
∑                    (9) 

 
The total number of structures at hand is N . One of the structures is correct and the rest 
of the structures ( )1N −  represent a misfolded state. The symbol P  denotes probability of 

a structural site averaged over the set of misfolded structures. Since ( )1N −  is fixed it 
adds a constant value to the free energy difference. This constant affects the absolute 
stability of the current model, but not the ranking of the structures according to their 
probability. Accurate estimation of the free energy of stability is important but hard to 
obtain computationally since it requires comprehensive summation of all possible 
(unfolded) structures. The good news is that absolute stability is not required to detect 
which of the candidate structures in our set is more likely to be the correct fold. We 
approach the more moderate goal by considering two fold candidates i  and j , and 
compare the free energy differences iF∆  and jF∆ . This is a good point to define and use 

the statistical potential, ( ), ,lk lk lkV A s a  
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( ) ( )
( ) ( )

, ,
, , log

,
lk lk lk

lk lk lk U U
lk lk lk

P A s a
V A s a kT

P A s P a

 
 = −
  

                               (10) 

 
The statistical potential can be used to estimate which fold is preferred. We have 
 

( ) ( ), , , ,i i j j
i j lk lk lk lk lk lk

l l
F F V A s a V A s a∆ −∆ = −∑ ∑                          (11) 

 
All that remains is to estimate the numerical value of the entries to the table ( ), ,p q rV A s a  

(the triplet of indices ( ), ,p q r  identifies the type of the structural site and the amino acid, 
and replaces the single index k  used in equation (11)). Perhaps the most remarkable 
feature of the statistical-potential approach to fold recognition (identifying the correct 
fold) is the way in which the table is generated. The probabilities in equation (10) are 
estimated directly from the protein databank. Having a set of non-redundant protein 
structures defines the N  candidate structures that we are using to generate the tables 
( ), ,p q rP A s a , and ( ),U U

p qP A s  (computing ( )rP a  is trivial). We first consider all 
correctly folded proteins. For each protein we have binned the number of occurrences of 
the triplet , ,p q rA s a . We have a non-redundant sample of about 6000 proteins with 
lengths between a few tens to a thousand of amino acids. The number of bins is 
20 5 8 800× × =  which is significantly smaller than (roughly) 1,000,000 data points, 
allowing for sufficient sampling. The next task of estimating the probability of misfolded 
sites, ( ),U U

p qP A s , is done in a similar way by collecting the same structural data in 40 
bins. By ignoring the correlation between structural sites and sequences we assume that 
the distribution of the structural sites represents misfolded (but compact) structures. As 
argued earlier, our prime interest is in ranking, proposing plausible folds. We avoid the 
more difficult calculation of stability, which must take into account truly unfolded non-
compact structures in order to estimate the free energy of stability.  
The set representing the misfolded structures should include ( )1N −  shapes that are 
incorrect and exclude the correct fold. However, removing the native shape from the set 
of 6000 structures will have a small effect on the statistics and will make it necessary to 
generate separate ( ),U U

p qP A s  for every fold. It is much simpler to generate this function 
only once including all the structures. The difference in the probabilities is expected to be 
negligible anyway.  
 
Note also that the set of structures that we considered above has nothing to do with the 
normal thermal energy (after all, these are folded structures picked from the protein 
databank and not from thermal denaturation experiments). The multiplying factor kT  in 
formula (10) determines the energy scale and not the relative ordering of different 
structures. It can be chosen arbitrarily and in the calculations that follow we set it to 1. 
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Below we show statistical potentials parameterized by exposed surface area, secondary 
structure, and type of amino acid. We show three cases (different amino acids) of two-
dimensional cross-sections of the computed statistical potential.  
 

 
 
 
 
 
The first example is of arginine, a charged residue. It follows the usual expectation from 
polar residues. Like other charged residues it has a significant tendency to form a helix, 
though from the plot the weight of a beta sheet structure is similar. 
The second example is of another charged residue (glutamic acid).  

 
 
Glutamic acid also strongly prefers maximal exposure. It has a tendency to an alpha 
helical structure, with a 3/10 helix the second best.   
 
Our third and last example of this kind is of hydrophobic residue (valine).  

Figure 2a. The statistical potential of an arginine is plotted as a function of the secondary 
structure and of the fraction of solvent-exposed surface area. The secondary structure is 
parameterized as follows (0=α  helix, 1=beta sheet structure, 2=3/10 helix, 3=bend and turn, 4= 
π  helix, and the rest). The exposed surface area is normalized with respect to a maximum found 
in a tri-peptide Gly-X-Gly or in the proteins. Note that the two variables are sometimes 
correlated

Figure 2.b Statistical potential for glutamic acid. See legend of figure 2.a for more details. 
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The potentials drawn above look reasonable and coincide with our physical and chemical 
intuition about proteins. However, they do not reflect the usual physical principles of free 
energies and their definition by statistical mechanics; the set of structures we consider is 
not thermal. These potentials were proven useful for “fishing” templates for structural 
modeling. However, they should not be used to estimate thermodynamic properties. 
 
II.2 Potentials from mathematical programming 
The attractive idea of statistical potentials is the use of experimentally determined protein 
structures to learn folding potentials, a radically different approach from the chemical 
physics bottom-up approach where parameters are derived from small molecules and the 
potential is scaled to large molecules (such as proteins). The difficulty in the chemical 
approach for proteins is that they are only marginally stable and slight accuracies in 
building up parameters for small molecules will be enhanced when applied to 
macromolecules (as proteins are).  
The statistical potentials are easy to construct and to use, and were successful in 
identifying the correct folds in numerous cases. These advantages kept the statistical 
potentials in wide use. On the other hand, the derivation and design of the statistical 
potentials require numerous assumptions, putting into question our ability to use these 
entities in the calculation of physical and chemical properties (besides ranking the 
candidate structures for modeling). In this section we propose an alternative learning 
scheme that is considerably more flexible (in the choice of the functional form, and the 
parameter set) and makes it possible to pick a potential that is not inconsistent with 
known chemical and physical properties. The method we have in mind is that of 
mathematical programming. Just as in statistical potentials we learn the potential from 
protein structures, and not from data or calculations on small molecules. However, we 
learn it in a way that is consistent with the chemical physics principles of the system. 
 

Figure 2.c Statistical potential for valine.  Note the strong tendency of valine to be buried and to 
adopt a beta sheet conformation. See legend of figure 2.a for more details. 
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Consider the free energy, ( )F X , which is a function of the reduced set of coordinates, 
X . A minimal requirement from this free energy, either from recognition or physical 
perspectives, is 
 

( ) ( ) 0          i nF X F X i− > ∀                                             (12) 
 
Related inequalities were written and solved by Maiorov [7], and Vendruscolo [8]. We 
denote the coordinates of the correct (native) structure by nX  and the coordinates of a 
wrong (decoy) structure by iX . The above condition, that the free energy of the correct 
structure is lower than the free energy of any alternative structure, is expected from the 
true energy function as well as from a successful measure of fold templates. How to use 
the flexible information in (12) to estimate functional form and parameters is a problem 
that can be addressed efficiently with mathematical programming tools. We first note that 
( )F X  (like any function) can be expanded by a (complete) basis set with linear 

coefficients. In the “learning formulation” below the decoy and the correct structures are 
known and the linear coefficients are the unknowns that we wish to determine. 
 

( ) ( )k k
k

F X a Xφ=∑                                                   (13) 

 
Substituting the linear expansion in equation (12), we have 
 

( ) ( ) ( ), 0              ,k k i k n k k i n
k k

a X X a X X i nφ φ φ− = ⋅∆ > ∀  ∑ ∑            (14) 

 
Equation (14) defines a set of linear inequalities in ka  (for all decoy and native 
structures) that we wish to determine. We call φ∆  the structural difference function. 
Linear inequalities can be solved efficiently using mathematical programming 
techniques. We may write equation (14) as a condition on a scalar product of two vectors 
â  and φ̂∆ . The two vectors must be parallel to satisfy the constraint (positive scalar 
product). Every inequality divides the space of parameters (linear coefficients) into two, a 
half that satisfies the inequality, and another half that does not. Gathering the constraints 
of all the inequalities can result in one of two outcomes:  (a) there is a feasible volume of 
parameters, every point that belongs to that volume satisfy all the inequalities, or (b) there 
is no set of parameters for which all the inequalities are satisfied, i.e. the problem is 
infeasible.  
 
A schematic drawing of the determination of two parameters with two inequalities is 
shown below (figure 3). Note that the actual number of inequalities that we solve in 
practice is much larger than the number of potential parameters that we wish to determine 
(the linear expansion coefficients). Typically, millions of constraints are solved with a 
few hundred parameters. In fact, we can use the number of constraints that have been 
solved as a test of the quality of the model. The more inequalities we are able to solve 
with the same number of parameters, the better the functional form is that we have 
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chosen for the energy function. Hence, in some cases increases in potential complexity 
(and number of parameters) are not justified since the number of inequalities that we 
solve after adding more parameters does not increase in a substantial way. In the field of 
“machine learning” in computer science, such an ineffective way of increasing model 
complexity, and over fitting parameters is major concern and called “over-learning.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A schematic drawing of the parameter space and the inequalities we used to solve for the potential 
parameters. The drawing is for two parameters and two constraints. The dotted lines are hyperplanes (only 
lines in two dimensions) perpendicular to the corresponding kφ∆  - the structural difference vectors, and 

are called ( ) |kφ∆ . A solution, the vector â , must be between the enclosing hyperplanes, and a thin arrow 

denotes a sample solution. Note that the norm of the solution, â , is arbitrary. 
 
 
For the set of proteins that follow the Anfinsen’s hypothesis, we expect that the free 
energy function exists, and the set of inequalities is feasible (after all nature already 
solved that problem). However, since in practice our base functions are always 
incomplete, infeasibilities are at least as likely to indicate the failure of the current model 
as a failure of the Anfinsen’s hypothesis. We therefore use the onset of infeasibility as a 
sign that the model is not good enough and seek a better basis set. This observation is in 
contrast to the statistical potential approach that does not provide such a self-test. A 
statistical potential that fails to recognize the correct fold of a protein does not offer an 
alternative path to further improve the potential. 
 
A limitation of the mathematical programming approach, which is similar to the 
statistical potential calculations, is the energy scale. It is not possible using inequality 
(14) to determine the absolute value of the coefficients ka .  For any solution â , the 
product kaλ ⋅  where λ  is a positive constant is also a solution. The norm of the 
parameter vector that solves the inequalities of (14) is unbounded. The scale can be 
determined using experimental information (when available). For example, 
measurements of the stability energy, or the free energy gap between the folded and 
unfolded states, can be used to determine the absolute scale. The connection is, however, 

1a

2a

1φ∆  

2φ∆

Feasible 
volume ( )1 |

φ∆

( )2 |
φ∆

â
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not trivial since the stability energy is a free energy difference that requires a model with 
all the uncertainties associated with it. This is the typical case, and most experimental 
observations that determine an energy scale require expensive computational averages to 
be accounted for by simulations. 
 
An important advantage of the mathematical programming approach compared to the 
statistical potentials is the ability to learn from incorrect shapes. Statistical potentials 
“learn” only from correct structures. Misfolded structures are learned in an average way, 
and unfolded shapes are not considered at all. The inequalities make it possible to 
consider all alternatives shapes, misfolded and unfolded structures alike (provided that 
they are available). The limitation is technical and not conceptual (how many decoys we 
can effectively solve), and our collaborators are working to develop codes for parallel 
study of exceptionally large sets of inequalities [9]. 
Another limitation of the mathematical programming approach is the ability of this 
approach to optimize (efficiently) only convex quadratic functions. Clearly, general 
thermodynamic properties will have more complex dependence on the potential 
parameters, and this restriction affects our ability to make the best choice of a parameter 
set from a feasible volume. Nevertheless, there are a few guidelines that help us make an 
educated guess. These guidelines are statistical in nature and are based only on the 
information we have at hand (a limited set of protein structures). We therefore do not use 
thermodynamic information in the procedure described below.  
 
Note also that the mathematical programming approach learns from the tail of the 
distribution of free energy difference (and not the average as is done in statistical 
potentials). The tail is of prime importance since we wish to put the native shape at the 
extreme left of the distribution. For the mathematical programming algorithm every new 
inequality can have a significant impact if it cuts through so-far feasible parameter space. 
The statistical potentials learn only average misfolded structures. Adding new 
information in the form of one or a few new conditions (after considerable data were 
already put in) is unlikely to change significantly statistical potentials. In contrast one or 
a few new data points can have a profound effect on potentials computed with 
mathematical programming. We emphasize that our data is without noise and we do 
expect to find a true potential that solves all the data exactly. 
 
The training procedure that we described above will always be limited by the availability 
of data. The space of alternate protein conformations is tremendous in size and is unlikely 
to be explored in full for proteins of average size. For average number of conformations 
per amino acid, Z , and protein of length L , a rough estimate to the number of possible 
states of the chain is LZ  (for 3Z =  and 100L =  we have 475 10⋅ ).  The largest set of 
constraints that we solved is of the order 710 , much smaller than 4510 . Given the sparsity 
of the data the feasible volume of parameters will never be determined exactly, and 
significant deviations, especially near the boundaries of the feasible volume, are 
expected. We therefore do not wish to select a parameter set near the boundaries, since 
the uncertainties may result in false predictions. We anticipate however that deep in the 
feasible volume (assuming that some depth is available…) interpolations to new datasets 
are more likely to be accurate. In other words, we expect that the center of the feasible 
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volume will be sufficiently far from the boundaries, which are not well determined and 
are more prone to errors. If our learning is sound most new data points will fall in the 
neighborhood of the borders, the center of the feasible volume is expected to remain 
feasible.  
 
How do we define and find the center of the feasible volume? We are working with two 
different approaches. In the first approach, we exploit the properties of the interior point 
algorithm [10], an optimization procedure to solve constrained problems of the type of 
equation (14). 
In the interior point algorithm continuous logarithmic barriers replace the inequalities. A 
continuous minimization problem is solved that is guaranteed to converge in a 
polynomial number of steps. If the system is bound, the minimum of the target function 
will be the analytical center, a position in which all the forces from the logarithmic 
barriers balance each other. The analytical center is the sum of the forces of all 
inequalities that were used; some of the inequalities are redundant. An example for a 
trivial redundancy are the two constraints 1 3α >  and 1 5α > . Clearly the inequality 

1 5α >  is sufficient. However the interior point algorithm uses both inequalities to 
generate forces towards the center. In that sense a direction with many redundant 
inequalities is more repulsive than a direction that was sampled sparsely. The result is 
therefore not the geometric center of the feasible volume that is defined by a minimal set 
of inequalities. Instead, the center of the interior point algorithm (with no function to 
minimize) is a weighted average of forces from all the constraints. 
In practice the analytical centering procedure, which means using the interior point 
algorithm without a function to optimize, provided the best potentials measured by a 
maximal number of proteins recognized with a minimal number of parameters.  
 
The second option is an intriguing subfield of machine learning in computer science, 
namely the SVM approach (Support Vector Machine [11]). In the language of the 
problem at hand, it is possible to use statistical learning theory to come up with a 
mathematical programming formulation similar to the inequalities (14) and to obtain 
meaningful results even if the set is not feasible. Here we consider only the feasible case 
(i.e., there are parameters such that all the inequalities are satisfied). The discussion about 
the infeasible set is beyond the scope of the present manuscript.  
Returning to the task at hand, we cosmetically adjust the inequalities in (14) to read 
 

( ) ( ) ( ),               ,k k i k n k k i n
k k

a X X a X X i nφ φ φ δ− = ⋅∆ > ∀  ∑ ∑              (15) 

 
The new variable δ  defines an energy gap (the difference in energy between the folded 
and the misfolded/unfolded shapes). We wish to maximize this distance to increase the 
stability of predictions made by the energy function. This is only a cosmetic change since 
maximizing the gap directly is unproductive. The energy gap according to (15) and the 
norm of the vector of coefficients, â , are not bound. The undetermined energy gap is a 
result of the missing energy scale that we mentioned earlier. To get around this problem 
we redefine the coefficient vector ˆ ˆa a δ← , which set the energy (and the energy gap) to 
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be dimensionless.  Minimization of the newly defined vector of parameters will 
maximize the dimensionless energy gap. The problem we solve is  
 

( ) ˆ ˆ, 1       min               ,t
k k i n

k
a X X a a i nφ  ⋅∆ > ∀ ∑                    (16) 

 
If an energy scale is determined by other sources, we can always enforce the scale by 
replacing the “1” on the hand right side by the appropriate constant. The parameter vector 
so determined is maximizing the distance from the planes that are closing the feasible 
volume. This procedure is much closer in spirit to a geometric interpretation of the center 
of the feasible volume than the analytical center of the interior point algorithm mentioned 
above. Nevertheless, emphasizing the importance of constraints that are sampled very 
frequently even if they are redundant (as is done in the interior point algorithm) does 
have a merit. In practical applications, the potentials we derived from analytical centers 
tend to perform better than potentials derived from the SVM procedure. Below we 
describe a specific potential (THOM2 [12]) that was calculated with the centering of the 
interior point algorithm. 
THOM2 is a specific realization of the structural function, ( )k iXφ , based on biochemical 
intuition, which was motivated by the lukewarm success of another potential -- THOM1 
(see below). THOM1 and THOM2 are exploiting (in a different way) properties similar 
to the solvent-exposed surface area that we discussed earlier. Instead of surface area we 
count the number of contacts to a site as another measure of solvent accessibility. A 
contact is defined between the geometric centers of two side chains that are separated by 
no more than 6.5Å. A site with a large number of contacts (to other protein residues) is 
less likely to be exposed to the solvent. This type of site is likely to host apolar amino 
acids such as phenylalanine, or isoleucine. On the other hand, sites with a small number 
of contacts are appropriate for charged residues such as lysine that strongly prefer a water 
environment. THOM1 is an energy function that builds on the above intuition. We 
construct a table ( )1 ,T nα  that assigns an energy value to a site along the protein chain, 

according to the type of the amino acid ( )α  embedded in the site, and the number of 

contacts with the site ( )n . The total (free) energy of a protein is given by the sum of 
contributions from different sites. 
 

( ) ( )1 ,l l
l

F X T nα=∑                                               (17) 

The summation index l  is over the protein sequence (and structural sites). We have 
assumed separability of the free energy function to decoupled contributions from 
individual sites. This separation is similar to what we have done with the statistical 
potentials. It is convenient to write formula (17) with a sum over all the types of sites, K  
( K  is the product of the number of amino acid types, times the number of neighbors a 
site may have). 
 

( ) ( )
1

1 ,
K

k k k
k

F X m T nα
=

= ⋅∑                                      (18) 
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The integer km  is the number of times a site of a given type was sampled in a structure 
(for example, we may have in a specific protein five alanine residues embedded in sites 
with exactly four neighbors, in which case the corresponding m will be five). Using the 
last formulation, inequalities for THOM1 parameter training are written 
 

( ) ( ) ( )( )

1
1 , 0              ,

K
i n
k k k k

k
F m m T n i nα

=

∆ = − > ∀∑                                 (19)  

 
The table entries are the unknown coefficients to be determined (in this case with the 
interior point algorithm). The indices of the inequalities are for misfolded structures i , or 
native shape ( )n . The number of parameters for THOM1 is 200 (twenty amino acids and 
contact numbers vary from 0 to 9) which was determined using a few millions 
inequalities [2]. It turns out that THOM1 capacity to recognize native shapes is limited. 
We therefore were looking for a more elaborate model with a better recognition capacity, 
hence THOM2.  
 
The THOM2 scoring scheme is also about contacts. In contrast to THOM1 which scores 
sites, THOM2 scores individual contacts. Different contacts score differently according 
to the number of contacts to that site and the amino acid embedded in the prime site. 
Consider a site with 1n  neighbors that we call the primary site.  One of the contacts of the 
prime site is with a secondary site that has 2n  neighbors. THOM2 is an energy table that 
scores a contact between the two sites according to the type of amino acid in the primary 
site, and the number of contacts 1n  and 2n  - ( )1 1 22 , ,T n nα . The free energy of a protein 
in the THOM2 framework is therefore written as 
 

( ) ( ) ( )( )
1 2

1
2 , , 0              ,

K
i n
k k k k k

k
F m m T n n i nα

=

∆ = − ⋅ > ∀∑                  (20) 

 
The sum in inequality (20) is over contact types (not sites). The counters for the unfolded 
structure i

km  and the native shape ( )n
km  are characteristics of the structure that are scored 

according to table ( )1 22 , ,T n nα  to be determined. The index k  is equivalent to the triplet 

( )1 2, ,n nα  and is used in formula (20) in addition to the triplet for clarity. The THOM2 
energy was designed subject to about 30 million constraints [12]. The set that was found 
feasible with the 300 parameters, comprises the entries to the T2 table of THOM2. It is 
remarkable that only 300 parameters capture the information contained in 30 million 
constraints, suggesting that this functional form is indeed useful.  
 
It is also amusing that some of the entries to the table are undetermined (the entries with 
values of 10.00). Hence the number of parameters that we actually required to satisfy all 
the inequality constraints was even smaller than 300 (291 parameters). The combination 
of a site with the maximal number of neighbors, interacting with a site with the smallest 
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number of neighbors was exceptionally rare in our data and left many of these parameters 
(for different types of amino acids) undetermined.  
 
Table I 
The table of the THOM2 energy as a function of the contact type and the amino acid type 
( i is the primary site, j  the secondary site). Note that the number of neighbors of a site is 
“coarse-grained” and means the following actual number of neighbors 
1 1,2   3 3,4   5 5,6   7 7,8   9 9→ → → → →≥  

 ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE  
            

(1,1) 0.225 -0.029 -0.033 -0.082 -0.822 -0.259 0.091 0.286 0.072 -0.117  
(1,5) -0.207 -0.257 -0.103 0.196 -1.109 -0.005 -0.075 0.002 0.029 -0.306  
(1,9) -6.011 -4.086 -5.419 -6.137 -7.266 -5.878 -5.801 -5.808 -4.753 -5.455  
(3,1) -0.006 -0.096 -0.172 0.023 -0.496 -0.091 0.108 0.307 0.043 -0.104  
(3,5) -0.078 0.177 0.153 0.129 -0.693 0.115 0.236 0.037 -0.029 -0.287  
(3,9) -0.295 0.056 -0.327 0.082 -0.780 0.182 0.018 -0.128 -0.469 -0.597  
(5,1) 0.134 -0.206 0.045 0.222 -0.147 -0.113 0.076 0.480 0.191 -0.148  
(5,3) 0.064 0.165 0.202 0.169 -0.596 0.040 0.127 0.183 -0.038 -0.245  
(5,5) -0.654 0.681 -0.264 -0.195 -0.821 -0.092 0.427 -0.365 -0.194 -0.469  
(7,1) 6.291 5.499 5.558 6.020 5.090 5.547 5.681 6.102 5.697 5.591  
(7,5) 0.172 0.289 0.363 0.386 -0.276 0.285 0.450 0.327 0.277 -0.080  
(7,9) 0.082 0.409 -0.003 -0.154 -0.297 0.038 -0.275 0.052 0.685 0.039  
(9,1) 10.000 4.497 6.050 5.215 3.999 5.936 10.000 10.000 10.000 10.000  
(9,5) 0.259 0.305 0.261 0.712 0.412 -0.017 0.323 0.828 -0.091 1.256  
(9,9) 0.195 0.042 -0.367 -1.340 -1.186 0.469 1.374 -1.358 1.055 -1.991  
(0,0)       

            
 LEU LYS MET PHE PRO SER THR TRP TYR VAL GAP 
            

(1,1) -0.159 -0.016 0.213 -0.204 0.029 0.047 -0.065 -0.502 -0.637 -0.280 8.900 
(1,5) -0.230 -0.132 -0.147 -0.292 -0.231 0.067 -0.093 -0.605 -0.398 -0.358 5.700 
(1,9) -5.855 -4.905 -4.967 -5.826 -6.169 -5.887 -5.886 -5.254 -6.791 -6.989 10.000 
(3,1) -0.099 0.106 -0.196 -0.170 -0.015 0.405 0.061 -0.311 -0.295 -0.053 10.000 
(3,5) -0.213 0.141 0.080 -0.315 -0.054 0.058 0.079 -0.364 -0.278 -0.168 10.000 
(3,9) -0.487 0.086 -0.851 -0.065 0.195 0.234 0.150 -0.151 0.034 -0.272 10.000 
(5,1) -0.319 -0.056 -0.152 -0.271 0.169 0.190 0.342 -0.068 0.016 0.190 10.000 
(5,3) -0.187 0.258 -0.259 -0.283 0.089 0.114 0.017 -0.365 -0.297 -0.270 10.000 
(5,5) -0.423 0.336 0.319 0.074 0.549 0.218 0.005 0.038 -0.459 -0.584 10.000 
(7,1) 5.262 6.082 5.642 5.797 5.819 5.226 5.477 6.419 5.170 5.530 10.000 
(7,5) -0.008 0.497 0.243 -0.158 0.421 0.126 0.337 0.042 -0.083 -0.029 10.000 
(7,9) -0.175 0.668 0.061 0.032 -0.706 0.825 0.242 -0.362 0.142 -0.246 10.000 
(9,1) 6.222 5.593 4.915 6.021 9.614 10.000 10.000 5.885 10.000 10.000 10.000 
(9,5) -0.150 0.525 -0.194 0.431 3.066 0.426 0.524 -0.080 0.081 0.206 10.000 
(9,9) -0.248 -0.293 1.411 -1.330 6.939 3.223 -0.538 0.815 -0.533 -0.515 10.000 
(0,0)      1.000 
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The THOM2 potential derived as discussed above will be used in the study of 
evolutionary capacity of structures in the next section. 
 
III. The evolutionary capacity of proteins [13] 
One of the remarkable properties of proteins is the redundancy of sequence space with 
respect to structure space. There are numerous sequences that fold into the same shape. 
An obvious question is how large “numerous” is, and in this section we attempt to 
address this problem. More concretely, we compute the entity we name “structure 
capacity” – the number of sequences that a particular protein can accommodate up to an 
energy E. We consider protein sequences that improve on the stability of the native 
structure, i.e. sequences that are more stable than the native sequence of a particular 
(experimentally determined) protein structure. We find an exponentially large number of 
“better” (more stable) sequences. 
The observation that one may improve stability (in a considerable way) compared to the 
natural sequence is perhaps not that surprising, since protein sequences are not optimized 
for structural stability only. True biological sequences are subject to constraints that are 
related to their function. Proteins need to be flexible, to have recognition sites, and other 
biological features that are at variance with the single criterion we use here, which is 
stability. Despite the limitations of studying stability only, there is still considerable 
interest in it, providing insight into the space in which further design and evolutionary 
refinement of sequences can be made. The stability constraint is an obvious one. It is 
always part of the equation and therefore studying it in isolation is likely to provide 
meaningful information, even if it is highly permissive (as we indeed find out). 
 
So much for philosophy, to be concrete we compute the function ( )N F∆ . It is the 
number of sequences with free energy gaps larger than the free energy gap ( F∆ ). The 
problem now resembles the calculation of a microcanonical partition function, with a 
small (but important) difference. The microcanonical partition function is the number 
density - the number of sequences in the neighborhood of F∆  
 

 ( ) ( )dN F
F

d F
∆

Ω ∆ =
∆

                                             (21) 

 
It is useful to reiterate the definition of the problem. The space in which we count events 
is of sequences and not of Cartesian coordinates. The sequence space is discrete and the 
maximum number of sequences that may fit to a protein of length L  is 20L  (twenty types 
of amino acids). During the counting the structure is kept fixed while we generate 
sequences that may fit into this particular structure with a present stability criterion F∆ . 
The total number of sequences with free energy gap below F∆ is given by ( )N F∆ . The 
number density is a useful entity to build on a “thermodynamic” description of sequence 
space. The entropy, S , of sequence space (constrained to the neighborhood of one 
structure) is given by 
 

( )logS F= Ω ∆                                                 (22) 
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To obtain a comprehensive view (as much as possible) on the structural templates of 
sequence evolution we repeat the calculations of sequence capacities for all distinct folds 
in the protein databank. To determine the distinct folds we employed a similarity measure 
of our design and compared all the structures in the protein databank against each other. 
Starting from a seed structure, new structures were added to the non-redundant set only if 
they were sufficiently different from all the structures already included in the set. This 
procedure gave 3660 non-redundant shapes [2]. Repeating the procedure with a different 
similarity measure (a measure produced by the CE structural alignment program [14]) 
provided comparable results.  
 
The sequence space of each of these folds was counted separately. This counting is 
approximate since we ignore potential overlap of sequence space between different 
protein shapes. For example, the same sequence A  may be found to have a low energy in 
two proteins 1P  and 2P . Obviously the sequence A  can match with one structure only. 
Computing the sequence space for one structure at a time ignores this possibility and 
over-counting of sequences is a possibility. The extent of the over-counting is unclear and 
is a topic of future work. 
 
A restricted counting is made in which no deletions or insertions of amino acids are 
allowed during our model of the evolutionary process. That is, the lengths of the template 
structure and the sequence are the same and are fixed. Related counting and evolutionary 
studies that did not probe the complete protein data bank were pursued by other groups 
[15-22]. 
 
III.1 The counting algorithm 
We emphasize that the algorithm below is not Metropolis though it is still a randomized 
algorithm. The procedure below is based on the umbrella sampling of Torrie and Valleau 
[23] and of knapsack algorithm of Morris and Sinclair [24]. We consider a sequence 0A  
embedded in a structure X  with a free energy difference ( )0 0 ,F F A X∆ ≡ ∆ . We wish to 

determine the ratio ( )( ) ( )( )1 2N F N F∆ ∆  where ( )( )iN F∆  is the number of sequences 

with energies up to ( )iF∆ . The energy of the starting sequence 0F∆  is set below ( )2F∆ . 
The algorithm goes as follows: 

1. Pick at random one of the amino acids, ija , in the current sequence iA  and 
change it at random to one of the twenty amino acids to generate a new 
intermediate sequence iA . 

2. Check the energy of the intermediate sequence ( ),iF A X∆ .  If it is larger than 
( )2F∆  reject the step, change the sequence back to the original sequence iA , and 

return to 1. Otherwise accept the step (set 1iA +  to be equal to iA ), and continue to 
3. 
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3. Compare ( ),iF A X∆  to ( )1F∆  and ( )2F∆ . Updates the counters 1l  and 2l  ( il  is 

the number of sampled sequences with energy smaller than ( )iF∆ ).  
4. Check stopping criteria (number of steps, convergence of the ratio 

( )( ) ( )( )1 2
1 2l l N F N F≅ ∆ ∆  that approximate the function we are after). Go to 1 

if criteria were not satisfied. 
 
It is necessary for the energies ( )1F∆  and ( )2F∆  to be sufficiently close to each other, so 
the ratio will be close to one and converging rapidly. Calculation of ratios could be 
aggregated together (a collection of rapidly converging randomized counting). From the 
above equation it is clear that we can get a sequence of ratios similar to 
 

( )
( )

11

1,.., 1

i

i n i N N

N Fl l
l l N F= +

∆
= ≅

∆∏                                        (23) 

 
From equation (23) we can estimate the number of sequences for any energy NF∆  
provided that we know the density at anchor energy 1F∆ . Anchors are not hard to get if 
we know the sequence with the lowest possible energy, since the number of alternative 
sequences in the neighborhood of that sequence is small and countable directly. If the 
minimum energy is not known one could use energy that can be sampled easily.  For 
example, it is not difficult to estimate the median energy and the number of sequences 
below the median (exactly half of the total number of sequences, 20L ). 
 
III.2 computing temperatures for all protein folds  
We have computed the number of sequences for all relevant free energy differences 
( )N F∆ . This function has a strong (exponential) dependence on the protein length, 

which is easy to rationalize. The total number of possible sequences is exponential in 
length ( 20L ). The actual number of accepted sequences is expected to grow like 

( )   20LM M <  (still grows exponentially with the length). Every length extension of the 
protein molecule, and the addition of a new structural site will allow a few more amino 
acids (per site) to be accommodated increasing exponentially the number of accessible 
sequences. Counting for the complete set of 3660 proteins that differ significantly in 
length was performed. In figure 4 below we show ( )( )log N F∆  as a function of F∆ . 
The obvious linearity of the plot strongly supports the above assertion of exponential 
growth in ( )N F∆  as a function of the protein length L . 
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Figure 4. Counting the number of sequences that can be embedded in different folds (3660 total) with 
energies better than the energy of the native sequence. The log of the number of sequences is plotted as a 
function of protein length to emphasize the exponential dependence. While the most obvious feature is the 
linear dependence, we should note that the line has significant thickness which is significant since a log 
function was used. The plots include counting results from two potentials. One set is from THOM2, the 
potential that was discussed in this paper. The second potential (TE13 [25]) was discussed elsewhere. 
 
In figure 5 we show a sample of a few complete curves of ( )log N F∆    versus the free 
energy difference F∆ .  
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Figure 5. Computing sequence capacity for five proteins of the same length (150 amino acids), from the set 
of 3660 proteins that we analyze are shown in detail. The proteins are (from left to right): 1f3g, 1nul, 1ash, 
1br1, 1bbr. 

Free energy 

( )log N F∆    
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The energy that we used for the counting was THOM2, for which the determination of 
the lowest energy sequence is trivial, making it possible to identify the lowest energy 
sequence and its corresponding degeneracy.  We finally compute the temperature 
associated with the energy of the native sequence using 
 

( )( )1 log
n

d E
T dE
= Ω                                              (24) 

 
In figure 6 we showed the distribution of temperatures computed for THOM2 energy and 
for the set representing the protein databank. The distribution of temperatures is highly 
peaked but still quite broad.  
 

 
Figure 6. The distribution of selection temperatures computed for all 3660 folds at their native energies. 
 
The calculations of the temperature employ a standard thermodynamic formula [26]. 
However, the meaning of this temperature is not obvious. What are the implications of 
the temperatures? Can we propose a mechanism that might lead to this set? Here is a 
possible model that can help us think about the data. We consider the selection of a 
particular native sequence with energy nE  and write the probability that it will be 
observed biologically, ( )nP S , as a product of two terms: The number of sequences at nE  

-- ( )nEΩ  and a selection function ( )nG E  ( ( )( ) ( ) ( ) ( )n n n n nP S E P E E G E≡ = Ω ). The 
selection function of nature depends on more than the energy. For example: flexibility, 
binding site, and electric field, are important to protein function and exert evolutionary 
pressures. The number of sequences at a particular energy nE  is a rapidly increasing 
function of the energy. To find an optimal (probable) sequence with a low energy, it is 
necessary that the selection function will be rapidly decreasing, leading to a maximum in 
( )nP E . More conveniently we seek a (equivalent) maximum in ( )log nP E   . We have 



 25

 
[ ] ( )( ) ( )( )

( )( )

log loglog
0

log1

n n n

n

E E E E E E

n E E

d E d G Ed P
dE dE dE

d G E
T dE

= = =

=

Ω
= + =

= −

                         (25) 

 
Hence, the selection temperature is telling us something about the selection function. 
Equation (25) makes it possible to compute a relationship between the number of 
sequences (that we can compute) and sequence selection. The selection functions 
computed for different protein shapes at their native energies are therefore quite similar 
(as the temperatures are).  
 
How can a universal selection mechanism be realized? The simplest answer is the 
universality of the genetic code and mutation mechanisms (e.g. UV radiation on DNA 
basepairs). All genes coded on the DNA are likely to be mutated in roughly the same 
way, providing the same level of “sequence-thermal-excitation” (temperature) to all 
genes (proteins). The other option to explain the data, which is more intriguing (but not 
necessarily more correct), is to have all the folds connected via paths in sequence space, 
i.e., a sequence that belongs to one structural family can be mutated to a different 
structural family. In this case (regardless of the underlying mutation mechanism) the 
temperature should be the same. A way to prove or to disprove the above proposition is 
to try to identify plausible paths connecting sequence islands that are associated with a 
given structure. Simple models have been studied [27]. However studies of known 
protein folds and the interactions of their corresponding sequence spaces are still to be 
desired.  
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