
Chapter #

SCALABLE, SELF-ORGANIZING
TECHNOLOGY FOR SENSOR NETWORKS

Kenneth P. Birman, Saikat Guha, Rohan Murty

Dept. of Computer Science, Cornell University; Ithaca, New York 14853

Abstract: Sensor networks will often need to organize themselves automatically and
adapt to changing environmental conditions, failures, intermittent connectivity,
and in response to power considerations. We review a series of technologies
that we find interesting both because they solve fundamental problems seen in
these settings, and also because they appear to be instances of a broader class
of solutions responsive to these objectives.

Key words: Embedded computing, sensors, distributed monitoring, routing, network
position information.

1. INTRODUCTION

The emergence of a new generation of technologies for pervasive
computing and networking is challenging basic assumptions about how
networked applications should behave. Wired systems typically ignore
power and location considerations and operate “in the dark” with respect to
overall system configuration, current operating modes or detected
environmental properties, and positions of devices both in absolute and
logical terms. These kinds of assumptions represent serious constraints and
lead to sub-optimal solutions in embedded or pervasive computing systems.

At Cornell, we and other researchers are working to develop platform
technologies responsive to these and related considerations. This paper
reports on three representative examples, which we offer with two goals in
mind. First, each of these technologies reflects a mixture of properties and
algorithmic features matching the special requirements seen in pervasive

2 Chapter #

computing settings. Second, we believe that the underlying methodologies
reflected in the three technologies are interesting in themselves, because they
point to broader opportunities for future study.

At the time of this writing, the technologies are not integrated into a
single platform, but doing so is an eventual goal. Indeed, we believe that
over time, researchers will conclude that pervasive computing systems
demand a completely new kind of infrastructure, built using components
such as the ones we present here.

Specific properties of importance include the following. First, our
solutions are self-organizing, a crucial property in many emerging
applications. They are strongly self-stabilizing, converging rapidly to a
desired structure and repairing themselves rapidly after disruption. They
lend themselves to theoretical modeling and analysis, lending themselves to
both pencil-and-paper study and to simulation. Significantly (and unlike
many distributed systems technologies), the analyses so obtained hold up
well in practice; as we’ll see below, this is because our protocols are so
overwhelmingly convergent. Moreover, they are robust to perturbation, a
property that may be extremely important in the relatively turbulent world in
which many sensor applications will need to operate. Interestingly, each
solution consists of a relatively simple protocol run in parallel by the
components of the system, and the desired global outcome “emerges”
rapidly through the interaction of a component with its neighbors. We
conjecture that a rich class of solutions having these properties awaits
discovery by future researchers.

The three services on which we focus here are (1) Astrolabe, a system for
distributed state monitoring, application management, and data mining
constructed using a novel peer-to-peer protocol that offers unique scalability,
low load, and rapid convergence; (2) Tycho, a location-aware event
localization system for sensor networks, and (3) Sextant, a system for
discovering sensor locations using software methods that is highly accurate,
energy-efficient and scalable. Each is really an instance from a broader class
of related solutions, and is interesting both in its own terms, but also as
exemplars of these broader classes.

2. ASTROLABE

The Astrolabe system is best understood as a relational database built
using a peer-to-peer protocol running between the applications or computers
on which Astrolabe is installed. Like any relational database, the
fundamental building block employed by Astrolabe is a tuple (a row of data
items) into which values can be stored. For simplicity in this paper, we’ll

#. Scalable, Self-Organizing Technology for Sensor Networks 3

focus on the case where each tuple contains information associated with
some computer. The technology is quite general, however, and can be
configured with a tuple per application, or even with a tuple for each
instance of some type of file or database. For the purposes of this paper,
Astrolabe would be used to capture and track information associated with
sensors in a network of sensors. For reasons of brevity, this section (and
those that follow) limits itself to a brief overview; additional detail can be
found in [1] and [2].

The data stored into Astrolabe can be drawn from any of a number of
sources. Small sensors would export data “directly” but a larger, more
comprehensive computing node could export more or less any kind of data
that can be encoded efficiently. This includes information in the
management information base (MIB), fields extracted directly from a file,
database, spreadsheet, or information fetched from a user-supplied method
associated with some application program. Astrolabe is also flexible about
data types, supporting the usual basic types but also allowing the application
to supply arbitrary information encoded with XML. The only requirement is
that the total size of the tuple be no more than a few k-bytes; much larger
objects should be handled outside the core Astrolabe framework.

The specific data that should be pulled into Astrolabe is specified in a
configuration certificate. Should the needs of the user change, the
configuration certificate can be modified and, within a few seconds,
Astrolabe will reconfigure itself accordingly. This action is, however,
restricted by a security policy, details of which are described in [1] and [2].

Astrolabe groups small sets of tuples into a hierarchy of relational tables.
A “leaf” table consists of perhaps 30 to 60 tuples (we could scale up to
hundreds but not thousands of types in a single table) containing data from
sources physically close to one-another in the network. This grouping (a
database administrator would recognize it as a form of schema) can often be
created automatically, using latency and network addresses to identify
nearby machines (the location information could, for example, be obtained
using the method we present in Section 4 of this paper).

4 Chapter #

Astrolabe builds a hierarchy using a P2P
protocol that “assembles the puzzle” without

any servers

6 .0

4 . 1

6 . 2

Word
Version

014 .5cardinal

011 . 5falcon

102 .0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Paris

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing
query output is visible
system-wide

Figure #-1. Example of an Astrolabe representation of data extracted from a set of sensors.

The data collected by Astrolabe evolves as the underlying information
sources report updates, hence the system constructs a continuously changing
database using information that actually resides on the participating
computers. Figure #-1 illustrates this: we see a collection of small database
relations, each tuple corresponding to one machine, and each relation
collecting tuples associated with some set of nearby machines. In this
figure, the data stored within the tuple includes the name of the machine, its
current load, an indication of whether or not various servers are running on
it, and the “version” for some application. Keep in mind that this selection
of data is completely determined by the configuration certificate. In
principle, any data available on the machine or in any application running on
the machine can be exported. In particular, spreadsheets and databases can
easily be configured to export data to Astrolabe.

The same interfaces which enable us to fetch data so easily also make it
easy for applications to use Astrolabe. Most commonly, an application
would access the Astrolabe relations just as it might access any other table,
database or spreadsheet. As updates occur, the application receives a form
of event notifying it that the table should be rescanned. Thus, with little or
no specialized programming, data from Astrolabe data could be « dragged »
into a local database, spreadsheet, or even onto a web page. As the data
changes, the associated application will receive refresh events.

Astrolabe is intended for use in very large networks, hence this form of
direct access to local data cannot be used for the full dataset: while the
system does capture data throughout the network, the amount of information
would be unwieldy and the frequency of updates excessive. Accordingly,
although Astrolabe does provide an interface whereby a remote region’s data
can be accessed, the normal way of monitoring remote data is through
aggregation queries.

#. Scalable, Self-Organizing Technology for Sensor Networks 5

An aggregation query is, as the name suggests, just an SQL query which
operates on these leaf relations, extracting a single summary tuple from each
which reflects the globally significant information within the region. Sets of
summary tuples are concatenated by Astrolabe to form summary relations
(again, the size is typically 30 to 60 tuples each), and if the size of the
system is large enough so that there will be several summary relations, this
process is repeated at the next level up, and so forth. Astrolabe is thus a
hierarchical relational database, and this is also visible in Figure #-1, where
the summaries of the various regions appear as rows in the root relation.
Each of the summaries is updated, in real-time, as the leaf data from which it
was formed changes. Even in networks with thousands or millions of
instrumented machines, updates are visible system-wide within a few tens of
seconds. Since sensor networks may be very large, this scalability is likely
to be important.

A computer using Astrolabe will, in general, keep a local copy of the data
for its own region and aggregation (summary) data for region above it on the
path to the root of this hierarchy. As just explained, the system maintains
the abstraction of a hierarchical relational database. Physically, however,
this hierarchy is an illusion, constructed using a peer-to-peer protocol,
somewhat like a jig-saw puzzle in which each computer has ownership of
one piece and read-only replicas of a few others. Our protocols permit the
system to assemble the puzzle as a whole when needed. Thus, while the user
thinks of Astrolabe as a somewhat constrained but rather general database,
accessed using conventional programmer APIs and development tools, this
abstraction is actually an illusion, created on the fly. In particular, the
memory needed to run the system is very small, even in a network that may
be very large.

The peer-to-peer protocol used for this purpose is, to first approximation,
easily described. Each Astrolabe system keeps track of the other machines
in its zone, and of a subset of contact machines in other zones. This subset is
selected in a pseudo-random manner from the full membership of the system
(again, a peer-to-peer mechanism is used to track approximate membership ;
for simplicity of exposition we omit any details here). At some fixed
frequency, typically every 2 to 5 seconds, each participating machine sends a
concise state description to a randomly selected destination within this set of
neighbors and remote contacts. The state description is very compact and
lists versions of objects available from the sender. We call such a message a
« gossip » event. Unless an object is very small, the gossip event will not
contain the data associated with it.

Upon receiving a gossip message, an Astrolabe system is in a position to
identify information which may be stale at the sender’s machine (because
timestamps are out of date) or that may be more current at the sender than on

6 Chapter #

its own system. We say may because time elapses while messages traverse
the network, hence no machine actually has current information about any
other. Our protocols are purely asynchronous: when sending a message, the
sender does not pause to wait for it to be received and, indeed, the protocol
makes no effort to ensure that gossip gets to its destinations.

If a receiver of a gossip message discovers that it has data missing at the
sender machine, a copy of that data is sent back to the sender. We call this a
push event. Conversely, if the sender has data lacking at the receiver, a pull
event occurs: a message is sent requesting a copy of the data in question.
Again, these actions are entirely asynchronous; the idea is that they will
usually be successful, but if not (e.g. if a message is lost in the network,
received very late, or if some other kind of failure occurs), the same
information will probably be obtained from some other source later.

One can see that through exchanges of gossip messages and data,
information should propagate within a network over an exponentially
increasing number of randomly selected paths among the participants. That
is, if a machine updates its own row, after one round of gossip, the update
will probably be found at two machines. After two rounds, the update will
probably be at four machines, etc. In general, updates propagate in log of
the system size – seconds or tens of seconds in our implementation. In
practice, we configure Astrolabe to gossip rapidly within each zone (to take
advantage of the presumably low latency) and less frequently between zones
(to avoid overloading bottlenecks such as firewalls or shared network links).
The effect of these steps is to ensure that the communication load on each
machine using Astrolabe and also each communication link involved is
bounded and independent of network size.

We’ve said that Astrolabe gossips about objects. In our work, a tuple is
an object, but because of the hierarchy used by Astrolabe, a tuple would only
be of interest to a receiver in the same region as the sender. In general,
Astrolabe gossips about information of shared interest to the sender and
receiver. This could include tuples in the regional database, but also
aggregation results for aggregation zones that are ancestors of both the
sender and receiver.

After a round of gossip or an update to its own tuple, Astrolabe
recomputes any aggregation queries affected by the update. It then informs
any local readers of the Astrolabe objects in question that their values have
changed, and the associated application rereads the object and refreshes its
state accordingly. The change would be expected to reach the server within
a delay logarithmic in the size of the network, and proportional to the gossip
rate. Using a 2-second gossip rate, an update would thus reach all members
in a system of 10,000 computers in roughly 25 seconds. Of course, the

#. Scalable, Self-Organizing Technology for Sensor Networks 7

gossip rate can be tuned to make the system run faster, or slower, depending
on the importance of rapid responses and the available bandwidth.

Astrolabe was originally developed for use in very large-scale wired
environments, but has several features well-matched to sensor networks and
other embedded applications. First, most communication occurs between a
components and nearby peers. In wireless ad-hoc routed networks, this is
important because sending a message to a very remote component consumes
power not just on the sender and receiver, but also on intermediary nodes
involved in routing the packet. In a reasonably dense sensor network, most
Astrolabe communication will occur between sensors near to one-another,
with only aggregation information being transmitted over long distances.

Astrolabe doesn’t rely on any single or even “primary” route between
components that share information through its database; instead, within any
zone data travels over all possible paths within that zone. This is important
because it makes the protocol extremely robust to routing disturbances or
transient communication problems. Astrolabe will report events within
roughly the same amount of time even if serious disruption is occurring and
the system repairs itself rapidly after failure or other stresses.

Finally, Astrolabe can be made to configure itself entirely automatically,
using proximity within the network to define zones. In the sections that
follow we’ll see other uses of location information as an input to system
configuration algorithms; we believe the idea is one that merits further study
and broader use.

Astrolabe is just one of several technologies we’ve constructed using this
methodology. Others relevant to pervasive computing include Bimodal
Multicast [3], a scalable protocol that uses peer-to-peer epidemic protocols
to achieve very high reliability at rather low cost, and Kelips [4], a novel
distributed indexing mechanism (a “DHT” in the current peer-to-peer
vocabulary). Kelips can find information for the cost of a single RPC even
in a massive network. All of these solutions share strong similarities:
inexpensive gossip-based protocols that converge because they mimic the
propagation of an epidemic, constant background overheads (on component
nodes and links), a preference for local communication, and very robust
behavior even under stress. Moreover, precisely because of their
overwhelmingly rapid convergence, even simplified theoretical models and
analysis tend to be quite robust, yielding predictions that are later confirmed
experimentally. Finally, all of these mechanisms have very simple
implementations, small memory footprints, and use relatively low
bandwidth.

Work still remains to be done: none of our protocols is able to deal with
scheduled sleep periods or other power conservation and scheduling

8 Chapter #

considerations. Nonetheless, we believe that they represent exciting starting
points.

3. INTERACTIONS BETWEEN POWER AWARE
COMPONENTS

A typical sensor tends to be very small in size. Though this serves as an
advantage, it also limits the sensor’s capabilities in terms of energy and data
storage, processing power, and communication capabilities. As sensors
mature, we believe that they will become faster, cheaper and be able to
collect and store more data and transmit it farther; however, their energy
capacity will not increase at a similar rate. There have been advances in the
use of wireless power, and renewable sources of energy in sensors, but the
technologies are yet to emerge from their infancy. In such light we believe
that application and software level power conservation can help balance the
energy budget enabling sensor networks to last longer than previously
imagined.

We outline below some characteristics of power aware components for
sensor-networks that aim to lengthen network lifetime.

• Hardware re -use: When possible, existing hardware should be used

by multiple components instead of power-consuming single -purpose
hardware.

• Uniform energy dissipation: Computational and communication
load of a node should be proportional to the energy available to it.

• Low duty-cycle : Components should periodically allow some nodes
to operate in power-saving mode.

• Reactive protocols : Reactive protocols or proactive protocols with
localized effect should be used to minimize communication costs.

• Configurable trade -off: Network administrators should be able to
trade-off system lifetime with system latency and effectiveness.

Research has shown communication to be far more expensive than

computation for sensor networks [5]. Additionally, unreliable radio
communication links further aggravate this problem. In Tycho [9], an event
localization system for sensor-networks, we explore the case of a power-
aware component where nodes send data to a single controller. In Tycho, a
query is injected into the network and upon detection of an event, sensor
nodes send the detected information to the controller. Therefore it is
desirable to optimize communication links from multiple sources of data to a
single destination (controller).

#. Scalable, Self-Organizing Technology for Sensor Networks 9

In the operation of a typical sensor network, various components such as
the application, routing, location discovery etc. interact with one another.
Research in this area has focused on minimizing energy consumption of each
of these components when executing independently and when interacting
with one another. In this section, we focus on minimizing the energy
consumption through increased interactions between the application and the
routing layers.

Consider a large sensor network in which nodes can either detect an
event or be queried based on certain parameters. A simple approach to
reporting results when an event occurs or when a query is passed on to the
network, is to flood the controller with messages from each individual sensor
node. While this is a simple enough mechanism to code into sensors, it
results in inefficient usage of energy, and can fail to report accurate results
when a sensor is not capable of communicating directly with the controller.
Further, this approach does not scale well with an increase in the number of
nodes in the network.

As a result, significant research effort in this area aims to improve the
longevity of sensor nodes by optimizing for the sensor’s power usage,
minimizing communication and the size of messages transferred, without
compromising on the functionality of the sensors. This is commonly
achieved by installing a routing fabric in the network and then aggregating
data along the routing path. An optimal routing protocol tends to either
minimize the number of nodes involved in routing or minimize the distance
each message is transmitted between adjacent nodes in the network. Energy
can be further conserved by aggregating along the path to the controller. This
approach is optimal in terms of the total energy consumed by the various
nodes to either transmit or receive messages. Further, aggregation has the
potential to reduce the number of messages transmitted between nodes as
well as the size of the messages.

Various simulations and physical experiments have shown previously
proposed protocols to have extended the life of a sensor network well
beyond that of direct communication or the flooding approach previously
described.

Routing protocols tend to expose functionality through limited
interactions with the application. The first of such functionality is the
decision regarding which nodes can be used in low duty cycle modes. A
large fraction of energy savings are achieved by enabling a significant
fraction of the nodes in the network to shift to a low duty cycle mode. While
various routing protocols achieve low duty cycle nodes by putting various
nodes in the network to sleep, other routing protocols do not achieve low
duty cycle nodes since they require all nodes in the network to be alive
during routing. A common scheme among routing protocols that support low

10 Chapter #

duty cycle nodes is to interact with the application when deciding on the
subset of nodes that are to go to sleep. Secondly, routing schemes decide on
a path in the network between two nodes which are received as input from
the application layer via APIs exposed by the routing layer.

Based on ongoing research in sensor networks at Cornell, we propose a
two fold extension of the functionality of routing protocols and APIs
exposed by them to the applications running on top. First, we propose an
interaction between the routing layer and the application layer in which the
application is able to decide on a specific subset of nodes in the network that
should be involved in routing. The routing layer should then be able to
construct paths between the specified set of nodes (multiple sources) and the
controller by minimizing the additional nodes used. This should be achieved
while preserving the energy efficiency of the routing protocol. Additionally,
based on the specified subset of nodes, the routing layer should be capable of
setting up these paths dynamically.

 (a) Query Area (b) Subgraph (c) Tree

Figure #-2. Routing tree formation.

Consider the example illustrated in Figure #-2. A sensor network is setup
such that the controller is located at the top right hand corner. The controller
is interested in detecting events in the shaded region (query area) as shown
in 2(a). Using techniques proposed in [6], the nodes that lie in the shaded
region are determined. The sub-graph in Fig 2(b) represents the subset of
nodes that lie in the shaded region and therefore are required to remain
awake in order to be able to sense an event and to take part in routing. When
forming a routing path from these nodes to the controlle r node, the number
of additional nodes (that lie in the unshaded area) used are minimized as
shown in 2(c). The remaining nodes in the network can now be shifted to a
low duty cycle mode. In this example, the application running at the
controller is required to interact with the routing layer and decide on the
subset of nodes that are required to take part in routing. The routing layer
should be flexible enough to dynamically form the routing paths based on
these constraints. From preliminary results on our research, we have found

#. Scalable, Self-Organizing Technology for Sensor Networks 11

that this approach leads to a significant amount of energy savings when
compared to other energy efficient routing protocols described in [7, 8]. This
particular extension has been included in the Tycho system currently being
developed at Cornell. Additionally, it is desirable for sensors in the network
to uniformly dissipate energy since this guarantees that no single sensor will
drain its power prematurely thus possibly disconnecting fractions of the
network. The routing layer should bear this responsibility, and it can achieve
this by varying the subset of nodes that are sent to sleep during each
subsequent sleep cycle.

Various routing protocols to reduce latency in event detection and data
aggregation have been proposed. However, it is our belief that if the
application is able to negotiate the maximum permissible latency with the
routing layer, this will permit a greater degree of flexibility to the routing
layer when making decision regarding which nodes should be put into a low
duty cycle mode. This is primarily because not all sensor network
applications require a low latency network. If an application is able to
tolerate high latency in receiving data from an event, the routing layer is then
given the freedom to put a large fraction of nodes in the network to sleep.
Therefore, when an event is detected by a node, if nodes along the routing
path are asleep, data can be cached and sensors can wait till every other
sensor on the routing path is awake and then transmits the information to the
controller. As a result, the energy saved is a function of the permissible
latency. This is the second extension we propose to the interactions between
the application and the routing layers.

The interactions described in this section yield more flexibility to the
applications and require the various layers to work together cohesively with
the goal of saving energy.

4. POSITION INFORMATION IN SENSOR
NETWORKS

Sensor networks by definition sense their surroundings and cannot afford

to operate “in the dark” with respect to their position in the field. Position
information is necessary for tagging sensor readings [11,12], geographic
routing [10] and caching schemes, clustering and group formation schemes
useful in Astrolabe [1], and even addressing the sensors in certain
applications [13]. To enable such a wide range of sensor-network
applications the community is in search for the perfect sensor-network
networking stack and we believe that position services will figure
prominently in such a stack. Research in this area has traditionally focused
on a very constrictive API for location services, one which consists of a

12 Chapter #

single function that returns a best-estimate point-location for a sensor. This
approach is adequate for small-scale static networks where sensor locations
can be statically programmed in at deployment time but does not scale well
to large or dynamic networks. At Cornell, ongoing research aims to provide
a flexible and scalable location-discovery component for the sensor-network
networking stack.

As mentioned in the Sextant paper [6] an ideal location discovery protocol
would have the following properties:

• Cheap: Location discovery should be cheap and consume little power,

with minimal dependence on infrastructure in the environment and
dedicated hardware on each node.

• Accurate : Location discovery should achieve high accuracy. The degree
of accuracy should be tunable by the network administrator.

• Scalable : The protocol should scale well with increasing number of
nodes. Communication load on a node should be independent of the total
area of network coverage and the total number of nodes and computation
should be distributed evenly.

• Heterogeneous : The protocol should support heterogeneous networks
where nodes have differing capabilities, such as varying transmission
power levels, antenna arrays for determining angle of arrival,
configurable angle of transmission and signal strength measurement
hardware for relative position estimation.

• Easy to deploy: Finally, the protocol should be practical and easy to
deploy. Assumptions made in calculating locations should hold in the
field.

Sextant, designed with the above goals in mind, necessitates a new API

for location services that allows it to return high-fidelity location data and
facilitates two-way interactions between Sextant and the applications using
it.

Figure #-3. Areas determined by Sextant.

A critical issue in location discovery is the representation of a node's

position. One approach is to keep and update only a single point estimate for

#. Scalable, Self-Organizing Technology for Sensor Networks 13

a node. While this approach requires little state, it introduces errors that may
compound at the location discovery level as well as at the application level.
Sextant, instead, explicitly tracks and refines over time the area a sensor can
be located within. To maximize accuracy and minimize storage and
communication requirements, it uses Bezier curves to efficiently represent
the areas, which need not be convex or even simply connected. Figure #-3
depicts nodes along with their Sextant areas. While in its current state
Sextant gives applications the guarantee that the sensor resides within the
area determined, a simple extension can annotate the returned area with a
probability distribution which represents the relative confidence of the
system in the node's precise position.

A second issue is the collection of location information. The economic
and energy cost of using dedicated positioning hardware, like GPS receivers,
at each node is prohibitively high. Instead Sextant infers location
information by creating a system of equations, the solution for which gives
the area within which each node may be located, and then solves this system
in a distributed fashion. Sextant uses the communication hardware already
present at each node as a primary source of geographic constraints that it
translates into the system of equations. In addition, it can generate additional
constraints from other sources including event-sensors and antenna arrays
when available. Sextant uses a very small number of landmark nodes that are
aware of their own locations, either by static encoding or the use of GPS, to
arrive at its solution.

As a power-aware component, Sextant adheres to the guidelines discussed
in the previous section by reducing its dependence on power-consuming
dedicated positioning hardware like GPS receivers and depending instead on
MAC level information gleaned from the already present communication
hardware. In addition, Sextant converges quickly in static networks
obviating the need for constant Sextant-traffic and in highly dynamic
networks it limits itself to localized proactive traffic and evenly distributes
the processing and communication load leading to uniform energy
dissipation in the network.

Figure #-4. Tycho using Sextant areas to assign event detection probabilities.

14 Chapter #

Of the applications that use the Sextant API, legacy applications can
query Sextant for a point-estimate that they are well suited to deal with,
while applications that that can use the extra information available can do so
to minimize their own error. This later approach is evaluated in the Tycho
paper [9] where the system, built on top of Sextant, weighs data from
different sensors based on the confidence of the sensor's position to produce
a probability distribution of an event's location. Figure #-4 illustrates a
node’s confidence in the event’s location given the Sextant area it lies
within. The likelihood of the event taking place in an area is represented
using different shades with lighter shades representing low probabilities and
darker shades representing high probabilities. Tycho has been shown to be
more accurate than traditional triangulation schemes used previously that
locate an event to a point-location. In addition, the new API allows Tycho to
provide Sextant with additional geographic constraints that it gleans from the
already present sensor hardware. This serves to enhance Sextant's location
estimates and in turn iteratively increases Tycho's accuracy.

5. CONCLUSIONS

Our paper reviewed three technologies matched to the unique needs of
pervasive computing environments. Although the components have yet to
be integrated into a single platform, doing so is an eventual objective of our
effort.

In fact, we believe that the ideas underlying the solutions we present here
would also be useful in wired systems. For decades, developers have
constructed wired network applications under the assumption that the less
each application component “knows” about the network, or about the states
of peer components, the better. This sort of thinking is reflected in the
prevailing application development models and platforms: client-server
systems in their varied forms, Web applications, and most recently the Web
Services architecture. One can trace the underlying mindset to the end-to-
end philosophy, which can be interpreted as arguing for black-box networks
and application designs in which each component is on its own.

It may be time to explore a countervailing view, better matched to the
properties of pervasive computing and embedded sensor applications. This
view recognizes that the topology of a network, the properties of the
components, their positions in the real world and relative to one-another and
the constraints under which they operate may have implications for the
behavior of other components. Such thinking argues for system services that
make it easy for components to share their states and to exploit the

#. Scalable, Self-Organizing Technology for Sensor Networks 15

information they obtain from one-another to achieve global objectives that
would otherwise be unrealizable.

The end-to-end philosophy served us well in developing wired
applications, but a new paradigm of sensitivity to system and network state
may be needed in response to the unique needs of these new kinds of
systems.

6. REFERENCES

[1] Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining. Robbert van Renesse, Kenneth Birman and Werner
Vogels. ACM Transactions on Computer Systems, May 2003, Vol.21, No. 2, pp 164-206.

[2] Scalable Data Fusion Using Astrolabe. Ken Birman, Robbert van Renesse and Werner

Vogels. In proceedings of the Fifth International Conference on Information Fusion 2002
(IF 2002), July 2002.

[3] Bimodal Multicast. Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai

Budiu and Yaron Minsky. ACM Transactions on Computer Systems, Vol. 17, No. 2, pp
41-88, May, 1999.

[4] Kelips: Building an Efficient and Stable P2P DHT Through Increased Memory and

Background Overhead. Indranil Gupta, Ken Birman, Prakash Linga, Al Demers and
Robbert van Renesse. Submitted to: 2nd International Workshop on Peer-to-Peer Systems
(IPTPS '03); February 20-21, 2003. Claremont Hotel, Berkeley, CA, USA.

[5] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. “System

architecture directions for networked sensors”, In Proc. the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, Boston,
MA, USA, Nov. 2000.

[6] S. Guha and E. G. Sirer, “Distributed Constraint-based Location Discovery in Ad hoc

Networks,” Cornell University, Tech. Rep. cul.cis/TR2004-1939, 2004.

[7] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy -Efficient

Communication Protocol for Wireless Microsensor Networks,” in Proceedings of HICSS,
Jan. 2000.

[8] H. Z. Tan and I. Körpeoglu, “Power efficient data gathering and aggregation in wireless

sensor networks,” ACM SIGMOD Record, vol. 32, no. 4, pp. 66–71, Dec. 2003.

[9] R. Narayan, S. Guha and E. G. Sirer, “Position Informed Energy Efficient Sensing,”.

Under submission to SECON. 2004.

[10] Brad Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for

Wireless Networks,” in proceedings of International Conference on Mobile Computing
and Networking, Aug. 2000.

16 Chapter #

[11] Janos Sallai, Gyorgy Balogh, Miklos Maroti and Akos Ledeczi, “Acoustic Ranging in

Resource Constrained Sensor Networks,” Vanderbilt Unversity, Tech. Rep. ISIS-04-504,
2004.

[12] Aram Galstyan, Bhaskar Krishnamachari, Kristina Lerman and Sundeep Pattem,

“Distributed Online Localization in Sensor Networks Using a Moving Target,” in
proceedings of International Symposium on Information Processing in Sensor
Networks, Apr. 2004.

[13] Jeremy Elson and Deborah Estrin, “An Address-Free Architecture for Dynamic Sensor

Networks,” Computer Science Department USC, Tech. Rep. 00-724, 2000.

