
Pushing Bytes: Cloud Scale Big-Data Replication with RDMC

Jonathan Behrens Ken Birman Sagar Jha Edward Tremel
Department of Computer Science, Cornell University

Submission Type: Research

Abstract
Cloud computing frameworks replicate large objects for
diverse reasons, often under time-pressure. RDMC (Re-
liable DMA Multicast) is a reliable data replication pro-
tocol that runs at exceptionally high speeds and low la-
tencies, implementing multicast as a pattern of RDMA
unicast operations using a novel approach that maximizes
concurrency. Users with knowledge of datacenter topol-
ogy can configure RDMC to use a pattern of data flow
matched to the network. In networks with full bisection
bandwidth our fastest protocol creates a collection of bi-
nomial trees and embeds them on a hypercube overlay,
setting speed records while also achieving exceptionally
low delivery-time skew.

1 Introduction
Large-scale computing systems often must replicate con-
tent among groups of nodes. The need is widespread
in cloud computing infrastructures, which copy huge
amounts of data when reprovisioning nodes and must
update VM and container images each time software
is patched or upgraded. Replication patterns are also
seen when a task is spread over a set of nodes in par-
allel machine-learning applications, and when a file or
database is accessed by first-tier nodes charged with
rapidly responding to client requests. With the growing
embrace of IoT, immersive VR and multi-player gaming,
replication must satisfy rigid time constraints.

Yet we lack effective general-purpose solutions. To-
day, cloud infrastructures typically push new images us-
ing specialized file copying tools. Content sharing is of-
ten handled through some kind of intermediary caching
or key-value layer. Even if a scheduler like Hadoop can
anticipate that a collection of tasks will read the same file,
and tries to launch jobs where the data is cached, if those
files are not present in the cache the applications just pull
data on a one-by-one basis.

Cloud systems could derive substantial efficiencies by
recognizing such interactions as instances of a common
pattern, and our hope is that with a standard solution such
as RDMC in hand, developers will chose to do so. How-

ever, the goal of high speed replication can lead in two
distinct directions. For the present paper, our focus is on
reliably pushing bytes: given an initiator with a source
object, (1) making large numbers of replicas as rapidly
as possible while leveraging RDMA, (2) optimizing for
large objects and time-critical data transfer situations, and
(3) ensuring that if failure occurs, the application will be
notified and can retry the transfer.

The other direction includes offering stronger proper-
ties, perhaps packages as a reliable multicast with strong
group membership semantics [11] or an implementation
of Paxos [21]. Such systems go beyond RDMC by impos-
ing an ordering on concurrent updates that conflict. They
may also persist data into append-only logs [6] or intro-
duce data semantics, for example by focusing on support
for key-value stores [17, 20, 23], or a transactions [7].
We believe that RDMC could be useful in systems with
such goals (and indeed are exploring that option in our
own continuing work), but stronger semantics require syn-
chronization protocols, which can conflict with the goal of
achieving the highest possible data rates.

RDMC is an open-source project, written in C++ and
accessed through a simple library API. The basic func-
tionality is that of a zero-copy multicast, moving data
from a memory region in the source to memory regions
designated by the receivers. If an application maps files
into memory, RDMC can transfer persistent data from
the sender, and similarly one can persist received data by
mapping a file and calling fsync. As we look to the future,
RDMC should eventually be able to integrate directly with
video capture devices, and with new kinds of persistent
storage technologies like 3D-XPoint.

We’ve tested RDMC on a variety of platforms. RDMA
hardware is increasingly common in data center settings,
and is widely supported by high speed switches and NICs.
The feature was first offered on Infiniband networks, but
is now available on fast Ethernet (RoCE), and a software
emulation (SoftRoCE) is available for portability to set-
tings where RDMA hardware is lacking. User-level ac-
cess to RDMA is possible in non-virtualized Linux and
Windows systems, and Microsoft’s Azure platform now
supports RDMA in its containerized (Mesos) mode.

We start in Section 2 with a precise statement of goals.

1



In Section 3 we describe the RDMC data dissemination
options currently supported. By supporting multiple pro-
tocols, RDMC facilitates side-by-side comparisons; in our
experimental cluster, a new protocol we call the binomial
pipeline dominates.

2 Goals

RDMA (remote direct-memory access) is a zero-copy
communication standard supported on a wide range of
hardware (as well as by the SoftRoCE software). RDMA
is a user-space solution, accessed by creating what are
called queue-pairs: lock-free data structures shared be-
tween user logic and the network controller (NIC) consist-
ing of send queue and a receive queue. A send is issued
by posting a memory region to the send queue, and receive
destinations are indicated similarly. If the receiver hasn’t
posted a receive buffer by the time a send is attemped,
the sender either retries later or issues a failure. A queue
pair also includes a completion queue which is used by
the NIC to report the successful completion of transfers,
as well as any detected faults.

RDMA supports several modes of operation. RDMC
makes use of two-sided RDMA operations, which behave
similarly to TCP: the sender and receiver bind their re-
spective queue pairs together, creating a session fully im-
plemented by the NIC endpoints. In this mode, once a
send and the matching receive are posted, a zero-copy
transfer occurs from the sender memory to the receiver’s
designated location, reliably and at the full rate the hard-
ware can support. This can be remarkably fast. For exam-
ple, in our lab, two-side RDMA rates can approach the full
100Gb/s of the optical layer, far faster than any IP proto-
col can approach, and indeed more than 3x what memcpy
can achieve for memory-to-memory copying internal to
the nodes of our compute cluster. Moreover, speedup to
1Tb/s is widely expected within a decade.

Although not used in RDMC, RDMA also supports
one-sided RDMA reads and writes where one endpoint
grants the other permission to perform one-sided reads or
writes into a preprepared memory region. The initiator of
a read or write will see a completion event, but the target
isn’t notified at all. Finally, RDMA also supports some
unreliable modes of operation, including a mode that re-
sembles IP multicast. However this multicast mechanism
leaves it to the user to deal with message loss or reorder-
ing, and would require frequent retransmissions and copy-
ing.

In the two-sided mode used by RDMC, if nothing fails,
data will be moved reliably from user-mode source mem-
ory to user-mode receiver memory, and the send-order is
preserved. If a hardware fault or an endpoint crash oc-
curs, the hardware reports the failure and breaks the two-

void create_group(group_number, root,
members, notifications_callback)

void destroy_group(group_number)

void send_message(group_number,
data, size)

void post_receive_buffer(group_number,
data, size)

Figure 1: RDMC library interface

sided session (RDMA is not tolerant of Byzantine behav-
ior). Such a situation should be extremely rare: RDMA
reliability is similar to that of a memory bus.

We set out to implement an RDMA multicast that ex-
tends the basic RDMA semantics to multiple receivers:

1. The sender and receivers first create a multi-way
binding: an RDMC group. This occurs out of band,
using TCP as a bootstrapping protocol. To avoid in-
curring delay on the critical path, applications that
will do repeated transfers should set groups up ahead
of time.

2. The sender can enqueue a sequence of asynchronous
send requests and can continue to do so for as long
as the group is needed.

3. On the receive side, RDMC will notify the user ap-
plication of an incoming message, at which point it
must post a buffer of the correct size to receive it into.

4. Sends complete in the order they were initiated. Any
messages that arrive will not be corrupt, out of order,
or duplicated and if no failures occur, all messages
will arrive.

5. Any failures sensed by RDMA are reported to the
application, but no automated recovery actions occur.

3 System Design

Figure 1 shows the RDMC interface, omitting configura-
tion parameters like block size. To set up a group, the
application starts by deciding group membership using an
out of band mechanism. For example, a file copying pro-
gram might launch on a set of nodes with the sender and
receiver IP addresses supplied as a parameter. Next, all
instances start up, pre-allocate and pin memory, and call
create group, passing in the identical membership in-
formation. Within a group, only one node (designated as

2



Application 

RDMC 

NIC 

Application 

RDMC 

NIC 

se
n

d
()

 

Memory 
segment 

Application 

RDMC 

NIC 

U
p

call 

register 

Sender 

Memory 
segment 

Receiver 

register 

Memory 
segment 

Receiver 

Figure 2: Overall system design of RDMC.

the “root”) is allowed to send data. However, an applica-
tion is free to create multiple groups with identical mem-
bership but different senders; we’ve tested this case and
found that when groups are concurrently active with over-
lapping membership, bandwidth splits between them. We
do not provide a way to change a group’s membership or
root as this can easily be accomplished by creating a new
group and then destroying the old one.

The create group function is inexpensive: Each
member must simply exchange connection information
with its neighbors and initialize a few data structures.
RDMC issues callbacks to an application notification han-
dler to report completion events and failures.

Sending a multicast is straightforward: a user-level pro-
cess simply calls send messagewith the group number
and the memory segment it wishes to transfer, and gets an
upcall when the sending action is locally complete. On the
receivers, a notification upcall requests memory for each
incoming message; a second upcall signals receipt.

Notice that neither the sender nor the receiver is noti-
fied when all receivers have successfully finalized recep-
tion. We recognize that a definitive outcome notification
would often be useful, and our ongoing work includes
ways of implementing a notification with strong seman-
tics. However, the solution transforms RDMC into a full-
fledged atomic broadcast, imposing semantics on the ap-
plication that go beyond the least common denominator,
while bringing non-trivial overheads.

By opting for the weakest semantics, we enable such
applications to use RDMC without incurring any unnec-
essary overheads.

In summary, RDMC messages will not be corrupted or
duplicated, and will arrive in order. RDMC will also not
drop messages simply because of high load or insufficient
buffer space. If no nodes fail, then all messages are guar-
anteed to arrive. Any failures that do occur are reported
on a best effort basis.

The transfer of messages is achieved by a series of
RDMA reliable unicasts between the user-level mem-

ory at the sender and the recipients. As noted earlier,
the RDMC library breaks each message into fixed sized
blocks and relays the data, block by block, to intermedi-
ate recipients. When the multicast is locally complete, an
upcall from the RDMC library on each member notifies
them that data has arrived in their application’s memory.

Given this high-level design, the most obvious and im-
portant question is what algorithm to use for constructing
a multicast out of a series of point-to-point unicasts. As
noted in the introduction, RDMC actually supports multi-
ple algorithms. We’ll describe them in order of increasing
effectiveness.

The very simplest solution is the “sequential send:” it
implements the naive solution of transmitting the entire
message from the sender one by one to each recipient in
turn. This approach does not scale well because at any
point only one node is using any of its incoming or outgo-
ing bandwidth.

“Chain send” implements a bucket-brigade. After
breaking a message into blocks, each inner receiver in the
brigade relays blocks as it receives them. Relayers use
their full bandwidth, but sit idle until they get their first
block so worst-case latency is high.

A “binomial tree send” can be seen in Figure 3 (left).
Here, sender 0 starts by sending the entire message to re-
ceiver 1. Then in parallel, 0 sends to 2 while 1 sends to
3, and then in the final step 0 sends to 4, 1 sends to 5, 2
sends to 6 and 3 sends to 7. The resulting pattern of sends
traces out a binary tree, hence latency will be better than
for the sequential send, but notice that the inner transfers
can’t start until the higher level ones finish. Thus many
nodes are basically idle most of the time, wasting the un-
used bandwidth of their incoming and outgoing links.

Significantly lower latency is possible if we use a bi-
nomial tree to transmit blocks instead of entire messages.
This observation was first made by Ganesan and Seshadri
[18], who proposed an algorithm that combines bucket
brigade and binomial trees to provide the benefits of each.
They do so by creating a hypercube overlay of dimen-
sion d, within which d blocks will be concurrently relayed
(Figure 3, middle, where the blocks are represented by the
colors red, green and blue). Each node repeatedly per-
forms one send operation and one receive operation until,
on the last step, they all simultaneously receive their last
block (if the number of nodes isn’t a power of 2, the fi-
nal receipt spreads over two asynchronous steps). As de-
tailed Appendix A, we modified Ganesan and Seshadri’s
synchronous solution into an asynchronous protocol, and
included several other small changes to better match it to
our setting.

3



Figure 3: (Left) A standard binomial tree multicast, with the entire data object sent in each transfer. (Center) A
binomial pipeline multicast, with the data object broken into three blocks, showing the first three rounds of the protocol.
In this phase, the sender sends a different block in each round, and receivers forward the blocks they have to their
neighbors. (Right) The final two rounds of the binomial pipeline multicast, with the earlier sends drawn as dotted
lines. In this phase, the sender keeps sending the last block, while receivers exchange their highest-numbered block
with their neighbors.

3.1 Hybrid Algorithms
Although RDMC supports multiple algorithms, the bi-
nomial pipeline normally offers the best mix of latency
and performance. Nonetheless, there may be situations in
which other options are preferable.

For example, many of today’s data centers have full bi-
section bandwidth on a rack-by-rack basis, but use some
form of oversubscribed top of rack (TOR) network. If we
were to use a binomial pipeline multicast without atten-
tion to the topology, half the data would traverse the TOR
network (this is because if we build the overlay using ran-
dom pairs of nodes, the average link would connect nodes
that reside in different racks). The resulting data transfer
pattern would impose a heavy load at that level.

In contrast, suppose that we were to use chain repli-
cation in the top of rack layer, designating one node per
rack as the leader for its rack. This would require some
care: in our experiments chain replication was highly sen-
sitive to network topology and data pattern. When trans-
ferring 256 MB objects, chain replication performed well,
but when the same data was transferred using 64 MB mul-
ticasts, chain replication lagged in groups with as few as
16 nodes and by 256 nodes, was achieving just 40% of the
throughput of the binomial pipeline. Chain replication is
also the worst case for delivery skew, and is very sensitive
to slow links. However, a properly configured TOR chain
would minimize load on the top of rack switching net-
work: any given block would traverse each TOR switch
exactly once. Then we could use the binomial pipeline
within each rack.

Even more interesting would be to use two separate in-
stances of the binomial pipeline, one in the TOR layer,
and a second one within the rack. By doing so we could
seed each rack leader with a copy in a way that creates a

burst of higher load, but is highly efficient and achieves
the lowest possible latency and skew. Then we repeat the
dissemination within the rack, and again maximize band-
width while minimizing delay and skew.

3.2 Architectural Details
We implemented RDMC as a userspace library that runs
on top of the IB Verbs library. Although we have tested
only in user mode, we believe that RDMC could also run
within the kernel or hypervisor, be dropped into the con-
troller of an NVM storage unit, or embedded directly into
the network hardware, all of which would drastically re-
duce scheduling latency and decrease overhead.

Initialization Before an application can participate in
RDMC transfers, it must go through a setup process. Dur-
ing this stage, RDMC exchanges connection information
with all other nodes that may participate and prepares any
internal datastructures, and also posts receive buffers for
all possible control messages. Finally, we start a polling
thread that monitors RDMA completion queues for noti-
fications about incoming and outgoing messages.

If several RDMC transfers are underway concurrently,
each has its own block-transmission sequence to fol-
low, but separate transfers can share the same completion
polling thread, which reduces overheads. Even so, an is-
sue arises of CPU load: while at least one transfer is ac-
tive it makes sense to poll continuously, pinning one core,
but clearly when a system is idle, this overhead would be
objectionable. Accordingly, between transfers the polling
interval is lengthened (using a thread-level sleep) to re-
duce CPU load at the expense of more latency in reacting
to subsequent messages. In future work we may change

4



this to switch between polling and interrupt-notifications,
which would eliminate the delay that can otherwise arise
if an event suddenly occurs after a period of idleness.

Data Transfer Schedules An RDMC sending algo-
rithm must be deterministic, and if a sender sends multiple
messages, must deliver them in sequential order. As sum-
marized earlier, when a sender initiates a large transfer,
our first step is to tell the receivers how big each incom-
ing message will be, since any single RDMC group can
transport messages of various sizes. Here, we take advan-
tage of an RDMA feature that allows a message to carry
in integer “immediate” value. Every block in a message
will be sent with an immediate value indicating the total
size of the message it is part of. Accordingly, when an
RDMC group is set up, the receiver posts a receive for an
initial block of known size. When this block arrives, the
immediate value allows us to determine the full transfer
size and, if more blocks will be sent, the receiver can post
asynchronous receives as needed.

The sender and each receiver can now treat the sched-
ule as a series of asynchronous steps. In each step every
participant either sits idle or does some combination of
sending a block and receiving a block. (The most efficient
schedules are those that make sure all the nodes spend as
much time concurrently sending and receiving.) Given the
asynchronous step number, it is possible to determine pre-
cisely which blocks these will be. Accordingly, as each
receiver posts memory for the next blocks, it can deter-
mine precisely which block will be arriving and select the
correct offset into the receive memory region. Similarly,
at each step the sender knows which block to send next,
and to whom.

Our design generally avoids any form of out-of-band
signalling or other protocol messages, with one exception:
to prevent blocks from being sent prematurely, each node
will wait to receive a ready for block message from
its target so that it knows they are ready. By doing so we
also sharply reduce the amount of NIC resources used by
any one multicast: today’s NICs exhibit degraded perfor-
mance if the number of concurrently active receive buffers
exceeds NIC caching capacity. RDMC uses just a few re-
ceive queues per group, and since we do not anticipate
having huge numbers of concurrently active groups, this
form of resource exhaustion is avoided.

4 Experiments

4.1 Experimental Setup

We conducted experiments on several clusters, beginning
with the Sierra cluster at Lawrence Livermore National
Laboratory. The cluster consists of 1,944 nodes of which

1,856 are designated as batch compute nodes. Each is
equipped with two 6-core Intel Xeon EP X5660 proces-
sors and 24GB memory. The clock speed is 2.8GHz;
while system memory bandwidth is 256Gb/s, memcpy
achieves just 30Gb/s. They are all connected by an Infini-
band fabric which is structured as a two-stage, federated,
bidirectional, fat-tree. The NICs are 4x QDR QLogic
adapters each operating at a 40 Gb/s line rate (20 Gb/s
each direction). The Sierra cluster runs TOSS 2.2 which
is a modified version of Red Hat Linux.

The cluster employs batch scheduling for jobs, and this
creates an issue that should be noted: nodes within the
cluster but not used by our experiment will be processing
real workloads and generating unrelated network traffic.
The reason this is a problem is that although we do have
exclusive access to the nodes we are assigned (any cores
not used will be idle) and the cluster uses a fat-tree net-
work, observed bandwidths are far below full bisection
bandwidth. We speculate that this is caused by link con-
gestion resulting from suboptimal routing. As a result,
our experiments compete with other network traffic, par-
ticularly at large scale. We have no control over this phe-
nomenon, although we can estimate the degree to which
it is occurring. MPI, which is popular at LLNL, has an
advantage in this sense: the LLNL scheduler is optimized
for MPI jobs and selects node layouts that work especially
well for it, particularly at very large scale.

We also conducted tests on two other clusters. The
U. Texas Stampede cluster contains 6400 C8220 com-
pute nodes each with 56 Gb/s FDR Mellanox NICs. Like
Sierra, it is batch scheduled with little control over node
placement. We measured unicast speeds of to 40 Gb/s,
about double what was observed on the other two systems.

The Fractus cluster located at Cornell University con-
tains 8 RDMA enabled nodes very similar to the ones
on Sierra, each equipped with a 4x QDR Mellanox NIC
and 94 GB of DDR3 memory, and running Ubuntu 12.04,
and equipped with a 40Gbps Mellanox IB switch (20Gbps
each way). All nodes have one-hop paths to one-another,
hence latency and bandwidth numbers are consistent be-
tween runs.

In work currently underway at the time of submission,
we upgraded Fractus with dual-capable 100Gbps Mel-
lanox NICs that support both IB and RoCE, increased the
number of RDMA-capable nodes to 19, and installed two
100Gbps Mellanox switches, one for IB and the other for
RoCE (here the full two-way performance limit for each
NIC seems to be around 125Gbps). Thus, we are now
in a position to explore faster hardware, to microbench-
mark with larger groups, and to compare the IB and RoCE
cases. Here we include preliminary results for exper-
iments run on 12 of the upgraded nodes using the IB
switch. We’ve run some of the same experiments on
RoCE and obtained similar findings.

5



Our experiments thus include cases that closely repli-
cate the RDMA deployments seen in today’s cloud plat-
forms: for example, Microsoft Azure offers both RDMA
over IB and RDMA over RoCE. They also include scenar-
ios seen on today’s large HPC clusters.

Not included are experiments with any form of virtu-
alization. Although virtualized platforms are popular in
cloud settings, it is not obvious how they could expose
RDMA queue pairs to applications: multi-level page ta-
bles are in potential conflict with the zero-copy RDMA
model, and there are evident issues of security. NIC hard-
ware advances could perhaps address these concerns, but
until that happens, we doubt that RDMA can be offered
in fully virtualized clouds. Container models represent an
appealing compromise, and in fact the Mesos OS, sup-
porting Docker containers, underlies the Microsoft Azure
cloud RDMA option. We believe that this model could
become a de-facto standard for applications that need
RDMA support, enabling the use of RDMC by cloud in-
frastructure developers, container application developers,
and of course also by HPC solution developers.

With the exception of the concurrent sends experiment,
we always select the lowest numbered node in our job to
be the sender. The sender generates a random block of
data, and we measure the time from when the send is sub-
mitted to the library and when all clients get an upcall
indicating that the multicast has completed. Bandwidth
is computed as the message size divided by the total time
spent, regardless of the number of receivers. Thus, when
we report a 6 Gb/s throughput for a group of 512 members
in Figure 7, we mean that all 511 receivers get identical
replicas of the transmitted 256 MB object about a third of
a second after the send was initiated.

4.2 Results

In Figure 4 we break down the time for a single 256 MB
transfer with 1 MB blocks and a group size of 4 conducted
on Stampede. All values are in microseconds, and mea-
surements were taken on the node farthest from the root.
Accordingly, the Remote Setup and Remote Block Trans-
fers reflect the sum of the times taken by the root to send
and by the first receiver to relay. Roughly 99% of the to-
tal time is spent in the Remote Block Transfers or Block
Transfers states (in which the network is being fully uti-
lized) meaning that overheads from RDMC account for
only around 1% of the time taken by the transfer.

Figure 5 depicts the same send but shows the time usage
for each step of the transfer for both the relayer (whose
times are reported in the table) and for the root sender.
Towards the end of the message transfer we see an anoma-
lously long wait time on both instrumented nodes. As it
turns out, this demonstrates how RDMC can be vulnerable

to delays on individual nodes. In this instance, a roughly
100 µs delay on the relayer (likely caused by the OS pick-
ing an inopportune time to preempt our process) forced
the sender to delay on the following step when it discov-
ered that the target for its next block wasn’t ready yet.

In Figures 6a and 6b we examine the impact of block
size on bandwidth for a range of message sizes. Notice
that increasing the block size initially improves perfor-
mance, but then a peak is reached. This result is actually
to be expected as there are two competing factors. All
block transfers involve a certain amount of latency, so in-
creasing the block size actually increases the rate at which
information moves across links (with diminishing returns
as the block size grows larger). However, the overhead
associated with the binomial pipeline algorithm is propor-
tional to the amount of time spent transferring an indi-
vidual block. There is also additional overhead incurred
when there are not enough blocks in the message for all
nodes to get to contribute meaningfully to the transfer.

Figure 7, Figure 8 and Figure 9 show the band-
widths for various sizes of multicasts across a range of
group sizes running on LLNL (Sierra), Stampede, and our
100Gbps Fractus IB configuration. In these experiments
we fixed the block size at 1MB.

Although Sierra was by far the largest machine avail-
able to us, these experiments posed a challenge on that
platform, where we often ended up with our experiment
spread widely within the cluster. Further, the Sierra TOR
switches exhibit surprising and very large load-dependent
performance variations (a problem we did not see on
Stampede). For example, we measured latencies as high
as 20 microseconds and inconsistent bandwidths, which
in the worst case were as low as 3 Gb/s. Despite these is-
sues, our asynchronous implementation of the binomial
pipeline proves to be surprisingly robust to delay and
scheduling phenomena. For example, with 512 nodes we
observed speeds of 6 Gb/s for 256 MB messages. It takes
just 4x as long to make 511 replicas of a large object as to
make 1.

Message size has an important impact on overall band-
width. As we saw earlier, when selecting a block size
we must balance the number of blocks with the band-

Remote Setup 11
Remote Block Transfers 461
Local Setup 4
Block Transfers 60944
Waiting 449
Copy Time 215
Total 62084

Figure 4: Times in microseconds for various steps of the
transfer.

6



Figure 5: Breakdown of transfer time and wait time of two nodes taking part in the 256 MB transfer from the same
experiment as Figure 4. Notice that the relaying node spends hardly any time waiting, while the sender transmits each
block slightly faster (since it isn’t receiving at the same time) and then must wait for the other nodes to catch up.

(a) Measurements from Fractus. (b) Measurements from Stampede.

Figure 6: Multicast bandwidth across a range of block sizes for message sizes between 4 and 256 megabytes with a
group size of 4. The ideal block size depends on both the message size and the unique characteristics of the network.

width possible when sending a block. For messages under
roughly 10MB, these two factors directly conflict and we
are unable to pick any size that will get extremely high
overall bandwidth.

Finally, notice that in all three of these cases, achieved
bandwidth is highest in the unicast case, where the hard-
ware often outperforms its specification, and remains high
but fairly stable for replication groups of up to 8 nodes (a
1-level hypercube). At present we have only tested very
large groups on Sierra, and although performance tails off
at the largest sizes, RDMC even then achieves a high per-
centage of the possible unicast speed. In our current ex-
periments, the limiting factor is almost surely topology,
and could be avoided by minimizing the load placed on
shared, higher-latency links. We believe this is best done
in the job scheduler that selects nodes on which the ap-
plication should run, as seems to occur when the LLNL
scheduler launches MPI jobs.

Figure 10 compares the performance of RDMC bino-
mial pipeline multicasts to that of several others, including
MPI on Infiniband (shown as MPI Bcast), as well as sev-
eral others we implemented within the RDMC framework.
Sequential send is the naive algorithm introduced earlier
where none of the receivers help with relaying, while bi-
nomial tree is the slightly better one where receiviers be-
gin relaying once they have the whole message. The chain
replication scheme uses the method described in [27], in
which blocks are relayed along a chain.

We should note that of these cases, one was actually
not run as a protocol within the RDMC framework: the
MPI Bcast performance was measured using the OSU
Micro Benchmarks software package using MVAPICH
1.2, a version optimized for QLogic hardware.

Our algorithm outperforms the others for large transfers
in small to medium sized groups, achieving higher band-
width and lower latency. However, once the group size

7



Figure 7: Bandwidth of a multicast for several message
sizes on Sierra.

Figure 8: Bandwidth of a multicast for several message
sizes on Stampede.

becomes large (128 replicas or more depending on the
message size) MPI has better performance. An obvious
question arises of why MPI Bcast is so slow for smaller
groups, yet experiences almost no performance degrada-
tion at larger scales. Unfortunately, we are not able to
answer this because the algorithm used for MPI Bcast is
not well documented. In particular, although Sanders de-
scribes a 2-Tree approach in [25], our understanding is
that the 2-Tree algorithm would not give such flat scaling
across the full range of sizes seen here.

Next, we undertook a similar performance comparison
on Fractus at 100Gbps, but now omitting MPI. As seen
in Figure 11, chain send and binomial pipeline do ex-
tremely well here, while the sequential send and tree send,
which transfer full objects before relaying can occur, de-
grade very quickly. When examining these results it is
important to keep in mind that while the simple chain-
replication scheme can achieve high throughput, it has
terrible delivery skew and is very sensitive to slow links.
With the binomial pipeline algorithm, we are able to trans-
form these fast point-to-point send speeds into very effi-

Figure 9: Bandwidth of a multicast for several message
sizes on 100 Gps Fractus.

Figure 10: Bandwidth of various algorithms across a
range of group sizes for 256 MB multicasts (Sierra).

cient multicasts for large objects. The algorithm is able to
take advantage of both the incoming and outgoing band-
width from all the nodes in the group, not just some of
them. As a result, when the block size is small compared
to the message size, the theoretical (and observed!) time
for the transfer is only slightly more than the time it would
take to send the entire message between two nodes. In
fact, for small groups, overheads can be so low that the
total time taken to replicate an object can be less than it
would take to perform a unicast transfer over the slowest
link. We have seen this happen even when that link is only
slower by a few tenths of a Gb/s.

Figure 12 compares scalability of the binomial pipeline
with that of sending sequentially, conducted on Sierra.
The data shown for sequential send is an extrapolation
from the data for 4-node groups.

Figure 13 is an experiment carried out on 40Gbps Frac-
tus in which we created several groups using the same
processes, and then initiated concurrent multicasts from
different roots. For comparison we include data for single
sender transfers as well.

8



(a) 256 MB multicasts (b) 8 MB multicasts

Figure 11: Bandwidth of various algorithms across a range of group sizes on 100 Gbps Fractus.

Figure 12: Comparison of the latency for sending mes-
sages using binomial pipeline and sequential send.

Finally, Figure 14 looks at rate variability when all
members send in groups of various sizes on 100Gbps
Fractus, plotting mean and standard deviation, and Figure
15 measures the number of 1 byte messages per second
that RDMC can send as a function of group size, again
on 100Gbps Fractus. RDMC has not been optimized for
this use case, although we’ve observed that performance
depends heavily on the RDMA configuration parameters
in use while being unchanged for all message sizes below
the network MTU.

In the introduction, we noted that in ongoing work, we
are integrating RDMC into versions of atomic broadcast
and Paxos, but that concerns about the cost of synchro-
nization argue for keeping RDPC itself as simple and free
of delays as possible. In support of that point, it would
be tempting to explore a head to head comparison with
user-space multicast libraries such as the various Paxos
libraries [1], the Isis2 (recently renamed Vsync) group
communication system [10], or the Orchestra Cornet li-
brary [14]. However, we concluded that such comparisons

Figure 13: Average bandwidth for concurrent multicasts
by distinct senders (Fractus).

would simply not be fair. All of these systems run over the
IP network stack, and the Paxos libraries additionally log
messages to nonvolatile storage in support of the Paxos
durability property, hence any such experiment would be
heavily biased in favor of RDMC, which offers orders of
magnitude speedup relative to any system of this kind.

4.3 Discussion

When Ganesan and Seshadri considered tree and chain
topologies for performing multicast in [18] they thought
them to be unfeasibly slow over TCP/IP. This is an inter-
esting question for us, because RDMA can be understood
as a hardware implementation of a TCP-like protocol, and
indeed Intel’s iWarp product line promotes precisely this
analogy. In their discussion, Ganesan and Seshadri pre-
dicted suboptimal performance, attributing this to a con-
cern that highly structured topologies can allow a single
lagging node to slow down the entire send for everyone.
The binomial pipeline algorithm (which they recognized

9



Figure 14: Average bandwidth for concurrent multicasts
by distinct senders (Fractus 100 Gbps).

as theoretically optimal) is more susceptible to this phe-
nomenon because each node is responsible for the transfer
to all of its neighbors in the hypercube.

As we have seen, in our asynchronous implementation
of their scheme, slowdown proves to be much less of an is-
sue for RDMA than for TCP/IP over Ethernet.1 With true
hardware-supported RDMA we are able to achieve low la-
tency, zero-copy, reliable transfers directly into user-space
memory on the receiver, with no copying, which is impor-
tant because memcpy peaks at 30 Gb/s and is not likely to
scale up as quickly as optical network speeds will. By
contrast, thanks to hardware support for reliable sends we
are able to consistently get nearly line rates across a range
of systems using reliable point-to-point sends, and this
should track the evolution of optical network speeds. Thus
the opportunity for application-induced scheduling delays
is much reduced, and the size of such delays is also much
smaller than in their analysis.

But there is a second and deeper factor at work that may
ultimately dominate at very large scale. Here we point to
a queuing theory analysis reported by Basin et al. in [8],
where the cumulative effect of small delays for multicast
overlays constructed from TCP links was explored. The
analysis is somewhat TCP-specific and is carried out in
a simpler binary-tree topology, but it predicts that above
some threshold size, any overlay structure at risk of link-
level forwarding delays would be expected to exhibit per-
formance that degrades in the group size. In effect, as the
number of nodes below a given sender increases, the prob-
ability rises that a relaying delay will occur somewhere in
the forwarding tree and back up to cause a delay at the
sender. We run on a binomial tree, but an analogous result
probably applies.

1We have not experimented with SoftRoCE, but because SoftRoCE
maps RDMA to TCP, when running on non-RDMA platforms RDMC
may have to be adjusted accordingly.

Figure 15: 1 byte messages/sec. (100Gbps, Fractus)

5 Related Work

Reliable multicast is an area rich in software libraries
and systems. We’ve mentioned reliable multicast (pri-
marily to emphasize that RDMC is not intended to offer
the associated strong group semantics and multicast atom-
icity). Good examples of systems in this space include
Isis2/Vsync, Spread, Totem, Horus, Transis and the Isis
Toolkit [4, 5, 10, 12, 16, 26].

Paxos is the most famous of the persistent replica-
tion solutions, and again, RDMC is not intended as a
competitor. But examples of systems in this category
include Paxos, Chubby, Rambo, Zookeeper and Corfu
[1, 3, 6, 13, 19, 21, 22].

We are not the first to ask how RDMA should be ex-
ploited in the operating system. The early RDMA concept
itself dates to a classic paper by Von Eicken and Vogels
[29], which introduced the zero-copy option and repro-
grammed a network interface to demonstrate its benefits.
VIA, the virtual interface architecture then emerged; its
“Verbs” API extended the UNet idea to support hardware
from Infiniband, Myranet, QLogic and other vendors.
Verbs, though, is awkward, and this has spawned a num-
ber of other options: the QLogic PSM subset of RDMA,
Intel’s iWarp, which offers RDMA through a TCP-like ab-
straction implemented in the hardware (RDMA over con-
verged Ethernet, or RoCE), socket-level offerings such as
the Chelsio WD-UDP [2] embedding, etc.

Despite the huge number of products, it seems reason-
able to assert that the biggest success to date has been the
MPI platform integration with Infiniband RDMA, which
has become the mainstay of High Performance Comput-
ing (HPC) communications. MPI only uses a subset of
RDMA functionality, hence a modern RDMA implemen-
tation will often have a stripped-down core (PSM or a
similar library), on which Verbs and the full RDMA stack
is implemented in software. UDP and UDP multicast on
RDMA are also supported on such platforms.

10



Indeed, RDMC is best viewed as a bulk data copying
solution: an OS-layer primitive capable of playing a role
that IP multicast (IPMC) was once expected to play [15],
but in which it was never successful. We are not aware of
any bulk-data replication solution that successfully used
IPMC at scale, although many research efforts attempted
to do so. Instead, researchers soon learned that IPMC was
both hard to use because of its unreliability, and was ca-
pable of destabilizing data center switches and NICs by
provoking broadcast storms [28]. Indeed, IPMC is no-
torious for enthusiastically discarding data — which can
occur on the sender even immediately after a “successful”
multicast Send operation — reordering data, and deliv-
ering duplicates. Many of today’s cloud platforms either
prohibit the use of IPMC or emulate it by tunneling over
TCP (as in Amazon AWS). Yet it would be hard to say
that IPMC was unsuccessful. Rather, it was very much
a product of the time period within which it was offered,
a period when reliability and flow-control were perceived
as a problem to be addressed purely by the endpoints, and
when it was believed that the network would be the main
source of any packet loss (in the cases mentioned above,
IPMC itself overloads the switches and routers and causes
the loss).

Today IPMC and UDP have been mostly displaced by
TCP, with built-in reliability and flow-control. RMDA,
which embeds the properties of TCP into the hardware
(indeed, many RDMA networks map TCP to RDMA), is
a very natural fit to this new environment, and when seen
in this light, we believe that RDMC is an appealing exten-
sion of RDMA to the multicast case. RDMC fully lever-
ages the zero-copy reliability of the hardware, supports an
intuitive API, and performs very well for its intended use
cases. While the RDMC failure model is weak (more or
less the equivalent behavior of having N one-to-one TCP
connections side by side, which are unlikely to fail, but
that could break during a transfer if the hardware fails or
a node crashes), we’ve argued that this behavior is still a
good match to many intended use cases, and in our own
future work, have been able to extend RDMC into a full-
fledged reliable multicast with strong semantics and to use
it in a Paxos protocol. We feel comfortable making the
case that while RDMC’s model is weak, it is still “strong
enough.”

Although our focus is on bulk data movement, the core
argument here is perhaps closest to ones made in recent
operating systems papers, such as FaRM [17], Arrakis
[24] and IX [9]. In these works, the operating system is
increasingly viewed as a control plane, with the RDMA
network treated as an out of band technology for the data
plane that works best when minimally disrupted. RDMC
is of course far less ambitious than these operating sys-
tems, offering just a bare-bones reliable multicast abstrac-
tion, and on achieving the absolute lowest overheads we

can. However, because RDMC is a software library and
highly portable, it could easily be used in a wide range of
settings, and would integrate easily into the systems just
listed. Further, by leveraging RDMC in file systems and
memory sharing, its ultimate impact could be very broad.

6 Conclusion

Our paper introduces RDMC: a new reliable memory-to-
memory replication tool implemented over RDMA uni-
cast. Performance is very high when compared with the
most widely used general-purpose options, and the proto-
col scales to large numbers of replicas. At smaller scale
one can literally have 4 or 8 replicas for nearly the same
price as for 1; with really large numbers of replicas, it
costs just a few times as long to make hundreds of repli-
cas as it takes to make 1. We believe this to be a really
striking finding, and of very broad potential applicabil-
ity. Further, because RDMC delivery is nearly simulta-
neous even within large groups of receivers, applications
that need to initiate parallel computation will experience
minimal skew in their task start times. Because our solu-
tion takes the form of a library it can run in user space but
could also be dropped into the kernel. We believe that it
could dramatically accelerate and yet also simplify a wide
range of important applications, and also improve utiliza-
tion of datacenter computing infrastructures. We are mak-
ing the RDMC code base available for free, open-source
download at http://rdmc.codeplex.com.

Appendix A: Binomial Pipeline

The binomial pipeline is a scheme for distributing a col-
lection of blocks originating at a single host, to some num-
ber of remote hosts and was first described by [18]. The
algorithm assigns each node to a single vertex on a hyper-
cube. When the group size is a power of two, each node
is assigned to its own vertex. Otherwise, some vertices
are assigned two nodes. A vertex behaves externally as
a single node: at any point it is sending and receiving at
most one block from another vertex. However, as we will
discuss later, nodes occupying the same vertex exchange
blocks among themselves to ensure that they all receive
the full message.

The binomial pipeline proceeds in three stages, each of
which are further divided into steps. During every step,
all vertices with at least one block have one of their mem-
bers send across parallel edges of the hypercube. At the
start of the first stage the sender transfers one block of the
segment to a receiver. In the next step of the first stage,
the sender transfers a different block to receiver in another
vertex, while the first receiver simultaneously sends its

11



block on to a third vertex. This pattern continues until
all vertices have a single block.

Now that all nodes have a block, the second stage can
be much more efficient. Previously we were wasting most
of the network capacity because at each step every node
was either a sender or a receiver but not both. In this stage,
the sender continues to sequentially send blocks while all
other vertices trade their highest numbered blocks.

Once the sender runs out of blocks, the algorithm enters
the final stage. The sender repeatedly sends the last block,
while the rest of the vertices continue to trade blocks in
every step.

The progression of the binomial pipeline for a group of
8 nodes is illustrated in Figure 3, and contrasted with a
more traditional binomial tree broadcast. It is worth not-
ing that if the binomial pipeline is run with only a single
block, it will produce a binomial tree.

Now all that is left is to discuss the interactions within
vertices containing two nodes. Whenever the vertex is re-
sponsible for sending a block, exactly one of the nodes
within it will have that block. During that step, the other
node will send a block that only it has to its partner and
receive the incoming block (if any) for the vertex. And
once all vertices have all the blocks, the nodes within them
trade the final block they are missing, thereby completing
the send.

Our implementation of the binomial pipeline in RDMC
is the first adaptation of this technique to an RDMA envi-
ronment (the work described in [18] was evaluated purely
with a simulation). This entailed several small extensions:
(1) Our implementation doesn’t need to know global state
or to compute the whole schedule. Instead it just com-
putes the parts relevant to each individual node. Further,
whereas the original version has a stage at which nodes
gossip about which nodes have what blocks, we were able
to eliminate that step entirely. (2) RDMC adjusts the algo-
rithm to allow some nodes to run slightly ahead of others.
The resulting small degree of asynchronous eliminated
stalls that otherwise were seen in the originally, fully syn-
chronized protocol. (3) To minimize RDMA connection
setup overhead, we adjusted the schedule to ensure that
the first block each node receives always comes from the
same relayer.

Acknowledgements

We are grateful to Greg Bronevetsky and Martin Schultz
at LLNL for generously providing access to their large
computer clusters, and to the U. Texas Stampede XSEDE
computing center for providing access to that system.
Support for this work was provided, in part, by DARPA
under its MRC program and by NSF under its Comput-
ing in the Clouds program. An experimental grant from

Microsoft is being used to evaluate RDMC on Azure (we
hope to include those results in the future). Mellanox pro-
vided access to their high speed RDMA hardware, and
AFOSR supports the cluster on which the majority of our
experiments were performed.

References
[1] LibPaxos: Open-source Paxos. http://

libpaxos.sourceforge.net/. Accessed: 24
Mar 2015.

[2] Low latency UDP Offload solutions | Chelsio Com-
munications. http://www.chelsio.com/
nic/udp-offload/. Accessed: 24 Mar 2015.

[3] ABRAHAM, I., CHOCKLER, G. V., KEIDAR, I.,
AND MALKHI, D. Byzantine Disk Paxos: Optimal
Resilience with Byzantine Shared Memory. In Pro-
ceedings of the Twenty-third Annual ACM Sympo-
sium on Principles of Distributed Computing (New
York, NY, USA, 2004), PODC ’04, ACM, pp. 226–
235.

[4] AGARWAL, D. A., MOSER, L. E., MELLIAR-
SMITH, P. M., AND BUDHIA, R. K. The Totem
Multiple-ring Ordering and Topology Maintenance
Protocol. ACM Trans. Comput. Syst. 16, 2 (May
1998), 93–132.

[5] AMIR, Y., DANILOV, C., MISKIN-AMIR, M.,
SCHULTZ, J., AND STANTON, J. The Spread
Toolkit: Architecture and Performance. Johns Hop-
kins University, Center for Networking and Distrib-
uted Systems (CNDS) Technical report CNDS-2004-
1 (Oct. 2004).

[6] BALAKRISHNAN, M., MALKHI, D., DAVIS, J. D.,
PRABHAKARAN, V., WEI, M., AND WOBBER, T.
CORFU: A Distributed Shared Log. ACM Trans.
Comput. Syst. 31, 4 (Dec. 2013), 10:1–10:24.

[7] BALAKRISHNAN, M., MALKHI, D., WOBBER, T.,
WU, M., PRABHAKARAN, V., WEI, M., DAVIS,
J. D., RAO, S., ZOU, T., AND ZUCK, A. Tango:
Distributed data structures over a shared log. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 325–340.

[8] BASIN, D., BIRMAN, K., KEIDAR, I., AND VIG-
FUSSON, Y. Sources of Instability in Data Center
Multicast. In Proceedings of the 4th International
Workshop on Large Scale Distributed Systems and
Middleware (New York, NY, USA, 2010), LADIS
’10, ACM, pp. 32–37.

12

http://libpaxos.sourceforge.net/
http://libpaxos.sourceforge.net/
http://www.chelsio.com/nic/udp-offload/
http://www.chelsio.com/nic/udp-offload/


[9] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E. IX:
A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14) (Broomfield,
CO, Oct. 2014), USENIX Association, pp. 49–65.

[10] BIRMAN, K. Isis2 Cloud Computing Library.
https://isis2.codeplex.com/, 2010.

[11] BIRMAN, K. Guide to Reliable Distributed Systems.
No. XXII in Texts in Computer Science. Springer-
Verlag, London, 2012.

[12] BIRMAN, K. P., AND JOSEPH, T. A. Exploiting
Virtual Synchrony in Distributed Systems. In Pro-
ceedings of the Eleventh ACM Symposium on Op-
erating Systems Principles (New York, NY, USA,
1987), SOSP ’87, ACM, pp. 123–138.

[13] BURROWS, M. The Chubby Lock Service for
Loosely-coupled Distributed Systems. In Proceed-
ings of the 7th Symposium on Operating Systems
Design and Implementation (Berkeley, CA, USA,
2006), OSDI ’06, USENIX Association, pp. 335–
350.

[14] CHOWDHURY, M., ZAHARIA, M., MA, J., JOR-
DAN, M. I., AND STOICA, I. Managing Data
Transfers in Computer Clusters with Orchestra. In
Proceedings of the ACM SIGCOMM 2011 Confer-
ence (New York, NY, USA, 2011), SIGCOMM ’11,
ACM, pp. 98–109.

[15] DEERING, S. E., AND CHERITON, D. R. Multicast
Routing in Datagram Internetworks and Extended
LANs. ACM Trans. Comput. Syst. 8, 2 (May 1990),
85–110.

[16] DOLEV, D., AND MALKI, D. The Transis Approach
to High Availability Cluster Communication. Com-
mun. ACM 39, 4 (Apr. 1996), 64–70.

[17] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO,
M., AND HODSON, O. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 14) (Seattle, WA, 2014), USENIX Associa-
tion, pp. 401–414.

[18] GANESAN, P., AND SESHADRI, M. On Coopera-
tive Content Distribution and the Price of Barter. In
25th IEEE International Conference on Distributed
Computing Systems, 2005. ICDCS 2005. Proceed-
ings (June 2005), pp. 81–90.

[19] JUNQUEIRA, F. P., AND REED, B. C. The Life
and Times of a Zookeeper. In Proceedings of the
Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures (New York, NY, USA,
2009), SPAA ’09, ACM, pp. 46–46.

[20] KALIA, A., KAMINSKY, M., AND ANDERSEN,
D. G. Using RDMA Efficiently for Key-value Ser-
vices. In Proceedings of the 2014 ACM Conference
on SIGCOMM (New York, NY, USA, 2014), SIG-
COMM ’14, ACM, pp. 295–306.

[21] LAMPORT, L. The Part-time Parliament. ACM
Trans. Comput. Syst. 16, 2 (May 1998), 133–169.

[22] LAMPORT, L., MALKHI, D., AND ZHOU, L. Re-
configuring a State Machine. SIGACT News 41, 1
(Mar. 2010), 63–73.

[23] MITCHELL, C., GENG, Y., AND LI, J. Using One-
sided RDMA Reads to Build a Fast, CPU-efficient
Key-value Store. In Proceedings of the 2013
USENIX Conference on Annual Technical Confer-
ence (Berkeley, CA, USA, 2013), USENIX ATC’13,
USENIX Association, pp. 103–114.

[24] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K.,
WOOS, D., KRISHNAMURTHY, A., ANDERSON,
T., AND ROSCOE, T. Arrakis: The Operating Sys-
tem is the Control Plane. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14) (Broomfield, CO,
Oct. 2014), USENIX Association, pp. 1–16.

[25] SANDERS, P., SPECK, J., AND TRFF, J. L. Two-
tree algorithms for full bandwidth broadcast, reduc-
tion and scan. Parallel Computing 35, 12 (2009),
581 – 594. Selected papers from the 14th European
PVM/MPI Users Group Meeting.

[26] VAN RENESSE, R., BIRMAN, K. P., AND MAF-
FEIS, S. Horus: A Flexible Group Communication
System. Commun. ACM 39, 4 (Apr. 1996), 76–83.

[27] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain
Replication for Supporting High Throughput and
Availability. In Proceedings of the 6th Confer-
ence on Symposium on Opearting Systems Design
& Implementation - Volume 6 (Berkeley, CA, USA,
2004), OSDI’04, USENIX Association, pp. 7–7.

[28] VIGFUSSON, Y., ABU-LIBDEH, H., BALAKRISH-
NAN, M., BIRMAN, K., BURGESS, R., CHOCK-
LER, G., LI, H., AND TOCK, Y. Dr. Multicast: Rx
for Data Center Communication Scalability. In Pro-
ceedings of the 5th European Conference on Com-
puter Systems (New York, NY, USA, 2010), EuroSys
’10, ACM, pp. 349–362.

13

https://isis2.codeplex.com/


[29] VON EICKEN, T., BASU, A., BUCH, V., AND VO-
GELS, W. U-Net: A User-level Network Interface
for Parallel and Distributed Computing. In Proceed-
ings of the Fifteenth ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 1995),
SOSP ’95, ACM, pp. 40–53.

14


	Introduction
	Goals
	System Design
	Hybrid Algorithms
	Architectural Details

	Experiments
	Experimental Setup
	Results
	Discussion

	Related Work
	Conclusion

