
Review of:Modal and Temporal Properties of Processes
by Colin Stirling

Vicky Weissman
Department of Computer Science

Cornell University

Overview

At a very high level, this book presents languages for describing processes and properties of processes. It
then discusses techniques for checking if a process, or family of processes, has a given property.

What is a process? In essence, a process is something that canperform actions. By doing actions, pro-
cesses may change. Examples of processes include a clock that can tick and a counter with value zero that
can do an increment action to become a counter with value one.The following syntax is used to describe
processes whereE, possibly subscripted, is a process, botha andb are actions, andI is an indexing set.

E ::= a.E | E[a/b] |
∑

i∈I

Ei

A process of the forma.E can do actiona to become processE. A process of the formE[a/b] is identical
to the processE, except that every occurrence of actionb is replaced by actiona. A process of the form∑

i∈I Ei refers to some processEj wherej ∈ I.
We would like to extend the language to describe interactions between processes, but first we need to

explain what we mean by process interaction. Two processes interact when one sends information and the
other receives it. We formalize this notion, by creating pairs of actions. Each pair consists of two actions
with the same name, except that one has an overhead bar and is associated with out-going communication,
while the other does not have a bar and is associated with in-coming communication. For example, a process
E1 may tell a processE2 that it’s idle by doing an actiona. E2 receives this information by doing the action
a. We say thata is theco-action of ā and vice-versa.

To capture interactions between processes, we add the syntax E1|E2 andE\J to the language where
E1, E2, andE are processes andJ is a set of actions. A process of the formE1|E2 is the concurrent
composition of processesE1 andE2. In other words, ifE1 can do an actiona to becomeE′

1 andE2 can do
the co-action̄a to becomeE′

2, thenE1|E2 can doa to becomeE′
1|E2, can dōa to becomeE1|E

′
2, and can

do the internal actionτ to becomeE′
1|E

′
2. (We always use the symbolτ to refer to an internal action, which

is one process doing an action and another process doing the co-action. The set of actions may not include
τ̄ .) The restriction operator\ is used to synchronize processes, by forbidding actions to be performed unless
the co-action is also done. More specifically, a process of the formE\J is identical to the processE except
that it cannot do any action that is inJ and it cannot do any action whose co-action is inJ . For example,
(E1|E2)\a synchronizes processesE1 andE2 with respect to actiona, by forbidding the processes to doa
or ā. If one of the processes doesa (or ā), then it cannot do another action until the other process has done
ā (or a) and, thus,(E1|E2)\a has doneτ instead ofa or ā.

1

We writeE1
a
→ E2 to say that processE1 can do actiona to become processE2. For example,a.E

a
→ E

is always true and
∑

i∈I Ei
a
→ F is true if there is somej ∈ I such thatEj

a
→ F . We use the symbol⇒

to discussobservable actions where an observable action is any action other thanτ . If a is an observable
action, thenE1

a
⇒ E2 means that processE1 can become processE2 by doing a sequence of actions in

which the only observable action isa. The notation can be extended in a straightforward way to allow

an action sequence in place of a single action. For example, if a and b are actions, thena.b.E
ab
→ E is

always true and, ifε is the empty sequence, thenE1
ε
⇒ E2 is true if E1 can becomeE2 without doing any

observable actions.
Given a process, we would like to know if it has certain properties. For example, we may want to know

if the process is deadlocked or if it could become deadlockedwithout doing any observable action. To
discover if a property holds for a process, we need a languagefor properties and we need a formal definition
of what it means for a process to have a property. The syntax for a simple property language is given below
whereΦ, possibly with a subscript, is a property andK is a set of actions. As an aside, we refer to the set
of all actions except those in an action setK as the set−K. Similarly, the set of all actions is− (for −∅).

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K〉Φ

tt stands for true; it is the property that every process has. Similarly, ff stands for false; it is the property that
no process has. Conjunction and disjunction have their standard meanings. A process has the property[K]Φ
if, after doing any action inK, it becomes a process that has the propertyΦ. A process has the property
〈K〉Φ if, after doing some action inK, it can become a process that has the propertyΦ. Formally, we
define the following satisfiability relation whereE |= Φ means that processE has (satisfies) propertyΦ and
E 6|= Φ means that it does not.

• E |= tt andE 6|= ff

• E |= Φ1 ∧ Φ2 iff E |= Φ1 andE |= Φ2

• E |= Φ1 ∨ Φ2 iff E |= Φ1 or E |= Φ2

• E |= [K]Φ iff ∀F ∈ {E′ : E
a
→ E′ anda ∈ K}.F |= Φ

• E |= 〈K〉Φ iff ∃F ∈ {E′ : E
a
→ E′ anda ∈ K}.F |= Φ

In this language, a processE is deadlocked if it has the property[−]ff . Unfortunately, it may not
be clear ifE has this property whenE contains the restriction operator\, the concurrency operator|, or
renaming. To simplify our analysis, we note that formulas written in our language (properties) adhere to the
following:

• If a /∈ K thena.E |= [K]Φ anda.E 6|= 〈K〉Φ.

• If a ∈ K thena.E |= [K]Φ iff a.E |= 〈K〉Φ iff E |= Φ.

• Σ{Ei : i ∈ I} |= [k]Φ iff for all j ∈ I.Ej |= [k]Φ.

• Σ{Ei : i ∈ I} |= 〈k〉Φ iff for somej ∈ I.Ej |= 〈k〉Φ.

These facts can be used to show thatE\J |= Φ iff E |= Φ\J whereΦ\J is obtained easily fromΦ. The
concurrency operator and renaming can be handled similarly, although the solution for concurrency is not
entirely satisfactory.

2

While the above property language is sufficiently expressive for the first deadlock example, it cannot
capture the second one, namely a process may become deadlocked after some sequence of unobservable
actions. To write such properties, we extend the logic to include the syntax[[]]Φ and 〈〈〉〉Φ whereΦ is a
property. If a process has the property[[]]Φ, then doing any internal action sequence results in a process that
has the propertyΦ. (Formally,E |= [[]]Φ iff ∀F ∈ {E′ : E

ε
⇒ E′}.F |= Φ.) If a process has the property

〈〈〉〉Φ, then doing some internal action sequence, possibly the empty sequence, results in a process that has
the propertyΦ. (Formally,E |= 〈〈〉〉Φ iff ∃F ∈ {E′ : E

ε
⇒ E′}.F |= Φ.) Using the extended logic, the

ability to evolve silently into a deadlocked process can be written as〈〈〉〉[−]ff .
We may want to extend the logic further to handle convergenceand divergence. A process converges

(↓) if it cannot perform internal actions indefinitely, otherwise it diverges (↑). We write [[↓]]Φ to say that
the process converges and has the property[[]]Φ. We write〈〈↑〉〉Φ to say that the process either diverges or
has the property〈〈〉〉Φ. For example, the property that an actiona must (and will) happen next is written as
[[↓]]〈〈−〉〉tt ∧ [[−a]]ff where[[]][K][[]]Φ is abbreviated as[[K]]Φ and〈〈〉〉〈K〉〈〈〉〉Φ is abbreviated as〈〈K〉〉Φ for
any action setK.

In the text, the simplest language consisting oftt, ff,∧,∨, [K]Φ, and〈K〉Φ is calledM for modal logic.
The language consisting oftt, ff,∧,∨, [[K]]Φ, [[]]Φ, 〈〈K〉〉Φ, and〈〈〉〉Φ is calledMO for observable modal
logic. Finally,MO with [[↓]]Φ and〈〈↑〉〉Φ is the languageMO↓.

When should we consider two processes to be equivalent? A popular definition is to say that two
processesE andF are equivalent if for any actiona,

• if E
a
→ E′, thenF

a
→ F ′ for someF ′ such thatE′ andF ′ are equivalent.

• if F
a
→ F ′, thenE

a
→ E′ for someE′ such thatE′ andF ′ are equivalent.

Two processes that meet the above criteria are said to bebisimilar. A binary relationB is abisimulation if
for any process pair(E,F) in B, the processesE andF are bisimilar.

If E andF are bisimilar processes, then for any processG, for any set of actionsK, for any action
a, and for any renaming functionr, the following hold whereX ∼ Y means that processesX andY are
bisimilar.

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E|G ∼ F |G

4. E[r] ∼ F [r]

5. E\K ∼ F\K

Because of this, bisimilar processes can replace one another in process descriptions. Furthermore, bisimilar
processes either both have or both fail to have any property that is expressible inMO↓.

Two processes that share the sameMO↓ properties may or may not be bisimilar. To characterize the
class that are, let a processE be immediately image-finite if for all actionsa the set{E′ : E

a
→ E′} is finite.

A process is image-finite if it can only become an immediatelyimage-finite process, regardless of which
action sequence it does. Two image-finite processes that have the sameMO↓ properties are bisimilar.

We can demonstrate that two processes are bisimilar by constructing a bisimulation that contains them.
Alternatively, we can write a proof that uses algebraic and semi-algebraic theorems (such as(a.x)\K ∼
a.(x)\K if {a, ā} ∩ K = ∅) to show the equivalence.

3

The definitions for bisimulation and image-finite processescan be modified in a straightforward way
to handle observable actions. The relationship between bisimulations andMO↓ occurs between observable
bisimulations andMO. Many other properties hold for both bisimulations and observable bisimulations.

The property languageMO↓ is sufficiently expressive to distinguish one image-finite process from an-
other, provided that the two processes are not bisimilar. This does not mean, however, that all interesting
properties can be written inMO↓. An example of an inexpressible property is ‘the process cannever become
deadlocked’. More generally,MO↓ lacks the expressive power to state long term properties, such as safety
properties (something never happens), liveness properties (something eventually happens), and repeating
properties (something happens again and again, forever).

We can discuss these events, by adding propositional variables toM . (As we shall see,MO↓ is equiv-
alent to a fragment of this logic.) To complement the new syntax, valuations are added to the semantics.
The valuationV assigns each variablez to a set of processesV (z). If a process is inV (z), then it is said to
satisfy the formulaz relative to the valuationV .

We use formulas in the extended logic to assign variables to sets of processes. More specifically, we
write z = Φ if the variablez is assigned to the set of processes that satisfy formulaΦ. For example, if
z = [−]ff , thenz is the set of processes that are deadlocked. If the variable is assigned to a formula that
contains it (e.g.z = [−]z), then there may be a number of process sets that satisfy the equation. Roughly
speaking, the smallest set is the least fixed point, writtenµz.Φ, and the largest is the greatest fixed point,
νz.Φ.

Least and greatest fixed points are found through an iterative process. The number of iterations needed,
in general, is an open problem. However, if the variables do not occur under an alternation of fixed points,
then the number of iterations is, at most,k ∗ n wherek is the number of fixed points andn is the number of
processes.

The extended logic is called Modal Mu-Calculus (orµM) and its syntax is:

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K〉Φ | µz.Φ | νz.Φ

whereΦ, Φ1, andΦ2 are formulas,K is a set of actions, andz is a variable. The meanings oftt, ff ,
Φ1 ∧ Φ2, Φ1 ∨ Φ2, [K]Φ, and〈K〉Φ are similar to the ones for the modal logicM ; the only difference
is that the valuation must be considered. For example, a process has theµM propertyΦ1 ∧ Φ2 relative to
a valuationV , if it has the propertyΦ1 relative toV and the propertyΦ2 relative toV . The meaning of
fixed points is given below where the notationV [S/z] refers to the valuation that is identical toV , except
that variablez is assigned to the process setS. (Formally,V [S/z](z) = S and for all variablesy 6= z,
V [S/z](y) = V (y).)

• E |=V µz.Φ iff for all sets of processesS, if E 6∈ S then there exists a processF 6∈ S such that
F |=V [S/z] Φ

• E |=V νz.Φ iff there exists a set of processesS that containsE and for allF ∈ S,F |=V [S/z] Φ.

µM is very expressive. It can capture anyMO↓ formula. In particular, assuming the variablez is not
in Φ, 〈〈〉〉Φ = µz.Φ ∨ 〈τ〉z, [[]]Φ = νz.Φ ∧ [τ]z, 〈〈↑〉〉Φ = νz.Φ ∨ 〈τ〉z, and[[↓]]Φ = µz.Φ ∧ [τ]z. Also,
many safety, liveness, and repeating properties that are inexpressible inMO↓ can be written inµM . For
example,νz.[K]ff ∧ [−]z says that no action inK ever happens,µz.〈−〉tt ∧ [−K]z says that some action
in K eventually happens, andνz.〈K〉z says that actions inK can be done over-and-over again, forever.

Despite the greater expressive power, the relationship betweenµM and bisimulation is similar to that
betweenM and bisimulation. Specifically, two bisimilar processes share the sameµM properties and a

4

weakened version of image-finiteness is needed for processes that share the sameµM properties to be
bisimilar.

A disadvantage of usingµM is that the satisfiability problem for it is undecidable. In general, we cannot
determine if a process satisfies aµM formula relative to a valuation. For the other modal logics (M , MO,
andMO↓), we can grind through the satisfiability definition in a straightforward manner, but handling fixed
points inµM is more challenging. One approach is to view answering a satisfiability question in terms of
playing a game.

We want to play a game whose outcome will tell us if a processE satisfies aµM formula Φ rela-
tive to a valuationV . The game has two players, a verifierV who wants to show that the formula is
satisfied and a refuterR who wants to show that it is not. A play of the game is a sequenceof the form
(E0,Φ0) . . . (Ei,Φi) . . . where each subscriptedE is a process and each subscriptedΦ is a formula inµM .
The rules of the game are:

• assuming we want to know ifE satisfiesΦ, E0 is E andΦ0 is Φ.

• if Φi = Φj ∧ Φk then playerR chooses one of the conjuncts to be the formula in the next pair. In
other words,Ei+1 is E andR decides ifΦi+1 is Φj or Φk.

• if Φi = Φj ∨ Φk thenEi+1 is E andV decides ifΦi+1 is Φj or Φk.

• if Φi = [k]Ψ, then playerR chooses a transitionEi
a
→ Ej wherea ∈ k. The next process,Ei+1, is

Ej and the next formula,Φi+1, is Ψ.

• if Φi = 〈k〉Ψ, then playerV chooses a transitionEi
a
→ Ej wherea ∈ k. The next process,Ei+1, is

Ej and the next formula,Φi+1, is Ψ.

• if Φi = σz.Ψ whereσ ∈ {µ, ν}, thenEi+1 is Ei andΦi+1 is Ψ. Wheneverz is encountered in the
future, it will be replaced byΨ. For example, ifΦi = µz.〈tick〉z thenΦi+1 = 〈tick〉z, Φi+2 = z,
andΦi+3 = 〈tick〉z. (For simplicity, we’re assuming that each fixed point inΦi bounds a different
variable and none of the bound variables are free elsewhere in the formula.)

PlayerR wins the game if the play contains a pair(Ei,Φi) such thatEi |=V Φi is clearly false. Similarly,
player V wins the game if the play contains a pair(Ei,Φi) such thatEi |=V Φi is clearly true. If the
play doesn’t contain such a pair, then there must be some variables that are replaced according to the last
rule infinitely often. If the outermost variable is bound to aleast fixed point operator, then playerR wins.
Otherwise, playerV wins.

If playerR can always win the game, regardless of playerV ’s moves, thenE does not satisfyΦ relative
to V . Otherwise, playerV must be able to win the game, regardless of playerR’s moves, andE satisfiesΦ
relative toV .

Variations of this game have been developed to improve efficiency, particularly for fragments ofµM . To
prove that every process in a set satisfies some formula, we can play one of these games multiple (possibly
infinitely-many) times. Alternatively, we can construct a proof tree, according to rules that are based on the
satisfiability relation.

Contents

The book has seven chapters and is 181 pages. The chapter summaries are given below:

5

Chapter 1,Processes, introduces the notion of processes and gives a language in which to describe them.
Chapter 2,Modalities and Capabilities, presents the modal logicsM , MO, andMO↓ for discussing

the properties of processes.
Chapter 3,Bisimulations, gives a formal definition for when two processes should be considered equiv-

alent, argues that this choice matches our intuition, and examines the relationship between equivalent pro-
cesses and those that are indistinguishable using the modallogics presented in Chapter 2.

Chapter 4,Temporal Properties, shows that the modal logics cannot be used to write safety and liveness
properties. A variant of CTL is proposed as a more expressivelogic. Fixed points are then introduced.

Chapter 5,Modal Mu-Calculus, defines the Modal Mu-Calculus (µM) and gives algorithms for finding
fixed points using iterative methods.

Chapter 6,Verifying Temporal Properties, uses game theory to address the satisfiability problem for
µM and the variant of CTL given in Chapter 4.

Chapter 7,Exposing Structure, uses proof trees to address the satisfiability problem for sets of pro-
cesses.

Opinion

I recommend this book as a good introduction to process algebra, although an additional text will be needed
for a solid understanding. Many examples are given throughout the text and exercises are provided at the
end of each section. The examples complement the text very well and the exercises are given in increasing
difficulty. This allows readers to test their general understanding first and then try to challenge themselves.
The book also uses game theory as a way of presenting the same material from different perspectives without
being overly redundant. I found this approach to be both effective and fun. Finally, the book does not assume
much (if any) prior knowledge of the field.

I have only two negative comments. First, Chapters 4 and 5, while still good, are not as well written
as the rest of the book. Second, the author occasionally refers to examples and definitions without telling
the reader where the ideas are introduced. As a result, I had to flip through the book looking for text that I
remembered reading, but whose details I couldn’t recall. This situation may be helped by adding a glossary
to future editions.

6

