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Abstract. ODRL is a popular XML-based language for stating the conditions
under which resources can be accessed. The language is underspecified, and can
be reasonably interpreted in a number of ways. To remove the ambiguity, we
propose a formal semantics for a representative fragment of the language. We
also define when a permission is implied by a set of ODRL statements.

1 Introduction

ODRL, the Open Digital Rights Language [6], is an XML-based language for stating
the conditions under which resources can be accessed legitimately. The language has
been endorsed by nearly twenty organizations including:

– Nokia, a multi-industry conglomerate focused on mobile communications;
– the DAFNE project (District Architecture for Networked Editions), a research project

funded by the Italian Ministry of Education, University and Research to develop a
prototype of the national infrastructure for electronic publishing in Italy;

– the RoMEO Project (Rights MEtadata for Open archiving), created to investigate
rights management of “self-archived” research in the United Kingdom academic
community.

The complete list of supporters can be found atwww.odrl.net; however, this small
sample illustrates the widespread impact that ODRL has on rights management. The
success of these projects depends on ODRL.

Unfortunately, ODRL does not have formal semantics. The meaning of the lan-
guage’s syntax is described in English and, as a result, agreements written in ODRL
are open to interpretation. For example, ODRL supports the statement ‘the group com-
prised of Alice and Bob is permitted to withdraw money from the bank account BA’.
However, it is not clear from the English definition of groups who may access the ac-
count. One reasonable interpretation is that either Alice or Bob may withdraw money.
Another option is that Alice and Bob together may withdraw the money, although nei-
ther has permission to do so alone. In fact, it even seems somewhat plausible that the
group comprised of Alice and Bob refers to some third individual, perhaps someone
who Alice and Bob both trust. This example shows that the ODRL specification alone
is not sufficient to interpret ODRL agreements correctly (i.e., as intended by the lan-
guage designers).



To address this problem, we give a formal semantics to ODRL. Our particular in-
terest is in understanding whether or not an agreement implies a permission (or a pro-
hibition). We propose a translation from the key components in ODRL to formulas in
a fragment of many-sorted first-order logic with equality. Our semantics is consistent
with the ODRL specification and discussions that we had with one of the language de-
signers. There is not much more that can be done to verify our translation. In particular,
we cannot prove that our semantics is correct, because the language is ambiguous. Also,
we cannot compare our approach to others, because to the best of our knowledge, we
are the first to give formal semantics to ODRL. Therefore, we do not view our approach
as the final say in ODRL semantics; instead it is a first step towards an understanding
of the language’s subtleties and towards a universally recognized, formal foundation.

The rest of this abstract is organized as follows. In the next section, we present a
representative fragment of ODRL. In Section 3, we give a semantics to this fragment by
translating expressions in the language to formulas in first-order logic. For reasons of
space, a detailed discussion of the implications of our semantics is left to the full paper.

2 The ODRL Language

In this section we present a syntax for a representative fragment of ODRL. Because
ODRL is an XML-based language, the syntax is convenient for automatic processing,
but is somewhat verbose for human readers. To make our discussion more concise and
intuitive, we present a modified version of the ODRL syntax. As we point out in Ap-
pendix A, there is an obvious correspondence between our syntax and ODRL’s (when
restricted to the appropriate fragment). We consider only a fragment of the language
for brevity, as well as ease of exposition; we expect that our syntax and semantics can
be readily extended to include the entire language. A summary of the main differences
between our syntax and ODRL’s is given at the end of this section.

The central construct of ODRL is an agreement. An agreement gives the policies
(i.e., rules) under which a principalprino allows another principalprinu to use an as-
seta, which is presumably owned byprino. Typically, prino is called the agreement’s
owner andprinu is called the agreement’s user. For example, suppose that an agreement
saysthe Disney Corp. allows Alice to play ‘Finding Nemo’, if she first pays five dollars.
Then, the owner is the Disney Corp., the user is Alice, the asset is ‘Finding Nemo’, and
the policy isthe user may play the asset, if she pays five dollars. We assume that the
application provides a setAssets of assets and a setSubjects of subjects. A primitive
principal in ODRL is a subject; a principal can also be a group (i.e., set) of principals.
The permissions given to a group are given to each member of the group. More gen-
erally, a group in ODRL does not have an identity beyond its members. Thus, in the
example presented in the introduction, both Alice and Bob may (individually) with-
draw money from the bank account BA, if the group comprised of Alice and Bob may
withdraw money from BA. We formally define the syntax of agreements and principals
as follows, whereps is a policy set (defined later in the section).

Agreements:

agr ::= agreement



agreement
between prino and prinu
about a
with ps

prin ::= principal
s individual
{prin1, . . . , prinm} group

a ∈ Assets asset
s ∈ Subjects subject

An agreement refers to a policy set. A policy set is any number of prerequisites and
a policy. Roughly speaking, if all of the prerequisites are met, then the policy holds
and is taken into consideration when answering questions about what is and what is
not permitted. In addition, a policy set can be tagged as beingexclusive. An exclusive
policy set indicates that only the agreement’s user (either the subject or the members
of the set) may perform the actions regulated by the policy set. Every other principal
is forbidden from doing the regulated actions. Policy sets are closed under conjunction,
disjunction, and exclusive-or. Conjunctions allow for more than one policy set to appear
in an agreement. Disjunctions are useful, because they allow a degree of flexibility when
honoring agreements. For example, suppose that Alice has the right to print a file on
either printer-1, printer-2, or printer-3. Under the corresponding agreement, Alice may
always print the file, but the choice of printers is not hers; it might change with each
printing based on the load of the printers or some other criteria. As for the exclusive-or,
this construct is well-suited to agreements such asAlice may view the low resolution
version of the movie five times or the high resolution twice. We define the syntax of a
policy set as follows, wherep is a policy (defined later in the section).

Policy Sets:

ps ::= policy set
prq1 . . . prqm −→ p primitive policy set(m ≥ 0)
prq1 . . . prqm 7−→ p primitive exclusive policy set(m ≥ 0)
and[ps1, . . . , psm] conjunction(m ≥ 1)
or[ps1, . . . , psm] disjunction(m ≥ 1)
xor[ps1, . . . , psm] exclusive disjunction(m ≥ 1)

We abbreviate a policy set of the form−→ p (i.e., one with no prerequisites) asp.
A policy is a set of prerequisites and an action. If all of the prerequisites are met,

then the policy says that the agreement’s user may perform the action to the agreement’s
asset. As with policy sets, a policy can be a conjunction, disjunction, or exclusive-
or of policies. We tag policies with an identifier (taken from a setPolIds). It will be
necessary, when dealing with counts and payments, to identify the policy to which
the count or payment apply. For example, if Bob gives the bank $500, we need to
know if the money should go towards the policy concerning the car payment or the
one concerning the mortgage. We will sometimes omit the identifier if it is not relevant
to our examples. Also, we abbreviate=⇒ act , which is a policy that does not have



prerequisites, asact . Finally, for the purposes of this discussion, we restrict the set of
actions to play, print, and display. The syntax for policies and actions are given below.

Policies:

p ::= policy
prq1 . . . prqm =⇒id act primitive policy (m ≥ 0)
and[p1, . . . , pm] conjunction(m ≥ 1)
or[p1, . . . , pm] disjunction(m ≥ 1)
xor[p1, . . . , pm] exclusive disjunction(m ≥ 1)

act ::= action
play play asset
print print asset
display display asset

id ∈ PolIds policy identifier

A prerequisite is either a constraint, a requirement, or a condition. Constraints are
facts that are outside the user’s influence. For example, there is nothing that Alice can do
to meet the constraintthe user is Bob. Requirements are facts that are typically within
the user’s power to meet. For example, Alice can meet the requirementthe user has paid
five dollarsby making the payment. Although the distinction between constraints and
requirements is not relevant when answering questions about what is and is not permit-
ted, we remark that it is useful for other types of queries. In particular, it provides key
information when determining what a principal can do to obtain a permission. Finally,
conditions are constraints that mustnot hold. The statementthe user is not Bobis an
example of a condition. We now consider each of these prerequisites in turn.

Our fragment of ODRL includes two primitive forms of constraints, users and
counts. A user constraint is a principalprin; the constraint is met by every subject
in prinu (the agreement’s user) that is also a subject inprin. A count constraint is pa-
rameterized by an integer that indicates the number of times a policy or policy set is
used to justify an action performed by some principalprinc. If a user constraintprin
appears alongside the count constraint, thenprinc is prin, otherwise, it isprinu (the
agreement’s user).

Example 2.1.Consider an agreement in which the user is{Alice,Bob,Charlie}. The
policy

count[5] =⇒ print

says that if Alice, Bob, and Charlie have used the policy to justify theprint actiona, b,
andc times respectively, then any of them may do so again ifa + b + c ≤ 5. On the
other hand, the policy

Alice count[5] =⇒ print

says that if Alice has used the policy to justify theprint actiona times, she may do so
again ifa ≤ 5. A count constraint that appears in a policy set is interpreted in a similar
way. The policy set

count[5] −→ and[print, display]



says that if Alice, Bob, and Charlie have used the policy to justify theprint actionap,
bp, andcp times respectively, and have used the policy to justify thedisplay actionad,
bd, andcd times respectively, then any of them may display or print again ifap + bp +
cp + ad + bd + cd ≤ 5. On the other hand, the policy set

{Alice,Bob} count[5] −→ and[print, display]

says that if Alice and Bob have used the policy to justify theprint actionap andbp
times respectively, and have used the policy to justify thedisplay actionad andbd times
respectively, then either of them may do so again ifap + bp + ad + bd ≤ 5.

A constraintforEachMember takes a principalprin (usually a group) and a list of con-
straints and indicates that these constraints hold for each principal inprin, taken indi-
vidually.

There are two primitive requirements,prePay andattribution. TheprePay require-
ment takes an amount of money; it is met if the user pays the money before trying to
perform the action. Theattribution requirement takes a subjects; it is met if during the
execution of the action,s is properly acknowledged (e.g., as the writer, producer, etc.).
(The ODRL specification does not explain how a user can make an acknowledgement.)
The set of requirements is closed under theinSequence construct, which says the re-
quirements must be met in a particular order (e.g., acknowledge, then pay), and under
theanySequence construct, which says the requirements can be met in any order.

Finally, conditions are constraints and policies that must not hold. For example, a
condition could specify that the user is not Alice or that the user is not permitted to play
‘Finding Nemo’. Notice that, because of the exclusion tag, the notion of “not permitted”
is ambiguous. The statementAlice is not permitted to play ‘Finding Nemo’could mean
that Alice does not have explicit permission or it could mean that Alice is explicitly
forbidden. Which interpretation is made can effect which permissions are granted and,
thus, the distinction is important. Since the ODRL specification does not address this
issue, we define a policy condition to hold if the permission is not granted. In the next
section, we show that this choice leads to a more intuitive semantics, and also simplifies
our translation. The syntax for prerequisites is given below.

Prerequisites:

prq ::= prerequisite
cons constraint
req requirement
cond condition

cons ::= constraint
prin principal
forEachMember[prin; cons1, . . . , consm] constraint distribution(m ≥ 1)
count[n] number of executions (n ∈ N)

req ::= requirement
prePay[r] prepayment (r ∈ R+)
attribution[s] attribution to subjects
inSequence[req1, . . . , reqm] ordered constraints(m ≥ 1)



anySequence[req1, . . . , reqm] unordered constraints(m ≥ 1)
cond ::= condition

not[ps] suspending policy set
not[cons] suspending constraint

Example 2.2.Consider the following agreement:

agreement
between Richard and {Alice,Bob}
about ebook
with count[10] −→ and[forEachMember[{Alice,Bob}; count[5]] =⇒id1 display,

forEachMember[{Alice,Bob}; count[1]] =⇒id2 print]

Intuitively, the agreement says that Alice and Bob are given the following rights: they
may each display the assetebook up to five times, and they may each print it once.
However, the total number of actions, either displays or prints, done by Alice and Bob
may be at most ten.

Example 2.3.Consider the following agreement:

agreement
between Richard and {Alice,Bob}
about latestJingle
with inSequence[prePay[5.00], attribution[Charlie]] 7−→

(Alice count[10] =⇒id play)

Intuitively, the agreement says that after paying $5 and then acknowledging Charlie,
Alice is permitted to play the assetlatestJingle up to ten times. Moreover, any subject
that is neither Alice nor Bob is forbidden from playinglatestJingle. (Bob’s right is
unregulated.)

As mentioned at the beginning of this section, the syntax presented here is not iden-
tical to the one given in the ODRL document. The key differences are discussed below.

Offers. In addition to agreements, ODRL supports offers, which are essentially
agreements without users. Intuitively, an offer is a contract (governing the use of an
asset) that has yet to be accepted by a user; once accepted, it becomes an agreement.
We can interpret offers in a manner that is similar to our interpretation of agreements.

Permissions versus Policies.The ODRL document uses the termpermissionto
refer to actions, policies, and policy sets, as defined here. We introduce the distinction
to clarify the exposition and to emphasize the two-tier structure of ODRL. Notice that it
is the two layers in the framework that allow a prerequisite to apply to multiple policies.
These two layers already appear in the XML-based syntax of ODRL, although the term
permission is used for both layers.

Contexts.ODRL uses contexts to assign additional information to agreements, pre-
requisites, and other entities. A context might include a unique identifier, a human-
readable name, an expiration date, and so on. We represent the context elements that
are included in our fragment directly in the syntax. Adding full contexts to our syntax
is straightforward, but it does not add any insight. In fact, it obfuscates the main issues.



Prerequisites.Payments and other requirements in ODRL take a number of argu-
ments. For instance, payments can take an amount and a percentage to be collected for
taxes. We restrict every prerequisite to at most one argument for simplicity; it is easy
to extend our approach to include multiple arguments. ODRL also supports nested con-
straints, that is, constraints that apply to other constraints. These can be handled in a
manner similar to that used forforEachMember.

Sequences and containers.In ODRL, sequences (inSequence, anySequence) and
containers (and, or, xor) apply to a number of entities. For simplicity, we associate
containers with policies and policy sets, and associate sequences with requirements.
The general case is a straightforward extension.

Right holders. In ODRL, right holders have a royalty annotation, indicating the
amount of royalty that they receive. This does not reflect an obligation on the part of the
agreement’s user, since payment obligations are captured by requirements. Instead, the
annotations record how the payments are distributed. Since we are primarily interested
in capturing permissions, we do not consider royalty annotations, and as a result, do not
distinguish right holders from other principals.

Revocation.Finally, the ODRL document mentions revocation, however it is not
clearly defined. A revocation invalidates a previously established agreement. Unfortu-
nately, answers to key questions, such as who can revoke an agreement, under what
conditions, and subject to what penalties, are not discussed in the ODRL document. As
it stands, a revocation simply indicates that an agreement has been nullified, and thus
may be ignored.

3 A Semantics in First-Order Logic

In this section, we formalize the intuitive description of ODRL given in Section 2.
Specifically, we present a translation from agreements to formulas in many-sorted first-
order logic with equality. For the rest of this discussion, we assume knowledge of
many-sorted first-order logic at the level of Enderton [3]. More specifically, we assume
familiarity with the syntax of first-order logic, including constants, variables, predicate
symbols, function symbols, and quantification, with the semantics of first-order logic,
including relational models and valuations, and with the notion of satisfiability and va-
lidity of first-order formulas.

We assume sortsActions, Subjects, Reals, Assets, PolIds, andSetPolIds (for
sets of policy identifiers). Since we need to reason about time, we assume that time is
represented by real numbers, and occasionally refer to the sortReals as the sortTimes.

The vocabulary includes:

– A predicatePermitted onSubjects×Actions×Assets. The literalPermitted(s, act , a)
meanss is permitted to perform actionact on asseta.

– A predicatePaid on Reals × SetPolIds × Times. The literalPaid(r, P, t) means
an amountr was paid at timet towards the policy setP .

– A predicateAttributed on Subjects × Times. The literalAttributed (s, t) means
s was acknowledged at timet.

– Constants of sortPolIds, SetPolIds, Subjects, andAssets; we also assume con-
stantsplay, display, andprint of sortActions.



– A function count : Subjects × PolIds → Reals. Intuitively, count(s, id) is the
number of times the policy with identifierid is used by subjects to justify an
action.

– Standard functions for addition and comparison of real numbers.

We writet <∞ as an abbreviation fortrue (for all t of sortReals).
Before presenting the translation, we define some useful auxiliary functions. The

function principals takes a principal and returns the set of principals that are mem-
bers of a group, or a singleton set if the principal is an individual subject. The function
subjects takes a prerequisite; if the prerequisite is a user constraintprin, thensubjects
returns the set of subjects inprin; otherwise, it returns the full setSubjects. (Intuitively,
subjects(prq) describes the constraint on subjects thatprq imposes.) Finally, the func-
tion ids takes a policyp, and returns the set of policy identifiers that are mentioned in
p.

Extracting Principals, Subjects, and Policy Identifiers:

principals(s) , {s}
principals({prin1, . . . , prink}) , {prin1, . . . , prink}

subjects(prq) ,


{s} if prq = s⋃k
i=1 subjects(prini) if prq = {prin1, . . . , prink}

Subjects otherwise

ids(pr1 . . . prm =⇒id act) , {id}
ids(and[p1, . . . , pm]) ,

⋃m
i=1 ids(pi)

ids(or[p1, . . . , pm]) ,
⋃m
i=1 ids(pi)

ids(xor[p1, . . . , pm]) ,
⋃m
i=1 ids(pi)

We present the translation inductively on the structure of the agreement. Intuitively,
an agreement is translated into a formula of the form∀x(P (x)), whereP (x) is a
Boolean combination of formulas of the form prereqs(x) ⇒ Permitted(x, act , a) and
x is a variable of sortSubjects that is free inP (x).

Translation of Agreementagr to Formula [[agr ]]:

[[agreement between prino and prinu about a with ps]] , ∀x([[ps]]prinu,a
x )

Note thatprino is not involved in the translation. This is in keeping with the ODRL
specification, which assumes each agreement was issued legitimately, and thus the par-
ticular identity of the agreement’s owner is irrelevant.

The translation of a policy setps is a formula[[ps]]prinu,a
x , whereprinu is the agree-

ment’s user,a is the asset, andx is a variable of sortSubjects. A (nonexclusive) prim-
itive policy setprq1 . . . prqk −→ p translates to an implication: if the prerequisites
hold, then the policy holds. A primitive policy set that is exclusive is translated as a
primitive policy set in conjunction with a clause that captures the prohibition (i.e., ev-
ery subject that is not mentioned in the agreement’s user is forbidden from performing



the actions). Boolean combinations of policy sets translate to Boolean combinations of
the corresponding formulas. (In the translation, we follow the convention that

∧m
i=1 ϕi

is true whenm = 0.)

Translation of Policy Setps to Formula [[ps]]prinu,a
x :

[[prq1 . . . prqm −→ p]]prinu,a
x , [[prinu]]x ⇒

(∧m
i=1[[prq ]]ids(p),S

x

)
⇒ [[p]]+,prinu,a

x

whereS = subjects(prinu) ∩ (
⋂m
i=1 subjects(prq i))

[[prq1 . . . prqm 7−→ p]]prinu,a
x ,

(
[[prinu]]x ⇒

(∧m
i=1[[prq ]]ids(p),S

x

)
⇒ [[p]]+,prinu,a

x

)
∧ (¬[[prinu]]x ⇒ [[p]]−,ax )

whereS = subjects(prinu) ∩ (
⋂m
i=1 subjects(prq i))

[[and[ps1, . . . , psm]]]prinu,a
x ,

∧m
i=1[[psi]]

prinu,a
x

[[or[ps1, . . . , psm]]]prinu,a
x ,

∨m
i=1[[psi]]

prinu,a
x

[[xor[ps1, . . . , psm]]]prinu,a
x ,

∨m
i=1

(
[[psi]]

prinu,a
x ∧

(∧m
j=1,j 6=i ¬[[psj ]]

prinu,a
x

))
The translation of policy sets refers to the following translation of principals. The

formula[[prin]]x is true if and only if the subject denoted by the variablex is one of the
subjects in principalprin.

Translation of Principal prin to Formula [[prin]]x:

[[s]]x , x = s

[[{prin1, . . . , prink}]] , ([[prin1]]x ∨ . . . ∨ [[prink]]x)

The translation of policy sets also refers to the translation of policies. In fact, there
are two translations for policies: a positive translation, where the permissions described
by a policy are granted, and a negative translation, where they are forbidden. The pos-
itive translation of a policyp is a formula[[p]]+,prinu,a

x , whereprinu is the user of the
agreement,a is the asset, andx is the variable that ranges over the subjects. A policy of
the formprq1 . . . prqm =⇒ act translates to an implication: if the prerequisites hold,
then the subject represented byx is permitted to perform actionact on asseta. As with
policy sets, Boolean combinations of policies translate to Boolean combinations of the
corresponding formulas.

Translation of Positive Policyp to Formula [[p]]+,prinu,a
x :

[[prq1 . . . prqm =⇒id act ]]+,prinu,a
x ,

(∧m
i=1[[prq i]]

{id},S
x

)
⇒ Permitted(x, [[act ]], a)

whereS = subjects(prinu) ∩ (
⋂m
i=1 subjects(prq i))

[[and[p1, . . . , pm]]]+,prinu,a
x ,

∧m
i=1[[pi]]

+,prinu,a
x

[[or[p1, . . . , pm]]]+,prinu,a
x ,

∨m
i=1[[pi]]

+,prinu,a
x

[[xor[p1, . . . , pm]]]+,prinu,a
x ,

∨m
i=1

(
[[pi]]

+,prinu,a
x ∧

(∧m
j=1,j 6=i ¬[[pj ]]

+,prinu,a
x

))
The negative translation of a policyp is a formula[[p]]−,ax , wherea is the asset,

andx is the variable that ranges over the subjects. Ifp is prq1 . . . prqm =⇒ act ,



then the translation simply forbids the actionact . Roughly speaking, ifp is a Boolean
combination of policies, then the translation forbids all of the mentioned actions.

Translation of Negative Policyp to Formula [[p]]−,ax :

[[prq1 . . . prqm =⇒id act ]]−,ax , ¬Permitted(x, [[act ]], a)
[[and[p1, . . . , pm]]]−,ax ,

∧m
i=1[[pi]]−,ax

[[or[p1, . . . , pm]]]−,ax ,
∧m
i=1[[pi]]−,ax

[[xor[p1, . . . , pm]]]−,ax ,
∧m
i=1[[pi]]−,ax

The positive and negative translations of policies use the following translation of
actions, which simply returns the constant corresponding to the action.

Translation of Action act to Term [[act ]]:

[[play]] , play
[[display]] , display
[[print]] , print

The translations of policy sets and policies refer to a translation of prerequisites.
The translation of a prerequisiteprq is a formula[[prq ]]I,Sx , whereI is a set of policy
identifiers,S is a set of subjects, andx is a variable of sortSubjects. Intuitively, I in-
cludes (the identifier of) the policies that are implied by the prerequisites andS includes
the subjects to which the prerequisites apply (the agreement’s user, unless overridden
by a user constraint). A user constraintprin translates to a formula that is true only if
the current subjectx is a member ofprin. The translation of the other constraints is
more complicated. AforEachMember constraint translates to a formula that is true if,
intuitively, each constraint inforEachMember is met by each principal of the group.
A count constraint translates to a formula that is true if the sum of the count of each
subject inS and each policy identifier inI is no more than the specified integer.

Requirements have a significantly different translation than other prerequisites, be-
cause of their dependence on time. (As an example of this dependence, recall that
inSequence[prePay[r], attribution[s]] holds if r was paidbeforeattribution tos was
given.) To handle time correctly, we translate[[req ]]I,Sx to ∃t([[req ]]It,∞), wheret is a
variable of sortTimes, and[[req ]]It,t′ is an auxiliary translation that in some sense re-
stricts the occurrences of events to the interval of time betweent and t′. If req is a
primitive requirement (i.e., a payment or attribution), then we translate[[req ]]It,t′ to a
formula that is true if the relevant payment or attribution occurred at timet. (For primi-
tive requirements, the value oft′ is irrelevant.) AninSequence requirement is satisfied if
there exists appropriate successive times betweent andt′ at which each subrequirement
is satisfied. Similarly, ananySequence requirement is satisfied if the subrequirements
are satisfied in an arbitrary order between timest andt′.

Conditions are translated by negating the translation of either the policy set or the
constraint specified as an argument. A negated policy set can refer to a different subject
than the enclosing policy (or policy set). This ensures that we can interpret statements
such asIf Alice is not permitted to play ‘Finding Nemo’, then Bob is permitted to bor-
row ‘Finding Nemo’. Notice that Bob may borrow the movie if Alice is not explicitly



permitted to play it; this is a consequence of our translation. The translation for require-
ments is given below, where we abbreviateϕ(a1)+ . . .+ϕ(ak) as

∑
a∈{a1,... ,ak} ϕ(a).

Translation of Prerequisite prq to Formula [[prq ]]I,Sx :

[[prin]]I,Sx , [[prin]]x
[[forEachMember[prin; cons1, . . . , consm]]]I,Sx ,

∧
(prin′,i)∈Pm [[consi]]

I,subjects(prin′)
x

wherePm = principals(prin)× {1, . . . ,m}
[[count[n]]]I,Sx ,

(∑
(id,s)∈I×S count(s, id)

)
≤ n

[[req ]]I,Sx , ∃t([[req ]]It,∞)
where[[prePay[r]]]It,t′ , Paid(r, I, t)

[[attribution[s]]]It,t′ , Attributed (s, t)
[[inSequence[req1, . . . , reqk]]]It1,tk+1

,

∃t2 . . .∃tk(t1 < . . . < tk+1 ∧
∧k
i=1[[req i]]Iti,ti+1

)
[[anySequence[req1, . . . , reqk]]]It,t′ ,
∃t1 . . .∃tk(

∧k
i=1(ti ≥ t ∧ ti < t′ ∧ [[req i]]Iti,t′))

[[not[ps]]]I,Sx , ¬∀y([[ps]]y)
[[not[cons]]]I,Sx , ¬[[cons]]I,Sx

Notice that, according to our translation, the conditionnot[ps] could be met, even
if ps does not appear as such in an agreement. This is because we might be able to infer
ps. For example, consider the agreement that includes the the user{Alice,Bob}, the
asset ‘Finding Nemo’, and the policy set

and[not[Alice] −→ play, not[Bob] −→ play].

Roughly speaking, the first policy says that Bob may play the movie and the second says
that Alice may play it. From this agreement we can infer that Alice or Bob may play the
movie. Therefore, this agreement implies a second one that includes the same user and
asset, but its policy set is simplyplay; it follows that by creating the first agreement, the
conditionnot[play] is violated.

Another subtlety arises in the interpretation of sequence requirements, particularly
nestedsequence requirements. To illustrate the issue, consider the nested requirement
anySequence[inSequence[req1, req2], req3]. What are the allowed sequences of require-
mentsreq1, req2, andreq3? One possibility, the one we adopt, is thatinSequence[req1, req2]
is met ifreq1 happens beforereq2. Thus, the following sequences are allowed:req1 req2 req3,
req1 req3 req2, andreq3 req1 req2. Alternatively, one could say thatinSequence[req1, req2]
is met ifreq1 andreq2 happen consecutively. Under this interpretation, only the follow-
ing sequences are allowed:req1 req2 req3 andreq3 req1 req2. We can capture this last



interpretation by taking:

[[anySequence[req1, . . . , reqk]]]It1,tk+1
,

∃t2 . . .∃tk(t1 < . . . < tk+1 ∧
∨
π∈Sk

(
k∧
i=1

[[reqπ(i)]]
I
ti,ti+1

)),

whereSk is the set of all permutations of sets ofk elements.
The translations presented above are admittedly complex. However, the translated

agreements correspond rather closely to the original syntax. To illustrate this, we trans-
late Examples 2.2 and 2.3 from Section 2.

Example 3.1.The agreement in Example 2.2 translates to the formula:

∀x((x = Alice ∨ x = Bob)⇒
count(Alice, id1) + count(Alice, id2) + count(Bob, id1) + count(Bob, id2) ≤ 10⇒

(count(Alice, id1) ≤ 5 ∧ count(Bob, id1) ≤ 5⇒ Permitted(x, display , ebook))∧
(count(Alice, id2) ≤ 1 ∧ count(Bob, id2) ≤ 1⇒ Permitted(x, print , ebook))).

Example 3.2.The agreement in Example 2.3 translates to the formula:

∀x((x = Alice ∨ x = Bob)⇒
∃t1∃t2(t1 < t2 ∧ Paid(5.00, t1) ∧ Attributed (Charlie, t2))⇒

(x = Alice ∧ count(Alice, id) ≤ 10⇒ Permitted(x, play , latestJingle))∧
(¬(x = Alice ∨ x = Bob)⇒ ¬Permitted(x, play , latestJingle))).

We are now in a position to formally define when an agreement implies a permis-
sion. In order to do this, we assume that there is an environment that includes all of
the relevant facts about the world, such as when payments are made and the number
of times a particular policy was used to justify a subject’s action. More precisely, we
assume a formulaE that is conjunction of ground literals. Determining whether a sub-
jects is permitted to perform actionact to asseta under agreementagr in environment
E amounts to asking if the formulaE ∧ [[agr ]] ⇒ Permitted(s, act , a) is valid. Simi-
larly, a subjects is forbidden to perform actionact to asseta under agreementagr in
environmentE if the formulaE ∧ [[agr ]] ⇒ ¬Permitted(s, act , a) is valid. If neither
formula is valid, then subjects is neither permitted nor forbidden to perform action
act to asseta under agreementagr in environmentE. We can easily extend the defini-
tion to take several agreements into account. A subjects is permitted to perform action
act to asseta under the agreementsagr1, . . . , agrn in environmentE if the formula
E ∧ [[agr1]] ∧ . . . ∧ [[agrn]] ⇒ Permitted(s, act , a) is valid. Prohibitions are defined
similarly.

Thus, the problem of deciding whether or not a particular subject is permitted or not
to perform a certain action to a given asset under a set of agreements in an environment
is reduced to the problem of deciding whether or not a formula of first-order logic is
valid. In fact, we can be a little more precise, by noting that for all agreementsagr , the
formulaE ∧ [[agr ]] ⇒ Permitted(s, act , a) is an existential first-order formula, where
an existentialfirst-order formula is a closed first-order formula that can be written in
the form∃x1 . . . ∃xk(ϕ) andϕ is quantifier-free. Determining the validity of an exis-
tential formula is, in general, an undecidable problem. It may be possible to exploit the
particular structure of agreements to prove that our queries can be answered.



4 Conclusion

Languages for writing agreements typically fall into one of three categories: native lan-
guages, such as English, that cannot be interpreted by machines, XML-based languages
[1, 6] that enjoy popular support by application writers, and formal logics [12, 9, 5] that
are endorsed by computer scientists, because they have formal semantics (no ambiguity)
and are tractable (queries can be answered typically in a low-order polynomial time).
ODRL belongs to the second category. By providing formal semantics to a fragment of
ODRL, we get the benefit of using a formal approach, namely no ambiguity, and we
can begin to search for a tractable fragment. In this way, we get the best of both worlds.

The translation also allows us to compare ODRL with the formal approaches. For
example, many of the languages in the Computer Science literature are based on a
fragment of first-order logic called Datalog with Negation [10, 8, 2, 7]; others are based
on Datalog with Constraints [11]. It is easy to show that ODRL’s use of negation and
functions cannot be duplicated in either of these fragments. Of course, the cost of the
additional expressiveness on the language’s tractability has yet to be determined; we
hope to explore this issue in future work.
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A XML-Based ODRL Syntax

We stated in Section 2 that it is straightforward to translate from the XML-based syntax
of ODRL to our syntax, at least for the fragment of ODRL that we support. To illustrate
this translation, and to give an example of an agreement in XML, consider the following
agreement, taken from [4]. (For readability, we have omitted namespace information.)

<agreement> <context> <uid> license-12345 </uid>
<pLocation> Sydney, Australia </pLocation>
<remark> Transacted by Example.Com </remark> </context>

<asset> <context> <uid> rossi-12345 </uid> </context> </asset>
<permission>
<display>
<constraint>
<cpu> <context> <uid> Intel-12345 </uid> </context> </cpu>

</constraint>
</display>
<print>
<constraint> <count> 2 </count> </constraint>

</print>
<requirement>
<prepay>
<payment> <amount currency="AUD"> 20.00</amount>

<taxpercent code="GST"> 10.00</taxpercent> </payment>
</prepay>

</requirement>
</permission>
<party> <context> <uid> msmith </uid>

<name> Mary Smith </name> </context>
</party>

</agreement>



We see the use of contexts to hold information, as we noted in Section 2. We also see that
theprepay requirement applies to both thedisplay and theprint permissions, since
it occurs on the same level as the permissions. The agreement also does not specify a
right holder. This information would presumably be specified by some external means.
For the purposes of translation, we assume a right holderr. The above agreement would
be expressed as follows in our syntax, wheremsmith is the subject name of Mary
Smith.

agreement
between r and msmith
about rossi12345
with prePay[20.00] −→ and[cpu[intel12345 ] =⇒ display,

count[2] =⇒ print]
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