
Heterogeneity-Aware Peer-to-Peer Multicast

Robbert van Renesse1 Ken Birman1 Adrian Bozdog1

Dan Dumitriu2 Manpreet Singh1 Werner Vogels1

1Dept. of Computer Science, Cornell University
{rvr,ken,adrianb,manpreet,vogels}@cs.cornell.edu

2Sony Corporation
dmd17@cornell.edu

Abstract

A P2P system has to be able to tolerate, and where pos-
sible, leverage heterogeneity [10]. The reasons may be
functional, for example, in order to deal with Network
Address Translation, or simply to improve performance
and robustness. In this position paper we show how Se-
lectCast, an Application-Level Multicast protocol, lever-
ages the information provided by Astrolabe, a P2P system
that mines the hosts for information about resources.

1 Introduction
Recent years have shown the development of so-called
Peer-to-Peer Protocols (P2PP) that allow a large set of
users to pool their personal computers and share re-
sources. The advantages over standard client/server tech-
nology are now well-known: P2PP can offer many more
resources (in a client/server architecture typically only the
server’s resources are shared), and, perhaps more impor-
tantly, allows control over those resources by the users
themselves (even if ultimately many of those resources
are not actually owned by the users who contribute them
to the P2P system).

Many early P2PPs consider all participating hosts
equal, regardless of compute and storage capacity, and re-
gardless of how well they are connected to the other hosts.
This policy keeps the P2PP protocols simple, and ensures
that all users remain equal in the P2P system. On the neg-
ative side, this policy can lead to substantial scalability
problems, as has been well documented (e.g., [11]).

In practice, the hosts in a large system are far from
equal [10]. They have vastly different CPU and storage

capacities, and latency and bandwidth between different
pairs of hosts can vary by orders of magnitude [13]. Avail-
ability varies widely as some hosts appear and disappear
from the network on a regular basis, while others are con-
nected almost continuously. Even the type of connectivity
differs, as many hosts are behind firewalls, NAT boxes,
or hosted by ISPs that do not allow unsolicited incom-
ing traffic. Protocols like FastTrack [5] recognize these
differences, and distinguishbetween so-called supernodes
and regular user nodes. Compared to the original Gnutella
protocol these are based on, performance is significantly
improved [11, 8], but many of the appeals of true P2PPs
are lost in the process as the supernodes effectively act as
servers to the user nodes.

Some P2PPs exploit host proximity in order to optimize
message routing without resorting to dedicated servers
(e.g., Pastry [12]). Such P2PPs use pings in order to deter-
mine latency or bandwidth of connections, and base rout-
ing decisions on these measurements. Thus high-latency
or low-bandwidth links can be avoided. Still, such P2PPs
can suffer from host churn (rapid changes in membership)
or variance in CPU and storage resources.

It comes to mind then, whether P2P systems can use
heterogeneity to their advantage [10]. In this position pa-
per, we describe the design of SelectCast, a peer-to-peer
publish/subscribe routing service, built on Astrolabe, a
peer-to-peer domain aggregation service. Both SelectCast
and Astrolabe are heterogeneity-aware, but at the cost of
some increased management overhead when compared to
other P2PP protocols. Although these services do not rely
on any special-purpose servers, they can leverage asym-
metries between hosts and between network connections.

1



2 Application-Level Multicast
IP-level multicast routing is badly supported in today’s In-
ternet, and ISPs are loath to improve this situation. Multi-
cast routing is therefore an important candidate for peer-
to-peer solutions, as these do not require the cooperation
of ISPs [3].

Many Application-Level Multicast Routing Protocols
(ALMRPs) have been designed, and all use tree routing
in order to get logarithmic scaling behavior with respect
to the number of receivers (assuming the tree has some
bounded maximum branching factor and is reasonably
well balanced). These protocols put an uneven load on
the hosts and networks, as most hosts only receive mes-
sages, while some hosts, which we call routers, have to
forward copies of each message to some set of peers. In
an ALMRP capable of filtering, these routers may also
have to analyse the content of messages in order to decide
what links to forward the messages to. For satisfactory
performance, robustness, and scale, it is important to se-
lect well-provisioned, dependable hosts for routers.

For efficiency, one would like that the path followed
by a message from sender to each receiver follows the
path that a point-to-point message would have followed.
A simple way to accomplish just this is to have the sender
send N point-to-pointmessages, one to each receiver. But
this degenerate two-level tree would not scale, because
the load on the sender grows linear with the number of re-
ceivers. In order to achieve scalability, the branching fac-
tor should not be so large that the routers receive too high
a load, nor so small so that the paths followed by mes-
sages take too many application-level hops. In addition,
the routers have to lie approximately on the point-to-point
paths between the sender and the receivers. There are
other factors, for example whether latency or bandwidth
is more important, that influence what makes a good tree.

Narada [3] is one of the earliest proposed ALMRPs.
Narada can achieve performance competitive with IP-
Multicast [20]. Narada maintains a mesh of hosts, and
then runs a protocol similar to conventional DVRMP to
accomplish multicast routing among these hosts. Narada,
and many subsequent designs, can best be understood as
two protocols layered on top of one another: a protocol
that maintains a mesh of hosts, and a multicast routing
protocol on top of this mesh.

Other examples of such an organization are

Bayeux/Tapestry [22], Scribe/Pastry [2], and a mul-
ticast facility in CAN [9]. SelectCast and Astrolabe also
fit this description, in which SelectCast is the routing
protocol while Astrolabe maintains the mesh. In the
sections that follow, we will first describe the Astrolabe
and SelectCast services, and will then investigate the
ways in which Astrolabe and SelectCast use information
about heterogeneity in order to improve scalability,
robustness, security, and performance.

3 Astrolabe
The Astrolabe service [17] can best be understood as a
peer-to-peer implementation of DNS. Hosts are organized
in a domain hierarchy, in which the hosts themselves form
the leaf domains. Each domain has a set of attributes (re-
source records using DNS terminology). The main differ-
ence with DNS is in how these attributes get updated. The
attributes of leaf domains are writable only by their cor-
responding hosts (although they can do so per request of
other hosts, of course). Most strikingly, the attributes of
an internal domain are not directly writable, but are gen-
erated by (continuously) aggregating the attributes of its
child domains. The aggregation is specified by SQL ag-
gregation queries associated with each domain. The SQL
queries can be dynamically deployed and updated.

Each host maintains a relational table for each internal
domain it is in. This domain table has a row for each
child domain, and a column for each attribute. One of
the columns, id, identifies the child domain within its par-
ent. By specifying a path name of ids, a domain can be
named. Each domain table also has a column that main-
tains the version of the row, and, most importantly, a col-
umn named “contacts.” The contacts attribute of a leaf
domain is the set of addresses of the corresponding host,
while the attribute for an internal domain contains a small
subset of addresses of hosts within that domain. To gen-
erate such a subset, an SQL aggregation query is used just
like for any other attribute. In effect, the SQL query elects
which hosts to use to represent the domain.

The contacts in a domain’s table gossip with one an-
other on behalf of that domain and all of its ancestor do-
mains’ tables, and keep these tables approximately con-
sistent among those contacts. As each domain runs a sep-
arate gossip protocol, the updates received by the con-
tacts of a domain also spread to the other hosts within

2



the domain. All that a host needs to get going (if we
ignore Astrolabe’s security mechanisms) is its leaf do-
main’s path name and an existing Astrolabe host to start
gossiping with. The first is typically configured manually
(although a self-configuring option exist, as described in
[18]), while the latter can be manually configured or au-
tomatically discovered through broadcast and/or multicast
searches.

4 SelectCast
In SelectCast, trees of communication links are built that
reflect the Astrolabe hierarchy. In each domain, a small
set of multicast routers are selected using another SQL ag-
gregation query, in the same way that Astrolabe chooses
its contacts (but often using different selection consider-
ations). To broadcast a message, it can simply be sent
to one of the routers of the root domain. This router in
turn forwards the message to one of the routers in each
child domain, and so on. This technique is fault-tolerant,
as new routers are automatically selected when current
routers fail through Astrolabe’s continuous aggregation
facilities. However, in order to provide better real-time
fault-masking, messages may be forwarded to all routers
of all child domains, instead of to just one (as is done also
in [14]). In that case, a significant amount of redundant
traffic is generated and duplicates should be filtered care-
fully in order to avoid an exponential explosion of mes-
sages.

An “in between” forwarding strategy is also possible
that makes better use of available resources. For simplic-
ity, assume there are exactly two routers selected for each
(non-leaf) domain. All even messages are disseminated
using the first router of each domain, while the odd mes-
sages are disseminated using the second routers. Thus, in
theory throughput can be doubled (although a significant
amount of re-ordering is required). Rather than simply di-
viding the traffic into disjoint sets, FECs or erasure codes
may be used for fault masking, at the expense of increased
bandwidth use and CPU overhead.

SelectCast is also able to do publish/subscribe-style fil-
tering by attaching an SQL condition (over domain at-
tributes) onto each message. The routers forward a mes-
sage only to those child domains for which the condition
holds. (The results of such conditions are cached for short
periods of time in order to reduce computational over-

head significantly.) Topic-based subscriptions are made
space-efficient by adding a Bloom filter attribute to each
domain (the filters are aggregated by essentially OR-ing
the bit masks together). Although less trivial and not
yet implemented, content-based subscriptions can also be
supported in this framework. In addition to topic- and
content-based filtering, other possibilities exist as well.
For example, SelectCast supports sending a message to
all machines that have a load less than 3. For this, the do-
mains have to have a load attribute that is aggregated by
taking the minimum. The message is then forwarded to all
domains that have a minimum load less than 3. More use-
fully, a security notification or even a patch may be sent
to, say, all XP machines that have not yet installed SP1.
Point-to-point messaging can also be expressed using a
simple condition.

5 Heterogeneity-Awareness
The performance and robustness of SelectCast and As-
trolabe are significantly influenced by how contacts and
routers are elected in domains. Such choices can even de-
termine the difference between the system working and
not working. Each contact and router is a record with a
set of attributes:

id: the Astrolabe path name of the host;
addrs: the current list of addresses;
issued: time at which the host joined.

Applications can add new attributes at will (for exam-
ple, connectivity, machine type, operating system, load,
storage capacity, etc.). The set of multicast routers for a
domain is generated using an (extended) SQL query like:

SELECT
BEST(3, UNION(routers), ’connectivity’)
AS routers

This query specifies that we like the use the (at most
three) hosts that have best connectivity as routers. The set
of gossip contacts for a domain may use:

SELECT
LEAST(3, UNION(contacts), ’issued’)
AS contacts

This query specifies that the contacts of the domain
should be the three contacts of its child domains that have
been operational longest. Such a selection would make
sense in a system where node churn is high. Hosts that

3



occasionally join the system would be unlikely to become
contacts, and thus create little disturbance.

Different domains can use different queries if they
wish, and the SQL queries can be changed at run-time.
More sophisticated queries could specify different or ad-
ditional preferences. For example, a practitioner may pre-
fer one operating system over another, while a theoreti-
cian may want to chose contacts that run different operat-
ing systems in order to increase failure independence.

Such preferences improve performance and robustness
of SelectCast and Astrolabe. Recent performance studies
on Emulab, to be published in a forthcoming paper, show
that SelectCast’s performance on LANs is similar to that
of the Yoid ALMRP [6], but in more complicated topolo-
gies the performance of SelectCast is significantly more
stable than that of Yoid as SelectCast balances the load on
routers much better in the higher levels of the hierarchy.
(Yoid also uses a combination of a mesh and a tree.)

There may also be strictly functional reasons to pre-
fer one router or contact over another. For example, the
messages in SelectCast are disseminated from the root to
the leaf nodes. However, certain domains may be sep-
arated from the rest of the system by firewalls or NAT
boxes, and thus the routers for those domains cannot be
contacted by the routers of their parent domains. In or-
der to solve this situation, SelectCast supports “reverse
connections,” where a router pulls messages from its par-
ent router using HTTP requests, possibly through a web
proxy. Astrolabe provides the information necessary for
SelectCast routers to recognize if reverse connections are
necessary (see [18]). Service Level Agreements may be
another source of limitations on what connections may be
set up between routers.

There are also restrictions in Astrolabe on which hosts
can become contacts. For example, in the secure version
of Astrolabe, only some hosts in a domain have the sign-
ing key for the domain, and thus only those hosts can be
contacts for the domain. Also, addresses behind firewalls
and NAT boxes should not be exported by queries like the
ones above, and should thus be filtered out [18].

A router or contact may have more than one address.
This can be because the host has multiple interface cards,
or supports multiple protocols, or utilizes an application-
level gateway for messaging through firewalls. Each host
maintains, for each peer host it gossips with, statistics
about the addresses of the peer host. Initially it selects ad-

dresses at random, but as statistics are collected, the host
weighs the addresses based on their latencies and starts
prefering the low latency addresses, while still occasion-
ally checking the other addresses. Similarly, SelectCast
hosts maintain connection statistics to router addresses in
order to optimize metrics such as throughput, latency, or
jitter.

Although the queries give applications considerable
flexibility, the choice of routers is restricted by the shape
of the Astrolabe hierarchy. This is a limitation in our
ALMRP design, as we may not be able to construct an
optimal tree of routers for forwarding messages. Another
restriction is due to the limited expressiveness of SQL ag-
gregation queries, which has led us several times to ex-
tend the language (for example, with support for Bloom
filters and nested records). In spite of these limitations,
we find that the amount of flexibility is usually sufficient
in practice, if not overwhelming. Nevertheless, we are
considering to design and implement dynamic hierarchies
for Astrolabe.

6 Other Related Work
There are dozens of ALMRP projects, too numerous to
mention them here, but most of which take heterogene-
ity into account (actually, the ones based on DHTs, such
as Bayeux, Scribe, and CAN’s multicast protocol, do not
take heterogeneity into account). Most of these self-
configure, attempting to optimize either bandwidth or la-
tency. None of these have the flexibility in choosing
routers that Astrolabe offers. SALM [1] is closest in ar-
chitecture to SelectCast, but the hierarchy is dynamic and
a single router for a domain is elected which has the min-
imal maximum distance to the other hosts in the domain.

In Brocade [21], a BGP-like two-level DHT routing hi-
erarchy is built using Tapestry at both levels. This greatly
improves routing distance over single-level Tapestry, at
the cost of extra configuration. SelectCast, in some sense,
is a generalization of this idea to multiple levels and mul-
ticast.

Both the PAST [12] and CFS [4] P2P file services sug-
gest the notion of virtual nodes to the problem of stor-
age heterogeneity. Basically, a host with lots of disk
space poses as multiple smaller nodes, with unfortunately
highly correlated failure characteristics.

Many P2PPs use a hash function to assign identifiers to

4



nodes, and claim that this way “nearby” nodes (in the id
space) are likely to be diverse and have independent fail-
ures. Unfortunately, when applied to many objects repli-
cated on such assumptions, the independence is unlikely
to hold for a substantial number of objects. [19] suggests
a technique to find independent sets of nodes. Such tech-
niques would be easily exploited in SelectCast and Astro-
labe to select failure independent routers and contacts.

7 Conclusion
A P2P system should be aware of heterogeneity in the
network. The reasons may be functional, for example,
in order to deal with security requirements or Network
Address Translation, or simply to improve performance
and robustness. In order to be able to adapt well to het-
erogeneity, information about available resources needs to
be gathered. Astrolabe is a P2P service that provides this
functionality, and we have shown how SelectCast, and in-
deed Astrolabe itself, use this in order to optimize run-
time operation. We believe this paper’s conclusions gen-
eralize to other P2P applications.

References
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-

able Application Layer Multicast. In Proceedings of ACM
SIGCOMM, Pittsburgh, PA, August 2002.

[2] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas
in Communications (JSAC), 2002.

[3] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS, pages
1–12, Santa Clara, CA, June 2000.

[4] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In SOSP01
[15], pages 202–215.

[5] Fasttrack. http://www.fasttrack.nu.

[6] P. Francis, S. Ratnasamy, R. Govindan, and C. Alaet-
tinoglu. Yoid project. http://www.icir.org/yoid/.

[7] Proc. of the First International Workshop on Peer-to-Peer
Systems (IPTPS’02), Cambridge, MA, March 2002.

[8] H.D. Johansen and D. Johansen. Improving object search
using hints, gossip, and supernodes. In SRDS02 [16].

[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-Level Multicast using Content-Addressable
Networks. In Proceedings of NGC, November 2001.

[10] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algo-
rithms for DHTs: Some open questions. In IPTPS02 [7].

[11] J. Ritter. Why Gnutella Can’t Scale. No, Really.
http://www.darkridge.com/j̃pr5/doc/gnutella.html, Febru-
ary 2001.

[12] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale persistent peer-to-peer stor-
age utility. In SOSP01 [15], pages 188–201.

[13] S. Saroiu, K. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of Mul-
timedia Conferencing and Networking, San Jose, CA, Jan-
uary 2002.

[14] A. Snoeren, K. Conley, and D.K. Gifford. Mesh-based
content routing using XML. In SOSP01 [15], pages 160–
173.

[15] Proc. of the 18th ACM Symp. on Operating Systems Prin-
ciples (SOSP’01), Banff, Canada, October 2001.

[16] Proc. of the 21st IEEE Symposium on Reliable Distributed
Systems (SRDS’02), Osaka, Japan, October 2002.

[17] R. van Renesse, K.P. Birman, D. Dumitriu, and W. Vogels.
Scalable management and data mining using Astrolabe. In
IPTPS02 [7].

[18] R. van Renesseand D. Dumitriu. Collaborative networking
in an uncooperative Internet. In SRDS02 [16].

[19] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. In-
trospective failure analysis: Avoiding correlated failures in
peer-to-peer systems. In SRDS02 [16].

[20] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A
framework for delivering multicast to end users. In Proc.
of IEEE INFOCOM, New York, NY, June 2002.

[21] B.Y. Zhao, Y. Duan, L. Huang, A.D. Joseph, and J.D. Ku-
biatowicz. Brocade: Landmark routing on overlay net-
works. In IPTPS02 [7].

[22] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubia-
towicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Proceedings
of the Eleventh International Workshop on Network and
Operating System Support for Digital Audio and Video
(NOSSDAV 2001), Port Jefferson, NY, June 2001.

5


