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Abstract: Sensor networks will often need to organize themselves automatically and 
adapt to changing environmental conditions, failures, intermittent connectivity, 
and in response to power considerations.  We review a series of technologies 
that we find interesting both because they solve fundamental problems seen in 
these settings, and also because they appear to be instances of a broader class 
of solutions responsive to these objectives.  
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1. INTRODUCTION 

The emergence of a new generation of technologies for pervasive 
computing and networking is challenging basic assumptions about how 
networked applications should behave.  Wired systems typically ignore 
power and location considerations and operate “in the dark” with respect to 
overall system configuration, current operating modes or detected 
environmental properties, and positions of devices both in absolute and 
logical terms.  These kinds of assumptions represent serious constraints and 
lead to sub-optimal solutions in embedded or pervasive computing systems.   

At Cornell, we and other researchers are working to develop platform 
technologies responsive to these and related considerations.  This paper 
reports on three representative examples, which we offer with two goals in 
mind.  First, each of these technologies reflects a mixture of properties and 
algorithmic features matching the special requirements seen in pervasive 
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computing settings.  Second, we believe that the underlying methodologies 
reflected in the three technologies are interesting in themselves, because they 
point to broader opportunities for future study. 

At the time of this writing, the technologies are not integrated into a 
single platform, but doing so is an eventual goal.   Indeed, we believe that 
over time, researchers will conclude that pervasive computing systems 
demand a completely new kind of infrastructure, built using components 
such as the ones we present here. 

Specific properties of importance include the following.  First, our 
solutions are self-organizing, a crucial property in many emerging 
applications.  They are strongly self-stabilizing, converging rapidly to a 
desired structure and repairing themselves rapidly after disruption.  They 
lend themselves to theoretical modeling and analysis, lending themselves to 
both pencil-and-paper study and to simulation.  Significantly (and unlike 
many distributed systems technologies), the analyses so obtained hold up 
well in practice; as we’ll see below, this is because our protocols are so 
overwhelmingly convergent. Moreover, they are robust to perturbation, a 
property that may be extremely important in the relatively turbulent world in 
which many sensor applications will need to operate.  Interestingly, each 
solution consists of a relatively simple protocol run in parallel by the 
components of the system, and the desired global outcome “emerges” 
rapidly through the interaction of a component with its neighbors.  We 
conjecture that a rich class of solutions having these properties awaits 
discovery by future researchers.  

The three services on which we focus here are (1) Astrolabe, a system for 
distributed state monitoring, application management, and data mining 
constructed using a novel peer-to-peer protocol that offers unique scalability, 
low load, and rapid convergence; (2) Tycho, a location-aware event 
localization system for sensor networks, and (3) Sextant, a system for 
discovering sensor locations using software methods that is highly accurate, 
energy-efficient and scalable.  Each is really an instance from a broader class 
of related solutions, and is interesting both in its own terms, but also as 
exemplars of these broader classes. 

2. ASTROLABE 

The Astrolabe system is best understood as a relational database built 
using a peer-to-peer protocol running between the applications or computers 
on which Astrolabe is installed.  Like any relational database, the 
fundamental building block employed by Astrolabe is a tuple (a row of data 
items) into which values can be stored.  For simplicity in this paper, we’ll 
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focus on the case where each tuple contains information associated with 
some computer.  The technology is quite general, however, and can be 
configured with a tuple per application, or even with a tuple for each 
instance of some type of file or database.  For the purposes of this paper, 
Astrolabe would be used to capture and track information associated with 
sensors in a network of sensors.  For reasons of brevity, this section (and 
those that follow) limits itself to a brief overview; additional detail can be 
found in [1] and [2].    

The data stored into Astrolabe can be drawn from any of a number of 
sources.   Small sensors would export data “directly” but a larger, more 
comprehensive computing node could export more or less any kind of data 
that can be encoded efficiently.  This includes information in the 
management information base (MIB), fields extracted directly from a file, 
database, spreadsheet, or information fetched from a user-supplied method 
associated with some application program.  Astrolabe is also flexible about 
data types, supporting the usual basic types but also allowing the application 
to supply arbitrary information encoded with XML.  The only requirement is 
that the total size of the tuple be no more than a few k-bytes; much larger 
objects should be handled outside the core Astrolabe framework.  

The specific data that should be pulled into Astrolabe is specified in a 
configuration certificate. Should the needs of the user change, the 
configuration certificate can be modified and, within a few seconds, 
Astrolabe will reconfigure itself accordingly.  This action is, however, 
restricted by a security policy, details of which are described in [1] and [2]. 

Astrolabe groups small sets of tuples into a hierarchy of relational tables.  
A “leaf” table consists of perhaps 30 to 60 tuples (we could scale up to 
hundreds but not thousands of types in a single table) containing data from 
sources physically close to one-another in the network.  This grouping (a 
database administrator would recognize it as a form of schema) can often be 
created automatically, using latency and network addresses to identify 
nearby machines (the location information could, for example, be obtained 
using the method we present in Section 4 of this paper).   
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Figure #-1. Example of an Astrolabe representation of data extracted from a set of sensors. 

The data collected by Astrolabe evolves as the underlying information 
sources report updates, hence the system constructs a continuously changing 
database using information that actually resides on the participating 
computers.  Figure #-1 illustrates this: we see a collection of small database 
relations, each tuple corresponding to one machine, and each relation 
collecting tuples associated with some set of nearby machines.  In this 
figure, the data stored within the tuple includes the name of the machine, its 
current load, an indication of whether or not various servers are running on 
it, and the “version” for some application.  Keep in mind that this selection 
of data is completely determined by the configuration certificate.  In 
principle, any data available on the machine or in any application running on 
the machine can be exported.  In particular, spreadsheets and databases can 
easily be configured to export data to Astrolabe.   

The same interfaces which enable us to fetch data so easily also make it 
easy for applications to use Astrolabe.  Most commonly, an application 
would access the Astrolabe relations just as it might access any other table, 
database or spreadsheet.  As updates occur, the application receives a form 
of event notifying it that the table should be rescanned.  Thus, with little or 
no specialized programming, data from Astrolabe data could be « dragged » 
into a local database, spreadsheet, or even onto a web page.  As the data 
changes, the associated application will receive refresh events. 

Astrolabe is intended for use in very large networks, hence this form of 
direct access to local data cannot be used for the full dataset: while the 
system does capture data throughout the network, the amount of information 
would be unwieldy and the frequency of updates excessive.  Accordingly, 
although Astrolabe does provide an interface whereby a remote region’s data 
can be accessed, the normal way of monitoring remote data is through 
aggregation queries. 
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An aggregation query is, as the name suggests, just an SQL query which 
operates on these leaf relations, extracting a single summary tuple from each 
which reflects the globally significant information within the region.  Sets of 
summary  tuples are concatenated by Astrolabe to form summary relations 
(again, the size is typically 30 to 60 tuples each), and if the size of the 
system is large enough so that there will be several summary relations, this 
process is repeated at the next level up, and so forth.  Astrolabe is thus a 
hierarchical relational database, and this is also visible in Figure #-1, where 
the summaries of the various regions appear as rows in the root relation.  
Each of the summaries is updated, in real-time, as the leaf data from which it 
was formed changes.  Even in networks with thousands or millions of 
instrumented machines, updates are visible system-wide within a few tens of 
seconds.  Since sensor networks may be very large, this scalability is likely 
to be important. 

A computer using Astrolabe will, in general, keep a local copy of the data 
for its own region and aggregation (summary) data for region above it on the 
path to the root of this hierarchy.   As just explained, the system maintains 
the abstraction of a hierarchical relational database.  Physically, however, 
this hierarchy is an illusion, constructed using a peer-to-peer protocol, 
somewhat like a jig-saw puzzle in which each computer has ownership of 
one piece and read-only replicas of a few others.  Our protocols permit the 
system to assemble the puzzle as a whole when needed.  Thus, while the user 
thinks of Astrolabe as a somewhat constrained but rather general database, 
accessed using conventional programmer APIs and development tools, this 
abstraction is actually an illusion, created on the fly.    In particular, the 
memory needed to run the system is very small, even in a network that may 
be very large. 

The peer-to-peer protocol used for this purpose is, to first approximation, 
easily described.  Each Astrolabe system keeps track of the other machines 
in its zone, and of a subset of contact machines in other zones.  This subset is 
selected in a pseudo-random manner from the full membership of the system 
(again, a peer-to-peer mechanism is used to track approximate membership ; 
for simplicity of exposition we omit any details here).  At some fixed 
frequency, typically every 2 to 5 seconds, each participating machine sends a 
concise state description to a randomly selected destination within this set of 
neighbors and remote contacts.  The state description is very compact and 
lists versions of objects available from the sender.  We call such a message a 
« gossip » event.  Unless an object is very small, the gossip event will not 
contain the data associated with it. 

Upon receiving a gossip message, an Astrolabe system is in a position to 
identify information which may be stale at the sender’s machine (because 
timestamps are out of date) or that may be more current at the sender than on 
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its own system.  We say may because time elapses while messages traverse 
the network, hence no machine actually has current information about any 
other. Our protocols are purely asynchronous: when sending a message, the 
sender does not pause to wait for it to be received and, indeed, the protocol 
makes no effort to ensure that gossip gets to its destinations. 

If a receiver of a gossip message discovers that it has data missing at the 
sender machine, a copy of that data is sent back to the sender.  We call this a 
push event.  Conversely, if the sender has data lacking at the receiver, a pull 
event occurs: a message is sent requesting a copy of the data in question.  
Again, these actions are entirely asynchronous; the idea is that they will 
usually be successful, but if not (e.g. if a message is lost in the network, 
received very late, or if some other kind of failure occurs), the same 
information will probably be obtained from some other source later. 

One can see that through exchanges of gossip messages and data, 
information should propagate within a network over an exponentially 
increasing number of randomly selected paths among the participants.  That 
is, if a machine updates its own row, after one round of gossip, the update 
will probably be found at two machines.  After two rounds, the update will 
probably be at four machines, etc.  In general, updates propagate in log of 
the system size – seconds or tens of seconds in our implementation.  In 
practice, we configure Astrolabe to gossip rapidly within each zone (to take 
advantage of the presumably low latency) and less frequently between zones 
(to avoid overloading bottlenecks such as firewalls or shared network links).  
The effect of these steps is to ensure that the communication load on each 
machine using Astrolabe and also each communication link involved is 
bounded and independent of network size. 

We’ve said that Astrolabe gossips about objects.  In our work, a tuple is 
an object, but because of the hierarchy used by Astrolabe, a tuple would only 
be of interest to a receiver in the same region as the sender.  In general, 
Astrolabe gossips about information of shared interest to the sender and 
receiver.  This could include tuples in the regional database, but also 
aggregation results for aggregation zones that are ancestors of both the 
sender and receiver. 

After a round of gossip or an update to its own tuple, Astrolabe 
recomputes any aggregation queries affected by the update.   It then informs 
any local readers of the Astrolabe objects in question that their values have 
changed, and the associated application rereads the object and refreshes its 
state accordingly.  The change would be expected to reach the server within 
a delay logarithmic in the size of the network, and proportional to the gossip 
rate.  Using a 2-second gossip rate, an update would thus reach all members 
in a system of 10,000 computers in roughly 25 seconds.  Of course, the 
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gossip rate can be tuned to make the system run faster, or slower, depending 
on the importance of rapid responses and the available bandwidth. 

Astrolabe was originally developed for use in very large-scale wired 
environments, but has several features well-matched to sensor networks and 
other embedded applications.  First, most communication occurs between a 
components and nearby peers.  In wireless ad-hoc routed networks, this is 
important because sending a message to a very remote component consumes 
power not just on the sender and receiver, but also on intermediary nodes 
involved in routing the packet.    In a reasonably dense sensor network, most 
Astrolabe communication will occur between sensors near to one-another, 
with only aggregation information being transmitted over long distances. 

Astrolabe doesn’t rely on any single or even “primary” route between 
components that share information through its database; instead, within any 
zone data travels over all possible paths within that zone.  This is important 
because it makes the protocol extremely robust to routing disturbances or 
transient communication problems.  Astrolabe will report events within 
roughly the same amount of time even if serious disruption is occurring and 
the system repairs itself rapidly after failure or other stresses. 

Finally, Astrolabe can be made to configure itself entirely automatically, 
using proximity within the network to define zones.  In the sections that 
follow we’ll see other uses of location information as an input to system 
configuration algorithms; we believe the idea is one that merits further study 
and broader use.  

Astrolabe is just one of several technologies we’ve constructed using this 
methodology.  Others relevant to pervasive computing include Bimodal 
Multicast [3], a scalable protocol that uses peer-to-peer epidemic protocols 
to achieve very high reliability at rather low cost, and Kelips [4], a novel 
distributed indexing mechanism (a “DHT” in the current peer-to-peer 
vocabulary).  Kelips can find information for the cost of a single RPC even 
in a massive network.  All of these solutions share strong similarities: 
inexpensive gossip-based protocols that converge because they mimic the 
propagation of an epidemic, constant background overheads (on component 
nodes and links), a preference for local communication, and very robust 
behavior even under stress.  Moreover, precisely because of their 
overwhelmingly rapid convergence, even simplified theoretical models and 
analysis tend to be quite robust, yielding predictions that are later confirmed 
experimentally.  Finally, all of these mechanisms have very simple 
implementations, small memory footprints, and use relatively low 
bandwidth.   

Work still remains to be done: none of our protocols is able to deal with 
scheduled sleep periods or other power conservation and scheduling 
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considerations.  Nonetheless, we believe that they represent exciting starting 
points. 

3. INTERACTIONS BETWEEN POWER AWARE 
COMPONENTS 

A typical sensor tends to be very small in size. Though this serves as an 
advantage, it also limits the sensor’s capabilities in terms of energy and data 
storage, processing power, and communication capabilities. As sensors 
mature, we believe that they will become faster, cheaper and be able to 
collect and store more data and transmit it farther; however, their energy 
capacity will not increase at a similar rate. There have been advances in the 
use of wireless power, and renewable sources of energy in sensors, but the 
technologies are yet to emerge from their infancy. In such light we believe 
that application and software level power conservation can help balance the 
energy budget enabling sensor networks to last longer than previously 
imagined. 

We outline below some characteristics of power aware components for 
sensor-networks that aim to lengthen network lifetime. 

 
• Hardware re -use: When possible, existing hardware should be used 

by multiple components instead of power-consuming single -purpose 
hardware. 

• Uniform energy dissipation: Computational and communication 
load of a node should be proportional to the energy available to it. 

• Low duty-cycle : Components should periodically allow some nodes 
to operate in power-saving mode.  

• Reactive protocols : Reactive protocols or proactive protocols with 
localized effect should be used to minimize communication costs. 

• Configurable trade -off: Network administrators should be able to 
trade-off system lifetime with system latency and effectiveness. 

 
Research has shown communication to be far more expensive than 

computation for sensor networks [5]. Additionally, unreliable radio 
communication links further aggravate this problem. In Tycho [9], an event 
localization system for sensor-networks, we explore the case of a power-
aware component where nodes send data to a single controller. In Tycho, a 
query is injected into the network and upon detection of an event, sensor 
nodes send the detected information to the controller. Therefore it is 
desirable to optimize communication links from multiple sources of data to a 
single destination (controller). 
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In the operation of a typical sensor network, various components such as 
the application,  routing, location discovery etc. interact with one another. 
Research in this area has focused on minimizing energy consumption of each 
of these components when executing independently and when interacting 
with one another. In this section, we focus on minimizing the energy 
consumption through increased interactions between the application and the 
routing layers.   

Consider a large sensor network in which nodes can either detect an 
event or be queried based on certain parameters. A simple approach to 
reporting results when an event occurs or when a query is passed on to the 
network, is to flood the controller with messages from each individual sensor 
node. While this is a simple enough mechanism to code into sensors, it 
results in inefficient usage of energy, and can fail to report accurate results 
when a sensor is not capable of communicating directly with the controller. 
Further, this approach does not scale well with an increase in the number of 
nodes in the network. 

As a result, significant research effort in this area aims to improve the 
longevity of sensor nodes by optimizing for the sensor’s power usage, 
minimizing communication and the size of messages transferred, without 
compromising on the functionality of the sensors. This is commonly 
achieved by installing a routing fabric in the network and then aggregating 
data along the routing path. An optimal routing protocol tends to either 
minimize the number of nodes involved in routing or minimize the distance 
each message is transmitted between adjacent nodes in the network. Energy 
can be further conserved by aggregating along the path to the controller. This 
approach is optimal in terms of the total energy consumed by the various 
nodes to either transmit or receive messages. Further, aggregation has the 
potential to reduce the number of messages transmitted between nodes as 
well as the size of the messages. 

Various simulations and physical experiments have shown previously 
proposed protocols to have extended the life of a sensor network well 
beyond that of direct communication or the flooding approach previously 
described. 

Routing protocols tend to expose functionality through limited 
interactions with the application. The first of such functionality is the 
decision regarding which nodes can be used in low duty cycle modes. A 
large fraction of energy savings are achieved by enabling a significant 
fraction of the nodes in the network to shift to a low duty cycle mode. While 
various routing protocols achieve low duty cycle nodes by putting various 
nodes in the network to sleep, other routing protocols do not achieve low 
duty cycle nodes since they require all nodes in the network to be alive 
during routing. A common scheme among routing protocols that support low 
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duty cycle nodes is to interact with the application when deciding on the 
subset of nodes that are to go to sleep. Secondly, routing schemes decide on 
a path in the network between two nodes which are received as input from 
the application layer via APIs exposed by the routing layer. 

Based on ongoing research in sensor networks at Cornell, we propose a 
two fold extension of the functionality of routing protocols and APIs 
exposed by them to the applications running on top. First, we propose an 
interaction between the routing layer and the application layer in which the 
application is able to decide on a specific subset of nodes in the network that 
should be involved in routing. The routing layer should then be able to 
construct paths between the specified set of nodes (multiple sources) and the 
controller by minimizing the additional nodes used. This should be achieved 
while preserving the energy efficiency of the routing protocol. Additionally, 
based on the specified subset of nodes, the routing layer should be capable of 
setting up these paths dynamically.  

 
 

 
 
 
 
 
 
 

             (a) Query Area      (b) Subgraph            (c) Tree 

Figure #-2. Routing tree formation.  

Consider the example illustrated in Figure #-2. A sensor network is setup 
such that the controller is located at the top right hand corner. The controller 
is interested in detecting events in the shaded region (query area) as shown 
in 2(a). Using techniques proposed in [6], the nodes that lie in the shaded 
region are determined. The sub-graph in Fig 2(b) represents the subset of 
nodes that lie in the shaded region and therefore are required to remain 
awake in order to be able to sense an event and to take part in routing. When 
forming a routing path from these nodes to the controlle r node, the number 
of additional nodes (that lie in the unshaded area) used are minimized as 
shown in 2(c). The remaining nodes in the network can now be shifted to a 
low duty cycle mode. In this example, the application running at the 
controller is required to interact with the routing layer and decide on the 
subset of nodes that are required to take part in routing. The routing layer 
should be flexible enough to dynamically form the routing paths based on 
these constraints. From preliminary results on our  research, we have found 
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that this approach leads to a significant amount of energy savings when 
compared to other energy efficient routing protocols described in [7, 8]. This 
particular extension has been included in the Tycho system currently being 
developed at Cornell. Additionally, it is desirable for sensors in the network 
to uniformly dissipate energy since this guarantees that no single sensor will 
drain its power prematurely thus possibly disconnecting fractions of the 
network. The routing layer should bear this responsibility, and it can achieve 
this by varying the subset of nodes that are sent to sleep during each 
subsequent sleep cycle.  

Various routing protocols to reduce latency in event detection and data 
aggregation have been proposed. However, it is our belief that if the 
application is able to negotiate the maximum permissible latency with the 
routing layer, this will permit a greater degree of flexibility to the routing 
layer when making decision regarding which nodes should be put into a low 
duty cycle mode. This is primarily because not all sensor network 
applications require a low latency network. If an application is able to 
tolerate high latency in receiving data from an event, the routing layer is then 
given the freedom to put a large fraction of nodes in the network to sleep. 
Therefore, when an event is detected by a node, if nodes along the routing 
path are asleep, data can be cached and sensors can wait till every other 
sensor on the routing path is awake and then transmits the information to the 
controller. As a result, the energy saved is a function of the permissible 
latency. This is the second extension we propose to the interactions between 
the application and the routing layers. 

The interactions described in this section yield more flexibility to the 
applications and require the various layers to work together cohesively with 
the goal of saving energy.  

4. POSITION INFORMATION IN SENSOR 
NETWORKS  

 
Sensor networks by definition sense their surroundings and cannot afford 

to operate “in  the dark” with respect to their position in the field. Position 
information is necessary for tagging sensor readings [11,12], geographic 
routing [10] and caching schemes, clustering and group formation schemes 
useful in Astrolabe [1], and even addressing the sensors in certain 
applications [13]. To enable such a wide range of sensor-network 
applications the community is in search for the perfect sensor-network 
networking stack and we believe that position services will figure 
prominently in such a stack. Research in this area has traditionally focused 
on a very constrictive API for location services, one which consists of a 
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single function that returns a best-estimate point-location for a sensor. This 
approach is adequate for small-scale static networks where sensor locations 
can be statically programmed in at deployment time but does not scale well 
to large or dynamic networks. At Cornell, ongoing research aims to provide 
a flexible and scalable location-discovery component for the sensor-network 
networking stack. 

As mentioned in the Sextant paper [6] an ideal location discovery protocol 
would have the following properties: 
 
• Cheap: Location discovery should be cheap and consume little power, 

with minimal dependence on infrastructure in the environment and 
dedicated hardware on each node. 

• Accurate : Location discovery should achieve high accuracy. The degree 
of accuracy should be tunable by the network administrator.  

• Scalable : The protocol should scale well with increasing number of 
nodes. Communication load on a node should be independent of the total 
area of network coverage and the total number of nodes and computation 
should be distributed evenly. 

• Heterogeneous : The protocol should support heterogeneous networks 
where nodes have differing capabilities, such as varying transmission 
power levels, antenna arrays for determining angle of arrival, 
configurable angle of transmission and signal strength measurement 
hardware for relative position estimation. 

• Easy to deploy: Finally, the protocol should be practical and easy to 
deploy. Assumptions made in calculating locations should hold in the 
field. 

 
Sextant, designed with the above goals in mind, necessitates a new API 

for location services that allows it to return high-fidelity location data and 
facilitates two-way interactions between Sextant and the applications using 
it. 

 

 
Figure #-3. Areas determined by Sextant. 

 
A critical issue in location discovery is the representation of a node's 

position. One approach is to keep and update only a single point estimate for 
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a node. While this approach requires little state, it introduces errors that may 
compound at the location discovery level as well as at the application level. 
Sextant, instead, explicitly tracks and refines over time the area a sensor can 
be located within. To maximize accuracy and minimize storage and 
communication requirements, it uses Bezier curves to efficiently represent 
the areas, which need not be convex or even simply connected. Figure #-3 
depicts nodes along with their Sextant areas. While in its current state 
Sextant gives applications the guarantee that the sensor resides within the 
area determined, a simple extension can annotate the returned area with a 
probability distribution which represents the relative confidence of the 
system in the node's precise position. 

A second issue is the collection of location information. The economic 
and energy cost of using dedicated positioning hardware, like GPS receivers, 
at each node is prohibitively high. Instead Sextant infers location 
information by creating a system of equations, the solution for which gives 
the area within which each node may be located, and then solves this system 
in a distributed fashion. Sextant uses the communication hardware already 
present at each node as a primary source of geographic constraints that it 
translates into the system of equations. In addition, it can generate additional 
constraints from other sources including event-sensors and antenna arrays 
when available. Sextant uses a very small number of landmark nodes that are 
aware of their own locations, either by static encoding or the use of GPS, to 
arrive at its solution. 

As a power-aware component, Sextant adheres to the guidelines discussed 
in the previous section by reducing its dependence on power-consuming 
dedicated positioning hardware like GPS receivers and depending instead on 
MAC level information gleaned from the already present communication 
hardware. In addition, Sextant converges quickly in static networks 
obviating the need for constant Sextant-traffic and in highly dynamic 
networks it limits itself to localized proactive traffic and evenly distributes 
the processing and communication load leading to uniform energy 
dissipation in the network. 

 

 
Figure #-4. Tycho using Sextant areas to assign event detection probabilities. 
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Of the applications that use the Sextant API, legacy applications can 
query Sextant for a point-estimate that they are well suited to deal with, 
while applications that that can use the extra information available can do so 
to minimize their own error. This later approach is evaluated in the Tycho 
paper [9] where the system, built on top of Sextant, weighs data from 
different sensors based on the confidence of the sensor's position to produce 
a probability distribution of an event's location. Figure #-4 illustrates a 
node’s confidence in the event’s location given the Sextant area it lies 
within. The likelihood of the event taking place in an area is represented 
using different shades with lighter shades representing low probabilities and 
darker shades representing high probabilities. Tycho has been shown to be 
more accurate than traditional triangulation schemes used previously that 
locate an event to a point-location. In addition, the new API allows Tycho to 
provide Sextant with additional geographic constraints that it gleans from the 
already present sensor hardware. This serves to enhance Sextant's location 
estimates and in turn iteratively increases Tycho's accuracy. 
 

5. CONCLUSIONS 

Our paper reviewed three technologies matched to the unique needs of 
pervasive computing environments.  Although the components have yet to 
be integrated into a single platform, doing so is an eventual objective of our 
effort. 

In fact, we believe that the ideas underlying the solutions we present here 
would also be useful in wired systems.  For decades, developers have 
constructed wired network applications under the assumption that the less 
each application component “knows” about the network, or about the states 
of peer components, the better.  This sort of thinking is reflected in the 
prevailing application development models and platforms: client-server 
systems in their varied forms, Web applications, and most recently the Web 
Services architecture.   One can trace the underlying mindset to the end-to-
end philosophy, which can be interpreted as arguing for black-box networks 
and application designs in which each component is on its own.   

It may be time to explore a countervailing view, better matched to the 
properties of pervasive computing and embedded sensor applications.  This 
view recognizes that the topology of a network, the properties of the 
components, their positions in the real world and relative to one-another and 
the constraints under which they operate may have implications for the 
behavior of other components.  Such thinking argues for system services that 
make it easy for components to share their states and to exploit the 
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information they obtain from one-another to achieve global objectives that 
would otherwise be unrealizable.   

The end-to-end philosophy served us well in developing wired 
applications, but a new paradigm of sensitivity to system and network state 
may be needed in response to the unique needs of these new kinds of 
systems. 

6. REFERENCES 

[1] Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, 
Management, and Data Mining.  Robbert van Renesse, Kenneth Birman and Werner 
Vogels.  ACM Transactions on Computer Systems, May 2003, Vol.21, No. 2, pp 164-206. 

 
[2] Scalable Data Fusion Using Astrolabe.  Ken Birman, Robbert van Renesse and Werner 

Vogels.  In proceedings of the Fifth International Conference on Information Fusion 2002 
(IF 2002), July 2002. 

 
[3] Bimodal Multicast.  Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai 

Budiu and Yaron Minsky.  ACM Transactions on Computer Systems, Vol. 17, No. 2, pp 
41-88, May, 1999.   

 
[4] Kelips: Building an Efficient and Stable P2P DHT Through Increased Memory and 

Background Overhead.  Indranil Gupta, Ken Birman, Prakash Linga, Al Demers and 
Robbert van Renesse.   Submitted to: 2nd International Workshop on Peer-to-Peer Systems 
(IPTPS '03); February 20-21, 2003.  Claremont Hotel, Berkeley, CA, USA. 

 
[5] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. “System 

architecture directions for networked sensors”, In Proc. the 9th International Conference 
on Architectural Support for Programming Languages and Operating Systems, Boston, 
MA, USA, Nov. 2000. 

 
[6] S. Guha and E. G. Sirer, “Distributed Constraint-based Location Discovery in Ad hoc 

Networks,” Cornell University, Tech. Rep. cul.cis/TR2004-1939, 2004. 
 
[7] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy -Efficient 

Communication Protocol for Wireless Microsensor Networks,” in Proceedings of HICSS, 
Jan. 2000. 

 
[8] H. Z. Tan and I. Körpeoglu, “Power efficient data gathering and aggregation in wireless 

sensor networks,” ACM SIGMOD Record, vol. 32, no. 4, pp. 66–71, Dec. 2003. 
 
[9] R. Narayan, S. Guha and E. G. Sirer, “Position Informed Energy Efficient Sensing,”. 

Under submission to SECON. 2004. 
 
[10] Brad Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for                  

Wireless Networks,” in proceedings of International Conference on Mobile Computing 
and Networking, Aug. 2000.  



16 Chapter #
 
 
[11] Janos Sallai, Gyorgy Balogh, Miklos Maroti and Akos Ledeczi, “Acoustic Ranging in 

Resource Constrained Sensor Networks,” Vanderbilt Unversity, Tech. Rep. ISIS-04-504, 
2004. 

 
[12] Aram Galstyan, Bhaskar Krishnamachari, Kristina Lerman and Sundeep Pattem, 

“Distributed Online Localization in Sensor Networks Using a Moving Target,” in 
proceedings of International Symposium on Information Processing in Sensor 
Networks, Apr. 2004.  

 
[13] Jeremy Elson and Deborah Estrin, “An Address-Free Architecture for Dynamic Sensor 

Networks,” Computer Science Department USC, Tech. Rep. 00-724, 2000. 
 


