Review of:Modal and Temporal Properties of Processes
by Colin Stirling

Vicky Weissman
Department of Computer Science
Cornell University

Overview

At a very high level, this book presents languages for desagiprocesses and properties of processes. It
then discusses techniques for checking if a process, ohfafnprocesses, has a given property.

What is a process? In essence, a process is something tha¢rdarm actions. By doing actions, pro-
cesses may change. Examples of processes include a clodathack and a counter with value zero that
can do an increment action to become a counter with value Bhe.following syntax is used to describe
processes wherB, possibly subscripted, is a process, bo@ndb are actions, and is an indexing set.

E:=a.E|Ea/b]| > E
icl
A process of the forna. E' can do actioru to become process. A process of the fornE[a/b] is identical
to the procesd, except that every occurrence of actibis replaced by action. A process of the form
> icr Ei refers to some proceds; wherej € 1.

We would like to extend the language to describe interastloetween processes, but first we need to
explain what we mean by process interaction. Two processesact when one sends information and the
other receives it. We formalize this notion, by creatingpaif actions. Each pair consists of two actions
with the same name, except that one has an overhead bar assb@@aded with out-going communication,
while the other does not have a bar and is associated withriirgg communication. For example, a process
E; may tell a proces#; that it's idle by doing an action. E5 receives this information by doing the action
a. We say that: is theco-action of @ and vice-versa.

To capture interactions between processes, we add thexskhté, and E\J to the language where
E,, E,, and E are processes andl is a set of actions. A process of the forf |E, is the concurrent
composition of processds; andE». In other words, if£; can do an action to becomeF’ andE;, can do
the co-actiori to becomeF, thenE, | E; can doa to becomeE| | E2, can doa to becomeF,; |E), and can
do the internal action to becomeE] | Ef,. (We always use the symbeolto refer to an internal action, which
is one process doing an action and another process doin@{etion. The set of actions may not include
7.) The restriction operatoyis used to synchronize processes, by forbidding actions fzebformed unless
the co-action is also done. More specifically, a processefdahm £\ J is identical to the process except
that it cannot do any action that is ihand it cannot do any action whose co-action ig/inFor example,
(E1|E2)\a synchronizes processés and E; with respect to actiom, by forbidding the processes to do
or a. If one of the processes doegor a), then it cannot do another action until the other processloae
a (or a) and, thus{ F1|E2)\a has doner instead ofu or a.

We write E; = E, to say that procesB; can do actiom to become process,. For exampleq.E = E
is always true and_,_; E; = F is true if there is somg € I such that; = F. We use the symbok
to discussobservable actions where an observable action is any action other thaif a is an observable
action, thenF; = F, means that proces8, can become proceds, by doing a sequence of actions in
which the only observable action is The notation can be extended in a straightforward way tonall

an action sequence in place of a single action. For exanipteandb are actions, thena.b.FE % Eis
always true and, it is the empty sequence, théh = FE, is true if £, can become?, without doing any
observable actions.

Given a process, we would like to know if it has certain prtipsr For example, we may want to know
if the process is deadlocked or if it could become deadlock#bout doing any observable action. To
discover if a property holds for a process, we need a langizageoperties and we need a formal definition
of what it means for a process to have a property. The syntax $omple property language is given below
where®, possibly with a subscript, is a property aidis a set of actions. As an aside, we refer to the set
of all actions except those in an action $éfs the set- K. Similarly, the set of all actions is (for —0).

Pu=t[ff|P1AD|P1V D[[K]D|(K)D

it stands for true; it is the property that every process hasil&ly, ff stands for false; it is the property that
no process has. Conjunction and disjunction have theidat@mmeanings. A process has the propgkij®

if, after doing any action irf<, it becomes a process that has the propértyA process has the property
(K)® if, after doing some action i, it can become a process that has the propértyFormally, we
define the following satisfiability relation whefe = ® means that proceds has (satisfies) property and

E = ® means that it does not.

e E=ttandE [~ ff

o El=®y Adyiff E = & andE |= ¥,

e EE®VIiff E=®y0rE = @y

e E=[K|®iff VFe{F :F% Fandac K}.F = ®
e E=(K)®iff IFc{F:E%Fandac K}.F =&

In this language, a proceds is deadlocked if it has the properfy-|ff. Unfortunately, it may not
be clear if E has this property whef’ contains the restriction operatyr the concurrency operatoy or
renaming. To simplify our analysis, we note that formulagtem in our language (properties) adhere to the
following:

e If a ¢ K thena.F = [K]|® anda.E [~ (K).

e If a € Kthena.F = [K|?iff a.FE = (K)®iff E E ©.
o M{E;:icl} = [k]®iffforall j € I.E; = [k]D.

o X{E;:ic I} = (k)®iffforsomej € I.E; = (k).

These facts can be used to show that/ = @ iff £ = ®\J where®\.J is obtained easily fron®. The
concurrency operator and renaming can be handled simikdthough the solution for concurrency is not
entirely satisfactory.

While the above property language is sufficiently expres$or the first deadlock example, it cannot
capture the second one, namely a process may become desilaitér some sequence of unobservable
actions. To write such properties, we extend the logic téuthe the synta[]® and (())® where® is a
property. If a process has the propeffsp, then doing any internal action sequence results in a psdbes
has the propertyp. (Formally,E = [|® iff VF € {E' : E = E'}.F |= ®.) If a process has the property
()@, then doing some internal action sequence, possibly théyeseguence, results in a process that has
the property®. (Formally, E |= ()@ iff 3F € {E' : E = FE'}.F = ®.) Using the extended logic, the
ability to evolve silently into a deadlocked process can bétem as(())[—] ff.

We may want to extend the logic further to handle convergamzbdivergence. A process converges
(1) if it cannot perform internal actions indefinitely, otheése it diverges {). We write [|]® to say that
the process converges and has the propgdy We write (1))® to say that the process either diverges or
has the property))®. For example, the property that an actiomust (and will) happen next is written as
[L1{=ntt A [—a] ff where[][K][]® is abbreviated afiK]® and(())(K) ()P is abbreviated ag K)) P for
any action sek.

In the text, the simplest language consisting off, A, Vv, [K]®, and K)® is called) for modal logic.
The language consisting @f, ff, A, Vv, [K]®, [[®, (K)®, and(())® is called M © for observable modal
logic. Finally, M© with [|]® and (1)@ is the languagé/©".

When should we consider two processes to be equivalent? Algrogefinition is to say that two
processe# and F’ are equivalent if for any actiomn,

o if E% E/, thenF = F’ for someF”’ such thate’ and F” are equivalent.
o if % F/ thenE % E’ for someE’ such thatE’ andF’ are equivalent.

Two processes that meet the above criteria are said bostyailar. A binary relationB is abisimulation if
for any process paifE, F') in B, the processe® and F' are bisimilar.

If £ andF' are bisimilar processes, then for any procésgor any set of actiond<, for any action
a, and for any renaming function, the following hold whereX ~ Y means that processés andY are
bisimilar.

1. a.E~alF
2. E+G~F+G
3. E|G ~ F|G

4. E[r] ~ Fr]

5. E\K ~ F\K

Because of this, bisimilar processes can replace one arintheocess descriptions. Furthermore, bisimilar
processes either both have or both fail to have any propeatyig expressible in/!.

Two processes that share the saii€'! properties may or may not be bisimilar. To characterize the
class that are, let a proceBsbe immediately image-finite if for all actionsthe set{ £/ : E % E'} is finite.
A process is image-finite if it can only become an immediateigige-finite process, regardless of which
action sequence it does. Two image-finite processes thatthavsamé/ /! properties are bisimilar.

We can demonstrate that two processes are bisimilar byrogtisg a bisimulation that contains them.
Alternatively, we can write a proof that uses algebraic agmhisalgebraic theorems (such @sx)\K ~
a.(x)\K if {a,a} N K = () to show the equivalence.

3

The definitions for bisimulation and image-finite processas be modified in a straightforward way
to handle observable actions. The relationship betweémubiations and\/°! occurs between observable
bisimulations and\/©. Many other properties hold for both bisimulations and obesiale bisimulations.

The property languaga/©! is sufficiently expressive to distinguish one image-finitegess from an-
other, provided that the two processes are not bisimilars @ibes not mean, however, that all interesting
properties can be written ilZ©!. An example of an inexpressible property is ‘the processeser become
deadlocked’. More generallf\/©' lacks the expressive power to state long term propertie$, as safety
properties (something never happens), liveness propdiimmething eventually happens), and repeating
properties (something happens again and again, forever).

We can discuss these events, by adding propositional Vesiah)/. (As we shall see)/! is equiv-
alent to a fragment of this logic.) To complement the new aynvaluations are added to the semantics.
The valuationV” assigns each variableto a set of processds(z). If a process is iff/(z), then it is said to
satisfy the formula: relative to the valuatiof.

We use formulas in the extended logic to assign variablegt® & processes. More specifically, we
write z = @ if the variablez is assigned to the set of processes that satisfy formul&or example, if
z = [-]ff, thenz is the set of processes that are deadlocked. If the varialdssigned to a formula that
contains it (e.g.z = [—]z), then there may be a number of process sets that satisfygtiaien. Roughly
speaking, the smallest set is the least fixed point, writter®, and the largest is the greatest fixed point,
vz.®.

Least and greatest fixed points are found through an iteratwcess. The number of iterations needed,
in general, is an open problem. However, if the variablesaooncur under an alternation of fixed points,
then the number of iterations is, at madst n wherek is the number of fixed points andis the number of
processes.

The extended logic is called Modal Mu-Calculus (a¥/) and its syntax is:

Su=t|ff|PIADy| PV Dy | [K]P | (K)D | pu2.® | v2.®

where ®, ®,, and®, are formulas,.K is a set of actions, and is a variable. The meanings af ff,
Oy N Py, 1 V o, [K]P, and (K)P are similar to the ones for the modal logi¢; the only difference
is that the valuation must be considered. For example, a&epsolcas the M property®; A @, relative to
a valuationV, if it has the propertyd; relative toV' and the propertyd, relative toV. The meaning of
fixed points is given below where the notatidhS/z] refers to the valuation that is identical ¥, except
that variablez is assigned to the process set (Formally, V[S/z](z) = S and for all variableg; # z,

VIS/z|(y) =V (y).)

e £ =y pz.® iff for all sets of processes, if E ¢ S then there exists a proce$s ¢ S such that
F v ®

e I =y v2.9 iff there exists a set of processgghat containg” and for allF” € S, F' [=y(g/.) .

wM is very expressive. It can capture ahy®! formula. In particular, assuming the variaklés not
in®, (N0 = pz.®V (1)z, [[® = vz.® A7)z, (THP = v2.® V (1)z, and[|]P = uz.® A [7]z. Also,
many safety, liveness, and repeating properties that aspiassible im/€! can be written inuM. For
exampleyz.[K]ff A [—]z says that no action i’ ever happengyz.(—)tt A [—K |z says that some action
in K eventually happens, and.(K)z says that actions ik can be done over-and-over again, forever.

Despite the greater expressive power, the relationshipemet;. M and bisimulation is similar to that
betweenM and bisimulation. Specifically, two bisimilar processearshthe same M properties and a

4

weakened version of image-finiteness is needed for praedhse share the samel/ properties to be
bisimilar.

A disadvantage of using)M is that the satisfiability problem for it is undecidable. Bngral, we cannot
determine if a process satisfieg.a/ formula relative to a valuation. For the other modal logits, (M ©,
and M 1), we can grind through the satisfiability definition in a gjraforward manner, but handling fixed
points inp M is more challenging. One approach is to view answering afeiility question in terms of
playing a game.

We want to play a game whose outcome will tell us if a procEssatisfies guiM formula @ rela-
tive to a valuationV/. The game has two players, a verifiérwho wants to show that the formula is
satisfied and a refuteR who wants to show that it is not. A play of the game is a sequehdbe form
(Eo, D) ... (E;, ®;)... where each subscriptdd is a process and each subscripfeds a formula inu M.
The rules of the game are:

e assuming we want to know i satisfiesd, Fy is £ and®g is .

o if &, = &; A &, then playerR chooses one of the conjuncts to be the formula in the next pair
other words F; 1 1 is E and R decides if®; is ®; or ®;,.

o if &, =d; Vv &, thenk;;is E andV decides if®;; is ®; or ®;.

e if ®; = [k]¥, then playerR chooses a transitioR; N E; wherea € k. The next procesdy; 1, is
E; and the next formula®; 1, is U.

e if &, = (W), then playel” chooses a transitiofy; N E; wherea € k. The next processy; 11, is
E; and the next formula®; 1, is U.

o if &, = 02.W whereo € {u,v}, thenE;,, is E; and®,,; is ¥. Whenever: is encountered in the
future, it will be replaced byp. For example, if®; = pz.¢ickz then®,1 = ¢ickz, P10 = 2,
and®;, 3 = ¢ick)z. (For simplicity, we're assuming that each fixed pointdinbounds a different
variable and none of the bound variables are free elsewhehe iformula.)

PlayerR wins the game if the play contains a pélt;, ®;) such thatf; =y ; is clearly false. Similarly,
player V' wins the game if the play contains a paft;, ®;) such thatE; =y ®; is clearly true. If the
play doesn’'t contain such a pair, then there must be somablesi that are replaced according to the last
rule infinitely often. If the outermost variable is bound tteast fixed point operator, then playBrwins.
Otherwise, playel” wins.

If player R can always win the game, regardless of play&r moves, therE does not satisfyp relative
to V. Otherwise, playel” must be able to win the game, regardless of pldysrmoves, and® satisfiesp
relative toV'.

Variations of this game have been developed to improve effayi, particularly for fragments @fM . To
prove that every process in a set satisfies some formula, wplag one of these games multiple (possibly
infinitely-many) times. Alternatively, we can constructragf tree, according to rules that are based on the
satisfiability relation.

Contents

The book has seven chapters and is 181 pages. The chapteagemare given below:

Chapter 1Processes, introduces the notion of processes and gives a languagkiamwo describe them.

Chapter 2M odalities and Capabilities, presents the modal logids, M/, and M ©! for discussing
the properties of processes.

Chapter 3Bismulations, gives a formal definition for when two processes should Imsicered equiv-
alent, argues that this choice matches our intuition, amdnéxes the relationship between equivalent pro-
cesses and those that are indistinguishable using the nogiled presented in Chapter 2.

Chapter 4Temporal Properties, shows that the modal logics cannot be used to write safetjianess
properties. A variant of CTL is proposed as a more expredsgie. Fixed points are then introduced.

Chapter 5Modal Mu-Calculus, defines the Modal Mu-Calculug{/) and gives algorithms for finding
fixed points using iterative methods.

Chapter 6 Verifying Temporal Properties, uses game theory to address the satisfiability problem for
uM and the variant of CTL given in Chapter 4.

Chapter 7 Exposing Structure, uses proof trees to address the satisfiability problemdts af pro-
cesses.

Opinion

| recommend this book as a good introduction to process edgelihough an additional text will be needed
for a solid understanding. Many examples are given througtie text and exercises are provided at the
end of each section. The examples complement the text vdhamgthe exercises are given in increasing
difficulty. This allows readers to test their general untierding first and then try to challenge themselves.
The book also uses game theory as a way of presenting the sarmgahfrom different perspectives without
being overly redundant. | found this approach to be bottcetfe and fun. Finally, the book does not assume
much (if any) prior knowledge of the field.

| have only two negative comments. First, Chapters 4 and Hewshll good, are not as well written
as the rest of the book. Second, the author occasionallysradeexamples and definitions without telling
the reader where the ideas are introduced. As a result, Ichéigh through the book looking for text that |
remembered reading, but whose details | couldn’t recalis $huation may be helped by adding a glossary
to future editions.

