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Abstract

We propose coactive learning as a model and feed-
back mechanism for training large language mod-
els (LLMs). The key insight is that users provide
implicit feedback whenever they edit the text y
proposed by an LLM. While the edited text ȳ is
typically not a gold-standard example for super-
vised training, coactive learning merely requires
that the edited text ȳ is an improvement over the
proposed text y. Note that such weak implicit
preference feedback ȳ ≻ y is available in many
application settings on a per-user basis, thus en-
abling the personalization of LLMs. In this paper,
we develop the theoretical basis for coactive train-
ing of non-linear models, and we derive CoRLL
as the first coactive learning algorithm for LLMs.
Empirical results indicate that CoRLL is effective
even for weak and noisy coactive preference feed-
back, making it a promising algorithm for training
and personalization of LLMs from feedback that
is naturally collected in many use cases.

1. Introduction
Large language models (LLMs) are increasingly being used
as an interactive tool to assist humans in writing more effec-
tively. These models can quickly generate text that the hu-
man user can either accept or modify if desired, resulting in
significant improvements in the efficiency and effectiveness
of writing. For example, email editors are already beginning
to automatically generate text that users can edit, and there
are many applications where LLMs can write the first draft
(e.g., responses to customer complaints, insurance adjuster
reports). However, to produce writing that aligns with user
preferences and expertise, such writing assistants will re-
quire substantial personalization and contextual adaptation.
This personalization will ensure the writing style suits the
user and the system improves its task-specific knowledge.
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Figure 1. In coactive learning the policy generates a response y
given prompt x. The user’s actions then provide a (possibly noisy)
improved response ȳ, and the implied preference ȳ ≻ y is used to
improve the policy.

Motivated by this use-case of Human-AI writing collab-
oration, we propose coactive learning (Shivaswamy &
Joachims, 2012) as a new online-learning model for LLM
training through which users can instruct the system. Fig-
ure 1 illustrates the coactive learning process. For a given
context x (e.g., customer complaint), the LLM presents the
user (e.g., customer representative) with its current best re-
sponse y (e.g., response to customer complaint), and the
user either accepts y as is, or performs edits to improve
it to ȳ. It is clear that ȳ provides an interesting feedback
signal, but in many applications, it would be unjustified to
assume that ȳ is a gold-standard response as required by
standard supervised learning algorithms. A key strength
of coactive learning is its ability to learn even if ȳ is just
an incremental improvement over y, which it interprets as
pairwise preference feedback ȳ ≻ y.

In this paper, we derive CoRLL as the first coactive learning
algorithm for LLM training, and we provide a theoretical
justification that goes beyond the known results for linear
models (Shivaswamy & Joachims, 2012). CoRLL builds
on reinforcement learning from human feedback (RLHF)
which is commonly used to align LLMs with human prefer-
ences (Stiennon et al., 2022; Ouyang et al., 2022). However,
conventional RLHF can be viewed as dueling bandit feed-
back (Yue et al., 2009), where both y and ȳ are generated
from the LLM, and the user has to actively provides a pair-
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wise preference label between the two (Ouyang et al., 2022;
Ziegler et al., 2019). In coactive learning, the LLM provides
a response y and the user provides an improved response ȳ,
implying the preference ȳ ≻ y. This key difference makes
coactive learning with CoRLL an attractive alternative to
conventional RLHF, since users provide such preference
feedback as an implicit byproduct of their system interac-
tions without additional labeling effort.

We conducted experiments on various RLHF benchmarks
to compare CoRLL against conventional RLHF techniques.
These tasks include IMDB Positive Sentiment (Maas et al.,
2011), TL;DR summarization (Völske et al., 2017), and
Helpful and Harmless Assistant (HHA) (Bai et al., 2022a).
To ensure that coactive learning works across model sizes
and tasks, we trained a 124M parameter model for IMDB,
a 7B model for TL;DR, and a 13B model for HHA. We
found that coactive learning with CoRLL learns faster than
conventional RLHF (i.e., dueling) across all tasks, including
with noisy or weak feedback.

2. Related Work
Fine-tuning LLMs from Human Preferences. Training
language models (LLMs) to optimize human preferences
has led to significant breakthroughs in several LLMs (Ope-
nAI, 2023; Touvron et al., 2023a; Team et al., 2023). The
most popular method for fine-tuning models with human
preferences is reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Ziegler et al., 2019). Although
RLHF is a very effective paradigm for fine-tuning LLMs,
training models with RL can be difficult due to reinforce-
ment learning being sensitive to hyperparameter tuning and
reward hacking issues (Skalse et al., 2022; Ng et al., 1999).
Several ideas have been proposed to address the limitations
of generic RL algorithms when applied to preference feed-
back tasks (Chang et al., 2023; Wu et al., 2023a; Chang et al.,
2024; Gao et al., 2024; Wu et al., 2023b; Baheti et al., 2023).
There also have been ideas proposed that optimize human
feedback without RL (Zhao et al., 2023; Yuan et al., 2023;
Liu et al., 2023). Direct preference optimization (Rafailov
et al., 2023) is a popular approach, and many online variants
and modifications have been proposed to improve its per-
formance (Liu et al., 2024; Xiong et al., 2024; Pang et al.,
2024). Unlike these ideas, which focus primarily on how to
optimize policies based on preference feedback, we focus
on the feedback strategy itself. Moreover, while it has been
demonstrated that LLMs can improve their generation by
leveraging language feedback (Scheurer et al., 2023; Chen
et al., 2023; Campos & Shern, 2022), these works focus on
incorporating natural language instructive feedback (such as
”this is wrong because...”), rather than implicitly collected
improvements.

Online Learning from Preference Feedback. Comparison

feedback is often used to provide human feedback in set-
tings with complex objectives where deciding which of two
options is easy while providing real-number reward values
is hard, such as in assigning relevance scores to documents,
or specifying behaviors in simulated robotics (Christiano
et al., 2023). The most common feedback strategy is dueling
bandits (Yue et al., 2009), where the algorithm presents two
arms and the user provides a preference between the two.
Dueling bandits algorithms have be extended to continuous,
contextual and non-linear problems (e.g., Yue & Joachims,
2009; Ailon et al., 2014; Saha et al., 2021). In contrast to
dueling bandits, coactive learning is trained by interpreting
the user responses as examples of improvements to the ac-
tion taken by the system (Shivaswamy & Joachims, 2015),
and has been found effective in applications ranging from
robotics to search engines (e.g., Jain et al., 2013; Raman
et al., 2013). A key theoretical advantage is that coactive
learning harvests guided exploration from the user, while
dueling bandits need to explore themselves. This provides
coactive learning with substantially better regret rates than
dueling bandits (Shivaswamy & Joachims, 2015), matching
the regret rates of learning algorithms that require the user
provided gold-standard labels y∗.

3. Coactive Learning
Coactive learning is a model of interaction between a learner
and a human user where both parties work towards the goal
of producing a policy that maximizes the user’s reward func-
tion. While prior work has developed algorithms for coac-
tive learning for linear models (Shivaswamy & Joachims,
2015), this paper develops a coactive learning approach for
training LLMs. In the context of LLMs, coactive learning
arises as a natural form of interaction in settings where the
LLM policy drafts a piece of text yt given a prompt xt, and
the user edits yt to create an improved text ȳt. In making
these edits, we assume that the user is (on average) improv-
ing the text with respect to some reward function R∗ known
only to the user. However, the user does not articulate cardi-
nal rewards R∗(xt, yt), and the only information we receive
from the user is the improved response ȳt:

R∗(xt, ȳt) > R∗(xt, yt).

Importantly, the improved response ȳt does not need to be
the optimal “gold-standard” response y∗,

y∗t = argmax
y∈T

R∗(xt, y).

This models the process that users may fix some errors in the
text yt provided by the LLM, but that the users are unlikely
to completely rewrite the text to produce the optimal y∗.

Over a sequence of time steps t from 1 to T , the a coac-
tive learning algorithm aims to learn a policy that selects
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better and better actions yt based on the user feedback it
has received. In particular, at each timestep t the algorithm
can field an updated policy πt to select the action yt. The
goal of coactive learning is to produce a sequence of policy
updates π1, ..., πT that has low regret of the following form.

Regret(T ) =
1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) (1)

This regret compares the reward of the action yt chosen by
policy πt against the reward of the optimal action y∗t at every
timestep t. Note that this is a strong form of regret, where
we compare against the action y∗t with optimal reward even
though our policy class may not contain a policy that returns
this action, and we never observe any cardinal feedback on
the value of R∗(x, y). Nevertheless, we will see that we can
bound this regret.

While coactive learning generates a sequence of preference
examples (xt, ȳt ≻ yt), note that the process of generating
these preferences is different from typical RLHF training.
In particular, in typical RLHF training both items to be com-
pared are fixed or sampled online from the current policy,
which results in a Dueling Bandits setting (Yue et al., 2009;
Yue & Joachims, 2009). In coactive learning only yt is
chosen by the policy and ȳt is supplied by the user. This
implicitly allows the user to guide exploration, unlike in the
Dueling Bandits setting where exploration is random. We
will see in the following that the preferences produced by
coactive learning can be far more informative than prefer-
ences produced by dueling bandits. The first step is to define
a measure of feedback quality in coactive learning.

3.1. Quantifying Feedback Quality

We can quantify feedback quality by how much improve-
ment ȳ provides over y in terms of R∗, relative to the maxi-
mum y∗. In the simplest case, we say that human feedback
is strictly α-informative when the following inequality is
satisfied (Shivaswamy & Joachims, 2015):

R∗(xt, ȳt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t )−R∗(xt, yt))

In the above inequality, α ∈ (0, 1] is an unknown parameter,
but we will see that knowledge of α is not needed to run
the learning algorithm. Feedback is such that the reward of
yt is higher than that of yt by a fraction α of the maximum
possible reward gain R (xt, y

∗
t )− R (xt, yt). The term on

the right hand side in the above inequality ensures that hu-
man feedback yt is not only better than yt, but also better
by a margin α (R∗(xt, y

∗
t )−R∗(xt, yt)). Shivaswamy &

Joachims (2015) provide regret bounds for the weaker con-
dition of α-informative feedback with slack variables ξt.

R∗(xt, ȳt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t )−R∗(xt, yt))−ξt

This definition allows us to model feedback that is noisy,
where the ξt capture that some of the preferences may not
be α-informative or even point in the wrong direction.

3.2. Regret Bound for Coactive Learning

With this definition of noisy α-informative feedback, we
can now theoretically characterize how effectively coactive
learning can learn a good policy. The resulting bound on the
coactive learning regret from Equation 1 informs the design
of the CoRLL algorithm we develop in Section 4.

The coactive regret bound we derive is a reduc-
tion to a pairwise classification learner Apair(D) that
ingests a number of training preferences Dt =
((x1, y1, y

′
1, p1), ..., (xt, yt, y

′
t, pt) and outputs a scoring

function ht : X × Y −→ ℜ. xt is a context and yt and
y′t are two responses. pt ∈ {+1,−1} is the feedback of
whether or not y′t is preferred over yt. The loss used to
evaluate this learner is

∆(x, y, y′|h)=

{
R∗(x, y′)−R∗(x, y), if h(x, y) ≥ h(x, y′)

R∗(x, y)−R∗(x, y′), otherwise
(2)

Note that this loss is low when y and y′ have similar re-
ward, even if classifier h cannot accurately rank them. If
we have an algorithm Apair that for a given sequence of
(xt, yt, y

′
t, pt) produces a sequence of ht that has sublinear

cumulative loss

∆̄(T |Apair) =

T∑
t=1

∆(xt, yt, y
′
t|ht), (3)

then this translates into the following bound on the regret of
coactive learning.

Theorem 3.1 (Coactive Learning Regret Bound). The coac-
tive learning algorithm that always plays the policy πt equal
to

yt = argmax
y

ht(xt, y)

and receives noisy α-informative feedback ȳt, has regret
bounded by

1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) ≤

1

αT

T∑
t=1

ξt+
∆̄(T |Apair)

αT
,

if h1, ..., hT is produced by a pairwise preference learner
Apair with cumulative loss ∆̄(T |Apair) on the sequence of
pairwise preferences (x1, ȳ1, y1, 1), ..., (xT , yT , ȳT , 1).
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Proof. We bound the coactive learning regret as follows:

1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) (4)

≤ 1

αT

T∑
t=1

(R∗(xt, ȳt)−R∗(xt, yt)) +
1

αT

T∑
t=1

ξt (5)

=
1

αT

T∑
t=1

∆(xt, yt, ȳt|ht) +
1

αT

T∑
t=1

ξt (6)

=
1

αT
∆̄(T |Apair) +

1

αT

T∑
t=1

ξt (7)

The first inequality holds due to the definition of noisy
α-informative feedback. The next equality holds since
ht(xt, yt) ≥ ht(xt, ȳt), because yt is chosen to maximize
ht. The final equality corresponds to the definition of
∆̄(T |Apair).

This theorem generalizes the results of Shivaswamy &
Joachims (2015) to general pairwise preference learners.
We recover the results of Shivaswamy & Joachims (2015)
for linear learners by recognizing that ∆̄(T |Apair) ≤
2R||w∗||

√
T for a linear perceptron learner Apair, where

R∗(x, y) = w∗ · ϕ(x, y) is the true reward function. This
bound for linear learners illustrates that coactive learning
can be much faster than dueling bandit learning. Note that
the coactive regret bound does not depend on the number
of actions or the number of parameters, while it is easy to
construct examples where linear dueling bandits need exces-
sive amounts of exploration in settings where both are large
– as is the case in LLMs. While we cannot expect a similar
closed-form bound for complex deep-learning models, The-
orem 3.1 tells us what matters in the design of a pairwise
classification learner, and we will use it as the theoretical
basis of our coactive learning algorithm for LLMs.

4. CoRLL Algorithm for Coactive RLHF
The theoretical analysis and discussion from the previous
sections motivates a coactive learning algorithm for general
policy learning that is outlined in Algorithm 1. At each
time step t, the algorithm receives a prompt xt, generates
a response yt = argmaxy ht(xt, y), observes improved
feedback ȳt, then adds the triple (xt, yt, ȳt, 1) to dataset
Dt+1. Finally, the algorithm uses a pairwise preference
learner Apair(Dt+1) to update the scoring function to ht+1.

However, naively implementing this algorithm for LLMs
faces a number of challenges which require careful design
decisions. First, we need to connect the observed prefer-
ences to the underlying reward in a way that is sensible for
LLMs. Second, we need to design a pairwise preference
learner Apair that can be used for updating the LLM. And,

Algorithm 1 Generic Coactive Learning Algorithm

1: Input: initial policy π1, number of rounds T
2: D1 = ∅
3: for t ∈ [1..T ] do
4: Receive prompt xt

5: Generate response yt = argmaxy ht(xt, y)
6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳ1, 1)}
8: Update model ht+1 ← Apair(Dt+1)
9: end for

return πT+1(x) ≡ argmaxy hT+1(x, y)

Algorithm 2 CoRLL Algorithm for Coactive RLHF

1: Input: initial policy π1, reference policy π0,
number of rounds T

2: D1 = ∅
3: for t ∈ [1..T ] do
4: Receive prompt xt

5: Sample y1...yk ∼ πt(·|xt) and generate response
yt = argmaxy∈{y1,...,yk} Rπt(xt, y)

6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳt, 1)}
8: Update policy πt+1 = DPO(Dt, πt, π0)
9: end for

return πT+1

third, computing yt = argmaxy ht(xt, y) is intractable in
LLMs given the exponentially-sized space of y, and we
need to have an efficient approximation. We elaborate on
our design choices in the following, which leads to our pro-
posed Coactive RL algorithm for LLM – named CoRLL –
as specified in Algorithm 2.

4.1. Pairwise Preference Model

Theorem 3.1 shows how the cumulative loss in Equation 2
can be used to bound the coactive learning regret. Note that
this loss contains the unknown cardinal rewards R∗(x, y′)
and R∗(x, y), and that the value of the loss depends on their
difference. We thus need to connect the difference in reward
to the preference label p we observe as part of our training
data (x, y, y′, p). We propose to make this connection via
the Bradley-Terry model (Bradley & Terry, 1952), where
the probability of P (p = 1|x) (i.e., y′ ≻ y) given prompt x
is given by

P (p = 1|x) = σ
(
R∗(x, y′)−R∗(x, y)

)
. (8)

σ is the sigmoid function σ(x) = 1/(1 + exp(−x)). A key
feature of this model is its connection to how we typically
represent probabilistic policies π(y|x) in a contextual bandit
algorithm. In particular, the standard choice of model is to
use a softmax at the output layer to transform the scores
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h(x, y) of the network into probabilities.

P (y|x) = exp(h(x, y))∑
y′ exp(h(x, y′))

(9)

Note that this model is identical to the Bradley-Terry model
in Equation 8, if we restrict the policy to any pair of actions
y and y′. In particular, the relative probability of policy π
selecting y over y′ is equal to the sigmoid of their differences
in h.

P (p = 1|x) = P (y|x)
P (y|x)+P (y′|x)

= σ
(
h(x, y′)− h(x, y)

)
This means that we can train h(x, y) to approximate the
true reward R∗(x, y) up to an additive constant by fitting h
to the pairwise preferences under the Bradley-Terry model.
Note that this is sufficient, since our loss in Equation 2 only
considers differences in reward, which are invariant under
additive translation.

4.2. Pairwise Preference Learner Apair

The model developed in the previous section links the pref-
erence feedback to the underlying score function h(x, y)
and the policy π(y|x) it implies. This connection suggests
an obvious choice for the pairwise preference learner. In the
simplest case, we can use maximum likelihood estimation
to learn h and the corresponding softmax policy π via

L(h;D) =
∑

(xt,yt,y′
t,pt)∈D

log σ
(
pt(h(xt, y

′
t)− h(x, yt))

)
. (10)

If there is no model misspecification and the data is suffi-
cient for h(x, y) to identify R∗(x, y), the resulting policy
π(y|x) over all actions y will reflect the true differences in
reward. But even if the learned h(x, y) is imperfect and
the differences h(x, y′)− h(x, y) are only accurate up to a
precision ϵ,

|h(x, y′)− h(x, y)− (R∗(x, y′)−R∗(x, y))| ≤ ϵ, (11)

the increase in the loss from Equation 2 is bounded by

∆(x, y, y′|h)−∆(x, y, y′|R∗) ≤ ϵ (12)

for this h. This verifies that the pairwise classification ap-
proach is a promising strategy for minimizing the cumu-
lative loss ∆̄(T |Apair), which we in turn identified as a
sufficient condition for effective coactive learning.

However, optimizing the likelihood in Equation 10 directly
is known to lead to language models π that are degenerate
in the fluency and quality of language they produce. To
counteract this degeneration, the standard procedure is to
regularize against a base LLM π0.

max
π

Ex∼D,y∼π [R
∗(x, y)]− βDKL(π||π0)

Direct Preference Optimization (DPO) (Rafailov et al.,
2023), which we will employ in CoRLL, exploits that the
optimal solution of this optimization problem is

π(y|x) = 1

Z(x)
π0(y|x) exp

(
1

β
R∗(x, y)

)
,

where Z(x) is the function such that
∑

y∈T π(y|x) = 1.
Conversely, any policy π is implicitly optimal for the reward

Rπ(x, y) = β log
π(y|x)
π0(y|x)

+ β logZ(x).

Following DPO, we substitute Rπ(x, y) into the maximi-
mum likelihood objective from Equation 10 to arrive at the
objective we optimize in CoRLL.

L(π;D) =
∑

(xt,yt,y′
t,pt)∈D

log σ

(
βpt

(
log

π(xt, y
′
t)

π0(xt, y′t)
−log π(xt, yt)

π0(xt, yt)

))

To optimize this objective in Algorithm 2, we perform one
gradient step on a batch1 of N (typically 64) preferences
using Adam (Kingma & Ba, 2017).

4.3. Approximating the Argmax

LLMs have an response space that is exponential in the
length of generation, making the computation of yt =
argmaxy ht(xt, y) in the generic coactive learning algo-
rithm 1 intractable. To handle this intractability in CoRLL,
we approximate the argmax by sampling k times from the
current policy πt and then picking the action that has the
highest Rπ under the current policy. This can be seen in
line 5 of Algorithm 2.

We argue that this is a reasonable substitute, since we are
training the policy via DPO to select y with large reward.
In particular, if any two actions y and y′ differ in in their
reward Rπ by some δ = Rπ(x, y)− Rπ(x, y

′), the policy
π is exponentially in δ more likely to sample y (relative to
the reference policy π0)

log
π(y|x)/π0(y|x)
π(y′|x)/π0(y′|x)

= δ/β. (13)

This means that even just sampling from π is likely to pro-
duce actions that are close to argmaxy Rπ(x, y).

Furthermore, even if the response yt is not equal to the
argmax, Theorem 3.1 still holds for the sampled yt as long
as ht(xt, yt) > ht(xt, ȳt). And even if that is violated,
it merely means the we do not get informative feedback,

1For efficiency reasons, we sample responses for as many
prompts as our GPUs will allow, add them to a buffer, and then
whenever the buffer has N preferences we do the gradient step for
DPO. This means that the preferences used in a given gradient step
may be collected from slightly different policies.
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since the feedback ȳ ≻ y already aligns with the current
ht(xt, ȳt) > ht(xt, yt) and thus does not uncover inaccura-
cies in ht. We will evaluate this empirically in Section 5.3.

This completely specifies CoRLL as summarized in Algo-
rithm 2, and we now evaluate CoRLL empirically.

5. Experiments
We evaluate the performance of CoRLL on a variety of
text generation tasks. First, we present experiments on the
Reddit TL;DR Summarization task (Völske et al., 2017) and
the Antropic Helpful & Harmless Assistant task (Bai et al.,
2022a). These tasks validate whether CoRLL is effective for
large and complex tasks. We then used the smaller IMDB
Sentiment Generation task for detailed ablation experiments
to explore the behavior of CoRLL in more detail.

5.1. Generating Coactive Feedback

Interactively generating coactive feedback from hu-
mans would be too expensive for our experiments.
We thus simulate coactive feedback, and our simula-
tor is available at https://github.com/atucker/
coactive_learning. In particular, we generate coac-
tive feedback from an LLM that we call the expert policy
π∗ for the respective task. This expert policy π∗ is trained
using DPO with β = 0.1 using the training data provided
for the respective task.

Reward R∗. Training the expert via DPO implies that the
expert policy π∗ optimizes the DPO reward R∗

π(x, y) =
β log π∗(y|x) − β log π0(y|x) + β logZ(x). We thus use
R∗(x, y) = β log π∗(y|x) − β log π0(y|x) as our reward
function, since Z(x) is constant when making comparisons
between different responses to the same prompt x. We use
this R∗(x, y) for both producing coactive feedback ȳt and
the reward-based evaluation of CoRLL. Note, however, that
CoRLL never observes any cardinal values of R∗(x, y).

Producing Coactive Feedback ȳ. We produce coactive
feedback ȳ in response to a given y using two strategies.

For our minimally informative strategy (Coactive-MinInf),
we first sample J candidate responses ȳ1...ȳJ ∼ π∗(y|x)
from the expert. Then we sort these candidate ȳj by their
true reward R∗(x, ȳj) and select ȳ to be the first ȳj with
reward greater than the reward R∗(x, y) of y. In Section 5.3
we also vary the strength of the feedback by selecting ȳj

higher up the list.

For our edit-based strategy (Coactive-Edit), we generate ȳ
by resampling the last n tokens of the policy’s response y
using the expert once.

Feedback Noise. In some cases, none of the yi has a
reward larger than that of y. We typically interpret this
as the user not being able to improve on y, and we thus
make no coactive update to the model. In other experiments,
however, we use this to generate noisy feedback by returning
the yi with the largest R∗(x, yi) as coactive feedback ȳ,
even though we have that R∗(x, ȳ) < R∗(x, y) and the
preference ȳ ≻ y points into the wrong direction.

Generation. We always randomly generate from policies
with temperature T = 1, and only sample from amongst the
most probable 50 tokens at each timestep (Fan et al., 2018).

5.2. 7B+ Parameter Experiments

We first present results on two larger models to evaluate
whether CoRLL is effective at learning from coactive feed-
back. We evaluate minimally informative and edit-based
coactive feedback using a 7B parameter model for the Red-
dit TL;DR Summarization task (Völske et al. (2017), full
details in A.1.1) and using a 13B parameter model for the
Helpfulness split of the Anthropic Helpful and Harmless
task (Bai et al. (2022a), full details in A.1.2).

Experiment Setup. In the 7B+ experiments, wherever
DPO is used we follow Rafailov et al. (2023) and set the
learning rate to 5e-7, use Adam for optimization (Kingma &
Ba, 2017), and warm up the learning rate from 0 to its full
value over the first 10% of the data. All learned policies are
LoRA adapters (Hu et al., 2022) with r = 8, α = 64, and
dropout 0.1 in order to fit the reference, expert, and learned
policies on a single GPU. We sample l = 5 from the expert
policy to generated coactive feedback, and we sample k = 1
from the learned policy πt to approximate the argmax in
CoRLL.

Evaluation Metrics. Our reward evaluations are based
on the implicit reward of R∗ of the expert policy π∗, com-
puted on the learning policy πt’s samples generated during
training. To validate that improve expert reward R∗ indeed
indicates improved performance, we also provide model-
based evaluations on the Reddit TL;DR: task as a secondary
metric. In particular, we ask GPT-4 to evaluate winrate be-
tween thelearned model and the base model. Furthermore,
we ask GPT-4 to evaluate whether, for a given prompt and
expert response, the learned model or base model gener-
ates text more similar to the expert. The exact prompts and
methods are available in Appendix A.2.

Is CoRLL able to learn from coactive feedback? Figure
2, shows the learning curves of CoRLL for the respective
tasks for various forms of minimally-informative and edit-
based coactive feedback. In all cases, CoRLL produces
actions yt with increasing reward R∗(xt, yt) as training pro-
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(a) Summarization task.
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(b) Helpful Assistant task.

Figure 2. Reward on 7B+ experiments using noise-free feedback.
Reward is a rolling average over 100. Number of observations
vary, since the # of filtered lower-reward expert generations vary.
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(b) Helpful Assistant task.

Figure 3. Reward vs. KL Divergence on 7B+ experiments, rolling
average over 100.

gresses, even though the coactive feedback is intentionally
far from gold-standard feedback. Even just editing the last 5
tokens is already sufficient for CoRLL to learn. In practice,
a user is more likely to edit the few most offending tokens
instead of the last ones, and we can thus expect stronger feed-
back. Figure 7 shows the winrate and similarity judgment of
GPT-4 for the minimally informative coactive feedback at
the end of the learning process, which confirms that CoRLL
has successfully learned to produce responses similar to the
expert.

Is CoRLL robust to labeling noise? Figures 4 and 5 show
the performance of CoRLL when the coactive preferences
are noisy as described in Section 5.1. The percentage of
noisy preferences – where the feedback ȳ is actually worse
than y according to R∗ – is plotted in Figures 4b and 5b.
As expected, noise rises as it gets harder to improve on y
in later iterations, reaching a mislabeling rate of over 35%
on summarization and over 45% on the helpful assistant
task. Even with high noise rates, CoRLL can still learn and
improve performance. Note that in Figure 7 the winrate
and similarity of CoRLL with noisy minimally informative
feedback is comparable to training with noise-free feedback.
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(a) Reward.
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(b) Error rate.

Figure 4. Summarization task with noisy feedback. Reward and
error rates are a rolling average over 100.

10000 20000 30000 40000 50000
# of Observed Preference Comparisons

2.0

1.5

1.0

0.5

0.0

0.5

1.0

CoRLL (MinInf)
CoRLL (MinInf, noisy)
CoRLL (Edits n=20, noisy)
CoRLL (Edits n=10, noisy)

(a) Reward.
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(b) Error rate.

Figure 5. Helpful Assistant task with noisy feedback. Reward
and error rates are a rolling average over 100.

How effective is Coactive Feedback compared to Dueling
Feedback? Whether to use coactive or dueling feedback
is typically not a pertinent choice in real-world applications,
since coactive feedback is most appropriate for applications
where edits or other interactions provide implicit feedback,
while dueling feedback requires a labeler to choose between
two generations. Nonetheless, the following compares how
informative the two feedback strategies are.

To generate dueling feedback, we randomly generate two
responses y and y′ for each prompt x from the current pol-
icy πt, then simulate a human labeler by using the expert
rewards R∗(x, y) and R∗(x, y′) to choose the preference
order. Note that this feedback is noise free. We use the same
DPO pairwise preference learner for dueling as for CoRLL
to avoid confounding due to different RLHF algorithms.

Figure 3 shows that CoRLL with minimally-informative
coactive feedback has a much better tradeoff profile between
reward and KL divergence from the reference policy π0.
This is particularly remarkable, since coactive feedback is
available for free in many application settings. Figure 7
confirms that the models trained with coactive feedback
produce better responses that are more similar to the expert
than the models trained with dueling feedback.
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Figure 6. Summarization task with Coactive Noisy MinInf Feed-
back using DPO and IPO.
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(a) Reddit TL;DR: Summarization task.
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MinInf Noisy MinInf Noise-free

Winrate 0.5875 0.5894 0.5440
Similarity 0.9240 0.8745 0.8280

(b) Helpful Assistant task.

Figure 7. Model-based evaluations for 7B+ experiments (GPT-4).

Alternate Algorithms for CoRLL. While this paper fo-
cuses on an implementation of CoRLL that uses DPO
(Rafailov et al., 2023), CoRLL is in fact agnostic to the
policy updating procedure used on line 8 of Algorithm 2.
To demonstrate, we also ran an experiment which uses IPO
(Azar et al., 2024) instead of DPO. As shown in Figure 6
both variants learn successfully, though DPO gets slightly
better performance than IPO on the Reddit TL;DR: task.

5.3. Ablation Experiments

Our previous experiments demonstrated that CoRLL can
learn effectively on practical problems of substantial scale
with weak and noisy coactive feedback. Our next exper-
iments move to a smaller setting in order to explore how
CoRLL performs with various levels of feedback strength,
feedback noise, and computational efficiency trade-offs.

We perform these ablation experiments on the IMDB Sen-
timent Generation task (Maas et al., 2011), which consists
of generating a positive sentiment movie review y given a
prompt x that is a partial movie review. We train the ex-
pert on the standard dataset using DPO following the setup
in (Rafailov et al., 2023) and generated comparisons be-
tween generations a 774M parameter gpt2-large model

0 2000 4000 6000 8000 10000 12000
# of Observed Preference Comparisons

0.6

0.5

0.4

0.3

0.2

0.1 CoRLL k=9
CoRLL k=3
CoRLL k=1

Figure 8. Reward for different values of k when approximating the
argmax in Line 5 of CoRLL. (α = 0.6).

(Radford et al., 2019) from Huggingface using the first 64
tokens as a prompt x and generating 64 more as the re-
sponse y. We use the lvwerra/distilbert-imdb
sentiment classifier from Huggingface to compute senti-
ment Pr(+ve sentiment|x, y). However, we found that com-
paring using only a sentiment classifier resulted in an ex-
pert which would append the same text to all prompts, so
we added a preference for fluency by scoring according to
R∗(x, y) = log Pr(+ve sentiment|x, y) + 3 log πref(y|x).

We typically train for one epoch, except for the noise-
injection experiments where we train for three epochs in
order for the learned policy π to generate good enough
samples to achieve the desired noise rates. All reward eval-
uations in the IMDB ablation experiments are based on a
held out test set, so the rewards are comparable even when
training for multiple epochs.

In order to manage the computational requirements of the
experiment to enable multiple trials and ablations, this ex-
periment uses the 124M parameter gpt2 model (Radford
et al., 2019) retrieved from Huggingface as the reference
policy π0, and trained another copy for coactive learning.
Expert and policy training used a learning rate of 1e-5, and
a batch size of 32. If not mentioned otherwise, we approxi-
mate the argmax with k = 9 samples, draw l = 100 samples
to generate coactive feedback with α = 0.6 as described
below, train for one epoch, and use noisy feedback.

How important is it to approximate the argmax in
CoRLL well? In line 5 of CoRLL in Algorithm 2 the
parameter k controls how accurately we approximate the
argmax yt = argmaxy πt(y|xt) that is specified in Theo-
rem 3.1. In particular, increasing k ensures that the value
πt(yt|xt) of the coactive prediction yt increases and thus
gets closer to the desired argmax.

Figure 8 shows the performance of CoRLL for different
values of k. We see a clear benefit from increasing k, but
not much is gained from increasing k beyond 3. It is not sur-
prising that improving the argmax helps. First, even though
the current πt is not perfect, a yt with a larger πt(yt|xt) will
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Figure 9. Experimental results for varying feedback quality on
IMDB. Coactive (CoRLL MinInf) in purple-orange, dueling in
blue.
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Figure 10. Experimental results for different levels of feedback
noise on IMDB. Coactive (CoRLL MinInf) in purple-orange, duel-
ing in blue. Feedback quality is α = 0.6.

often have a larger reward R∗(xt, yt) as well, and thus we
make better predictions if we approximate the argmax better.
Second, predicting a yt with a larger πt(yt|xt) ensures that
the coactive feedback ȳt is more informative for updating
πt. In particular, it avoids cases where πt already correctly
orders yt and ȳt, i.e. πt(yt|xt) < πt(ȳt|xt), such that ȳ
does not provide strong information for improving πt.

Note that the large-scale experiments in the previous sec-
tion used k = 1 for reasons of tractability on our compute
hardware, but we conjecture that larger values of k would
lead to further improvements in performance there as well.

How does CoRLL perform for different levels of feed-
back quality? Figure 9b plots the resulting feedback qual-
ity of the selected ȳ in terms of their estimated α. Note
that this estimate inflates the value of α, since even the best
candidate is likely to have lower reward than the true y∗

with maximum R∗.

As the plots in Figure 9a show, better feedback does lead to
faster learning, but CoRLL is able to learn effectively at all
levels of feedback quality. Note that CoRLL is competitive
with dueling feedback DPO even for the lowest quality of
coactive feedback, though the two are not directly compara-

ble since coactive data can be collected passively in contrast
to dueling comparison feedback.

How sensitive is CoRLL to noise in the preference feed-
back? Our final experiment further investigates the im-
pact of feedback noise on performance. In addition to the
incidental noise described in the previous section, we now
explicitly control noise by injecting mislabeled preferences.
In particular, with probability ϵ we check whether any of
the l = 100 candidates for ȳ generated by the expert policy
has worse reward R∗ than the current y. If this is the case,
then we select the best response which is below the policy’s
reward R∗(x, y), thus generating a mislabeled preference
for CoRLL. If no candidate was below the threshold, we
return the worst response.

Figure 10a shows the learning performance of CoRLL for
different levels of noise, and Figure 10b shows how the
fraction of mislabeled preferences increases as learning pro-
gresses. CoRLL is clearly effective at learning for all noise
levels even after error rates stabilize to values as high as
∼40% mislabeled preferences. This robustness to label
noise makes CoRLL a promising candidate for real-world
applications, where feedback quality is hard to control.

6. Conclusion and Future Work
This paper introduced coactive learning as new mechanism
for training LLMs. Coactive learning takes advantage of
implicit feedback that users provide through their system
interactions without the need for additional human label-
ing, which provides a viable path for personalizing LLMs.
We derive the first algorithm for coactive training of LLM,
called CoRLL, and provide the theoretical basis for the
design choices it makes. Beyond this theoretical charac-
terization, we also provide empirical evidence across three
benchmarks that CoRLL can be effective at training LLM
even with week preference feedback, and often learns faster
than conventional RLHF training with explicitly labeled
preference feedback.

This work opens up a wide range of new research directions
for training LLMs from implicit feedback. These include
many other design choices for better approximating the
argmax and for designing the pairwise preference learner,
which may lead to further performance improvements. Coac-
tive feedback is a very general feedback mechanism, and
our experiments indicate that it appears to be fairly noise-
tolerant. As such, frameworks such as Constitutional AI
(Bai et al., 2022b) where an instruction-following LLM
is used to improve the response y of a learning LLM can
fit cleanly into the coactive learning framework. Further-
more, it is interesting to incorporate other forms of feedback
into the coactive learning framework, like a combination of
coactive and dueling feedback.
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Impact Statement
Aligning LLMs to human preferences has been at the core
of many of the practices which make LLMs more usable,
such as instruction following and RLHF. This paper makes
progress in LLM personalization in two main ways. Firstly,
it shows that human edit data can be a valuable source of
feedback that does not incur the additional labeling effort
of dueling feedback. Secondly, it shows how passively
collected edit data can improve performance in writing as-
sistance tasks.

Increasing the value of data and data labeling can have
a variety of impacts (Tucker et al., 2020). For example,
increasing the value of passively collected data makes it
more valuable for model developers to have users, and likely
provides an advantage for large companies with more users
and AI systems. Additionally, increased data collection
can have negative privacy impacts, and if coactive feedback
were to be collected it is important to make sure that users
understand that their data may be used for personalization.
Large language models trained using the standard negative
log likelihood objective can memorize and leak training
data (Carlini et al., 2021), and interesting future work could
analyze whether or not this also occurs with DPO and other
RLHF algorithms.

More data-efficient personalization on the other hand can
make it easier for developers of AI systems to customize AI
systems to increase their value for specific users, making
it easier to improve the performance of a system for that
particular user in a way which is unlikely to be particularly
helpful for the censorship-enhancing properties of better
alignment (see section 7.3 of (Bai et al., 2022a)). Of course,
if such personalization is used to remove safety features
(Jain et al., 2023) then it can increase the risks of broadly de-
ployed LLMs. We encourage companies using this method
to implement procedures protecting against misuse.
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A. Experimental Appendix
A.1. Tasks

A.1.1. SUMMARIZATION TASK

The first task is the Reddit TL;DR summarization task (Völske et al., 2017). In this task a forum post from Reddit is given
as a prompt x, and a summary y of the post is provided as the response. We trained the expert using DPO on an altered
dataset which created a preference dataset by sampling summaries from multiple models (Stiennon et al., 2022), resulting
in an average reward of R∗ ≈ 0.444. The final dataset consists of 123k high-quality posts and preferences after filtering,
retrieved from Huggingface as openai/summarize_from_feedback’s comparisons dataset. We truncated all
prompts (including “ TL;DR: ”) to 462 tokens, and responses to 50 tokens. We used the 7B Llama 2 (Touvron et al., 2023b)
model meta/llama-2-7b-hf as the initial policy and reference policy for this task.

A.1.2. HELPFULNESS TASK

The second task is the Helpful and Harmless Assistant (Bai et al., 2022a), which consists of dialogues between a human and
an automated assistant. We again trained the expert using DPO, resulting in an average reward of R∗ ≈ 0.158. We retrieved
the dataset from Huggingface as anthropic/hh-rlhf) by focusing only on the dialogues which were evaluated for
helpfulness, then filtering the dataset so that all prompts (the shared portion between the chosen and rejected dialogues) had
300 or fewer tokens and all responses had 100 or fewer tokens, resulting in roughly 55k dialogues. We used the 13B Llama
2 (Touvron et al., 2023b) model meta/llama-2-13b-hf as the initial policy and reference policy for this task.

A.1.3. IMDB SENTIMENT TASK

A.2. Model-based Evaluation Prompts

The winrates are computed as follows. First, we take the first 100 posts in the test set. Then, we generate a summary using
the expert, learned, and reference policies. Then, we create 2 prompts for each comparison which present the relevant
options in both orders to ensure that there is no bias from the presentation order. Then, we sample 10 comparison judgments
from ChatGPT, and report the average over all 2000 samples.

A.2.1. SUMMARIZATION TASK

For both prompts, the system prompt to ChatGPT was “You are a skilled copywriter.”.

Winrate Prompt Our winrate prompt format was as follows, with <> being replaced by text from the prompt x or
generations y.

Which of the two options is a better summary of the following post? Answer with
only A or B.
Post: <post>
Option A: <one policy’s generation>
Option B: <the other policy’s generation>

Similarity Prompt Our similarity prompt format was as follows:

Which of the two options is more similar to the example summary of the following
post? Answer with only A or B.
Post: <post>
Example: <the expert’s generation>
Option A: <one policy’s generation>
Option B: <the other policy’s generation>

A.2.2. HELPFUL ASSISTANT TASK

For both prompts, the system prompt to ChatGPT was “You are a helpful assistant.”.
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Winrate Prompt Our winrate prompt format was as follows, with <> being replaced by text from the prompt x or
generations y.

In which of the two options is the assistant more helpful?

Option A:
<one policy’s conversation>

Option B:
<the other policy’s conversation>

All conversations were inserted with tabs at every new line, so that the options are formatted as follows:

Option A:
User: ...
Assistant: ...
...

Similarity Prompt Our similarity prompt format was as follows:

Which of the two options is more similar to the example conversation?

Example:
<expert conversation>

Option A:
<one policy’s conversation>

Option B:
<the other policy’s conversation>
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