
Ranking with Slot Constraints
Wentao Guo

∗

Cornell University

Department of Computer Science

Ithaca, New York, USA

wg247@cornell.edu

Andrew Wang
∗

Cornell University

Department of Computer Science

Ithaca, New York, USA

azw7@cornell.edu

Bradon Thymes

Cornell University

Department of Computer Science

Ithaca, New York, USA

bmt63@cornell.edu

Thorsten Joachims

Cornell University

Department of Computer Science

Ithaca, New York, USA

tj@cs.cornell.edu

ABSTRACT
Rankings are increasingly used as part of human decision-making

processes to most effectively allocate reviewing resources. Many

of these processes have complex constraints, and we identify slot
constraints as a model for a wide range of application problems –

from college admission with limited slots for different majors, to

composing a stratified cohort of eligible participants in a medical

trial. In this paper, we formalize the slot-constrained ranking prob-

lem as producing a ranking that maximizes the number of filled

slots if candidates are evaluated by a human decision maker for

slot eligibility in the order of the ranking. We show that naive adap-

tations of the Probability Ranking Principle (PRP) can be highly

sub-optimal for slot-constrained ranking problems, and we devise a

new ranking algorithm, called MatchRank. MatchRank generalizes

the PRP, and it subsumes the PRP as a special case when there are

no slot constraints. Our theoretical analysis shows that MatchRank

has a strong approximation guarantee without any independence

assumptions between slots or candidates. Furthermore, we show

how MatchRank can be implemented efficiently. Beyond the theo-

retical guarantees, empirical evaluations show that MatchRank can

provide substantial improvements over a range of synthetic and

real-world tasks.

CCS CONCEPTS
• Information systems→ Top-k retrieval in databases.

KEYWORDS
ranking; slot constraints; maximum bipartite matching

ACM Reference Format:
Wentao Guo

∗
, Andrew Wang

∗
, Bradon Thymes, and Thorsten Joachims.

2024. Ranking with Slot Constraints. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’24), August

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08. . . $15.00

https://doi.org/10.1145/3637528.3672000

25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3637528.3672000

1 INTRODUCTION
Rankings have become a ubiquitous interface whenever there is

a need to focus attention among an otherwise impractically or

intractably large number of options. Beyond their conception as

an interface for query-based retrieval [e.g., 31], rankings are now

widely used in related tasks like recommendation and advertising.

In addition, a substantial number of new ranking applications come

with new types of constraints, and we identify the notion of slot
constraints as a frequent requirement. With slot constraints we refer

to capacity constraints for different types of relevant candidates.

For example, there is only a certain number of slots for each major

in a college admissions task; or the cohort of a medical trial may

need to fulfill constraints on gender and race to be representative

[7]; and in a multi-stage retrieval pipeline we may have assortment

constraints [41]. In these applications, the goal is to fill all slots

with relevant candidates, and each candidate can have a different

probability of relevance for each slot.

For rankings without constraints, the Probability Ranking Prin-

ciple (PRP) [30] has long been understood to provide the ranking

that maximizes the number of relevant candidates that are found

in the top-𝑘 of the ranking, for any 𝑘 . However, the PRP does not

apply to ranking problems with slot constraints, and naive exten-

sions of the PRP can be highly sub-optimal by disparately spending

human evaluation effort on candidates for which there are no open

slots while ignoring other candidates that are relevant for unfilled

slots. Furthermore, ranking with slot constraints is different from

both intrinsically and extrinsically diversified ranking [28], since

it involves a vector of relevance probabilities for each candidate

and it allows us to put explicit constraints on the set of relevant
results. Conventional diversification methods cannot handle rele-

vance vectors, and they typically focus on the composition of the

ranking instead of on the composition of the relevant results (e.g.,

demographic parity [17]). Furthermore, they typically do not allow

the specification of explicit constraints (e.g., [9, 10, 43]).

To remedy this shortcoming, we formalize and address the prob-

lem of ranking with slot constraints in this paper. In our formulation,

a human decision maker can define an arbitrary set of slots (e.g.,

∗
Both authors contributed equally to this research.

956

https://orcid.org/0009-0000-4090-4117
https://orcid.org/0009-0005-5612-5528
https://orcid.org/0000-0002-3754-404X
https://orcid.org/0000-0003-3654-3683
https://doi.org/10.1145/3637528.3672000
https://doi.org/10.1145/3637528.3672000
https://doi.org/10.1145/3637528.3672000
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3672000&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

admission slots for each major) that need to be filled with relevant

candidates (i.e., qualified students). The ranker then supports the

human decision maker in allocating the evaluation effort while

leaving the relevance decisions to the human. Specifically, given a

relevance model that estimates the relevance probability of each

candidate for each slot, the goal is to compute a ranking under

which the expected number of filled slots is maximized. This model

is very general, as candidates can be qualified for any number of

slots, and we can use any probabilistic model with arbitrary depen-

dencies between the slot relevances of all candidates.

Under this model, we show that there is a connection between

slot-constrained ranking and bipartite matching, and we derive a

general ranking algorithm, called MatchRank, that merely requires

efficient sampling from the relevance model. We theoretically ana-

lyze MatchRank and show that it provides a strong approximation

guarantee. In particular, we prove that any top-𝑘 of the ranking

computed by MatchRank guarantees an expected number of filled

slots that is asymptotically at most (1− 1/𝑒) away from the optimal

set with high probability. Furthermore, we show how MatchRank

can be implemented efficiently to handle ranking problems of sub-

stantial size. Finally, we provide an extensive empirical evaluation

of MatchRank, showing that it can outperform heuristic baselines

by a substantial margin, and perform accurately on a real-world

college-admission problem.

2 RELATEDWORK
In the following we detail how our new setting of ranking with slot

constraints differs from existing research areas.

Search result diversification is a widely studied problem in

IR in which one aims to cover multiple intents or aspects of an

ambiguous or composite query. Specifically, in extrinsic diversi-

fication [28] the goal is to cover all intents of a query to ensure

that the user finds at least one relevant result despite the uncer-

tainty about the query intent. This typically leads to coverage-style

objectives [9, 42], not matching problems like in slot-constrained

ranking. For intrinsic diversification [28], the goal to put together

a portfolio of items, but none of the existing methods provides the

same flexibility in specifying complex systems of slots with arbi-

trary dependencies. Another difference of our setting to existing

diversification approaches is that we do not need to model simi-

larity between items, either explicitly through predefined aspects

[32] or implicitly through similarity metrics [36]. However, one

could use our slot-constrained ranking framework as a method for

diversification, especially in high-stakes selection problems where

practitioners require both full transparency and control over the

composition of the set of selected items, and the ability to specify

complex real-world matching constraints.

Beyond the standard diversity settings, Agarwal et al. [2] con-

sider how to maximize user engagement while satisfying a min-

imum impression requirement per search result. However, their

target objective is not a matching problem, since serving an item to

one user does not exclude the use of such item with another user.

Also related but different from our setting is the approach of Dang

and Croft [13]. Their “seats” allocation approach is relevant to our

slot constraints, except that we directly treat the slots as a constraint

instead of a normalization factor. Therefore, we use the maximum

bipartite matching algorithm [19] for the ranking objective.

Fairness in ranking is also frequently implemented by adding

constraints to the ranking, since ranking by predicted merit can

lead to both poor representation [4] and suboptimal performance

[29] of admitted cohorts. In many cases, these fairness constraints

ensure a certain amount of representation from different groups

in various positions of the ranking (e.g., demographic parity) [17,

22]. This is critically different from our slot constraints, since slot

constraints act on the relevant items, not all items. Note that under

differential estimation accuracy between groups, merely ensuring

representational fairness can still be unfair to the relevant items [16,

33]. Furthermore, slot constraints are different from independent

diversity constraints [8], as slot constraints are always mutually

exclusive (e.g., college applicants can only be admitted by and

matriculate in 1 major of studies).

Matching problems have a wide range of applications in job

markets, dating, and resource allocation in online clouds [14, 21, 38].

The typical setting in stochastic matching is that each edge in a graph
is realized independently with (predicted) probability 𝑝 [1, 5], which

is analogous to the college admission scenario where we only have

a calibrated regression model to know the predicted probability

of a candidate 𝐶 being relevant to a slot 𝑆 . Dickerson et al. [14]

consider online bipartite matching to improve the diversity and

relevance of search results by maximizing a multilinear objective

over the set of matched edges. Ahmed et al. [3] propose a quadratic

programming based objective for the diversity of a matching and

propose a scalable greedy algorithm to trade off efficiency and

diversity. Instead of evaluating an objective on top of matching on

a sampled graph, we use the size of the bipartite matching on a

sampled graph to derive a ranking of candidates that maximizes the

size of the bipartite matching in the true relevancematrix during the

human evaluation phase. We are the first to formulate this ranking
problem to maximize the size of the bipartite matching, and this is a
core contribution of this paper.

3 PROBLEM SETTING
Consider that we have 𝑐 candidates C = {𝐶1, ...,𝐶𝑐 }, and we have

𝑠 < 𝑐 slots S = {𝑆1, ..., 𝑆𝑠 } that we need to fill with relevant can-

didates. Each candidate can be relevant to any number of slots, or

no slots at all. We denote whether candidate 𝐶𝑖 is relevant to slot

𝑆 𝑗 via the matrix entry 𝑅𝑖 𝑗 ∈ {0, 1}. We use the generic concept

of “relevance” to indicate whether a candidate matches a slot. This

allows us to model a broad range of selection problems as follows:

Hiring: A company has a number of openings for different roles,

with a specific number of interview slots budgeted for each

role. Applicants may be qualified for some subset of roles.

An applicant is relevant for an interview slot if qualified and

interested in the particular opening.

College Admission: Slots correspond to seats in various majors

(100 slots for CS, 50 slots for Math, etc.), and in each major a

certain number of slots is reserved for low socioeconomic

status students. A student is relevant for any slot in a major

if both qualified for and interested in that major.

Medical Trial: Researchers need to find qualifying participants for
a medical trial among millions of electronic health records.

957

Ranking with Slot Constraints KDD ’24, August 25–29, 2024, Barcelona, Spain

The trial is designed with a certain number of slots by gender,

race and disease severity. Patients are relevant for a slot if

they match demographic requirements and disease severity

determined by further testing.

In all of these application scenarios our goal is to fill all slots with rele-
vant candidates. Throughout this paper we assume that relevance is

binary, but we conjecture that many of our results can be extended

to non-binary relevance values.

If the relevance matrix 𝑅 was fully known, the problem of finding

relevant candidates to fill all slots would be solved by the maximum

bipartite matching algorithm [19]. In practice, however, we only

have uncertain information 𝑃 (𝑅) about the true relevances. 𝑃 (𝑅)
can be approximated by a probabilistic relevance prediction model

learned from data (𝑃 (𝑅)). Furthermore, accurately revealing the

true relevance vector 𝑅𝑖 ∈ {0, 1}𝑠 of any particular candidate 𝐶𝑖
for all 𝑠 slots comes at substantial cost. In the admission and hiring

example, assessing relevance requires detailed human review of

the application, and in the medical example it requires additional

medical testing. We would thus like to avoid evaluating candidates

that do not contribute to filling more slots, either because these

candidates are not relevant or because we already have identified

other relevant candidates for these slots.

To achieve this goal, we would like to compute a ranking 𝜎 of can-

didates so that evaluating the candidates 𝜎 [1], ..., 𝜎 [𝑐] from top to

bottom maximizes the number of filled slots given the information

contained in 𝑃 (𝑅). Without slot constraints (i.e., for any candidate

𝐶𝑖 : ∀𝑗, 𝑘 : 𝑅𝑖 𝑗 = 𝑅𝑖𝑘) the ranking problem has a well-known so-

lution that follows from the Probability Ranking Principle (PRP)

[30]: simply ranking candidates by their probability of relevance is

optimal under most sensible metrics. However, this PRP ranking

can be highly sub-optimal under general slot constraints, as the

following toy example shows.

Example 1 (Suboptimality of PRP for Ranking with Slot

Constraints). Consider a problem with 𝑐 = 1000 candidates and
𝑠 = 10 slots. Candidates𝐶1, ...,𝐶500 have a probability of relevance of
0.5 for slots 𝑆1, ..., 𝑆5, and 0 for the other slots. Analogously, candidates
𝐶501, ...,𝐶1000 have a probability of relevance of 0.4 for slots 𝑆6, ..., 𝑆10,
and 0 for the other slots. Any heuristic based on sorting candidates
by a score computed from their probability of relevance would either
produce a ranking equivalent to 𝐶1, ...,𝐶500,𝐶501, ...,𝐶1000 or equiva-
lent to 𝐶501, ...,𝐶1000,𝐶1, ...,𝐶500. However, either ranking would be
highly suboptimal, since one type of slots would not be filled until
after reviewing at least 500 candidates.

Note that this high degree of suboptimality already surfaces in

this particularly simplistic example, where there are only two types

of slots and candidates are relevant to at most one type of slots. In

the more general case, where we can have complex systems of slots

where each candidate can have dependent probabilities of being rel-

evant to multiple slots, it is not even clear how to heuristically apply

the conventional PRP. This motivates the need for a new algorithm

that goes beyond sorting candidates by some heuristic function of

relevance, but that explicitly takes the slot constraints into account.

In the following we develop the MatchRank algorithm that does

not have the inefficiencies of the PRP ranking and that provides

provable guarantees on the quality of the ranking for arbitrary

S1 S2 S3

Slots

C5

C4

C3

C2

C1

C
an

d
id

at
es

0 0 0

0 0 1

1 1 0

1 1 0

1 1 0

R as Biadjacency Matrix

C1

C2

C3

C4

C5

S1

S2

S3

MBM Solution of R

Figure 1: Example showing how MBM computes an optimal
assignment of candidates to slots for a known relevance ma-
trix 𝑅. In this figure, 𝐶5 is not relevant for any slots. 𝐶1, 𝐶2

and 𝐶4 are relevant and can be matched with available slots.
𝐶3 is relevant for 𝑆1 and 𝑆2, but both are already occupied.

slot constraints and relevance models. To start the derivation, the

following begins with a formal definition of the ranking objective.

3.1 Ranking Objective
We formalize the problem of ranking under slot constraints in two

steps. We first define the problem of finding a candidate set 𝑋𝑘 of

a given size 𝑘 that is optimal. In the second step we show how to

construct a nested sequence

𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 ⊂ ... (1)

of such candidate sets that naturally forms a ranking 𝜎 . In particular,

any two consecutive candidate sets 𝑋𝑘 and 𝑋𝑘+1 differ by only one

candidate 𝑋𝑘+1 \ 𝑋𝑘 = 𝐶𝜎 [𝑘+1] , which corresponds to the element

𝜎 [𝑘 + 1] of ranking 𝜎 . Note that 𝑋0 is always the empty set.

To evaluate a given candidate set 𝑋 ⊆ C, we use the size of the
maximal matching between relevant candidates in 𝑋 and slots S.
This is illustrated in Figure 1, where the candidates in 𝑋 and the

slots in S form a bipartite graph (right panel). The correspond-

ing submatrix of the relevance matrix 𝑅 (left panel) defines the

biadjacency matrix of the graph, where an edge exists whenever

a candidate 𝐶𝑖 is relevant for slot 𝑆 𝑗 . The right panel of Figure 1

shows the (not necessarily unique) maximum bipartite matching

{𝐶1 → 𝑆1,𝐶2 → 𝑆2,𝐶4 → 𝑆3}, which corresponds to the largest

number of slots that can be filled with relevant candidates from 𝑋 .

We denote this maximum bipartite matching size as MBM(𝑋,S|𝑅).
While MBM(𝑋,S|𝑅) gives us the optimal solution for a known

relevance matrix 𝑅, we need to evaluate candidates sets 𝑋 under

uncertainty about what the correct relevance matrix is. A natural

metric for evaluating a candidate set𝑋 under 𝑃 (𝑅) is to measure the

expected size of the matching, which corresponds to the expected

number of slots that can be filled with candidates from 𝑋 .

𝑀 (𝑋) = E𝑅∼𝑃 (𝑅)
[
MBM(𝑋,S|𝑅)

]
(2)

=
∑︁
𝑅

MBM(𝑋,S|𝑅)𝑃 (𝑅) (3)

958

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

When evaluating a ranking 𝜎 , we will apply this metric 𝑀 (𝑋) to
each top-𝑘 prefix 𝑋𝑘 of the ranking 𝜎 .

3.2 MatchRank Algorithm
Given the metric 𝑀 (𝑋) from Equation (3), our goal is to find a

ranking 𝜎 of the candidates in C so that𝑀 (𝑋𝑘) for any top-𝑘 prefix

is as large as possible under 𝑃 (𝑅). We split this goal into three

steps. First, we show how to estimate𝑀 (𝑋) for any candidate set𝑋
and for any 𝑃 (𝑅) that permits sampling. Second, we show how to

construct a single candidate set 𝑋𝑘 of size 𝑘 that has a large value

for𝑀 (𝑋𝑘). Third, we show that our construction of the 𝑋𝑘 in the

previous step naturally produces a ranking.

Estimating𝑀 (𝑋). We do not make any structural assumptions

on the distribution 𝑃 (𝑅), and 𝑃 (𝑅) can contain arbitrary depen-

dencies among the entries. The following is a general method for

evaluating a given candidate set 𝑋 , where we merely require that

we can sample relevance matrices 𝑅 from 𝑃 (𝑅). With such samples,

we can compute Monte-Carlo estimates of𝑀 (𝑋) as follows.
Let R = [𝑅1, ..., 𝑅𝑛] be 𝑛 samples of relevance matrices drawn

i.i.d. from 𝑃 (𝑅). The Monte-Carlo estimate of𝑀 (𝑋) is

�̂� (𝑋) = 1

𝑛

𝑛∑︁
𝑖=1

MBM(𝑋,S|𝑅𝑖). (4)

By the weak law of large numbers, �̂� (𝑋) converges to 𝑀 (𝑋) for
large 𝑛. We will later characterize how the number of samples 𝑛

affects the algorithm.

Constructing the ranking. Now that we know how to estimate the

quality �̂� (𝑋) of any particular candidate set 𝑋 , we can think about

finding a candidate set that maximizes �̂� (𝑋). However, naively
enumerating all subsets𝑋 ⊂ C of size |𝑋 | = 𝑘 and evaluating �̂� (𝑋)
would not be efficient. Furthermore, it would not be clear how to

make sure that the candidate set is nested and forms a ranking.

To avoid this combinatorial enumeration, we instead construct

�̂� (𝑋) using the following greedy algorithm, which we will prove to

enjoy strong approximation guarantees. Since this algorithm adds

one candidate in each iteration, it naturally constructs a ranking

and we show that the approximation guarantees hold for any top-𝑘

of the ranking.

Algorithm 1: MatchRank

Input: candidates C; slots S; sampled relevances R = [𝑅1, ..., 𝑅𝑛];
𝑋0 ← ∅; 𝐴← C; 𝜎 = []; 𝑘 ← 1

while 𝐴 ≠ ∅ do
𝐶
best
← argmax𝐶∈𝐴

1

𝑛

∑𝑛
𝑖=1MBM(𝑋𝑘−1∪{𝐶},S|𝑅𝑖)

𝜎 [𝑘] = 𝐶
best

𝑋𝑘 ← 𝑋𝑘−1 ∪ {𝐶best
}; 𝐴← 𝐴 − {𝐶

best
}; 𝑘 ← 𝑘 + 1

end while
Output: ranking 𝜎

In each iteration 𝑘 , the MatchRank algorithm finds the candi-

date 𝐶
best

that most improves �̂� (𝑋𝑘−1 ∪ {𝐶best
}) for the current

candidate set 𝑋𝑘−1. It then places 𝐶
best

into position 𝑘 of the rank-

ing. Furthermore, it adds 𝐶
best

to the current top-𝑘 set 𝑋𝑘 , and it

removes 𝐶
best

from the set of remaining candidates 𝐴. These itera-

tions continue until all candidates have been added to the ranking.

If only a top-𝑘 ranking is desired, one could also stop early. Note

that Algorithm 1 is optimized for clarity, but Section 3.4 presents

several efficiency improvements.

3.3 Theoretical Analysis
We now analyze theoretically how effective MatchRank is on con-

structing a ranking that optimizes the objective 𝑀 (𝑋) given in

Equation (3). We start by stating our main result, which we will

then prove subsequently. The main result states that for any 𝑘 ,

the top-𝑘 candidate set 𝑋𝑘 constructed by MatchRank enjoys an

approximation guarantee compared to the optimal candidate set

𝑋 ∗
𝑘
= argmax

𝑋 ⊆C∧|𝑋 |=𝑘
𝑀 (𝑋) .

Note that these optimal 𝑋 ∗
𝑘
may not be nested and may not form a

ranking, unlike the 𝑋𝑘 constructed by MatchRank.

Theorem 3.1. The ranking 𝜎 produced by MatchRank when given
𝑠 slots and 𝑛 Monte-Carlo samples R = [𝑅1, ..., 𝑅𝑛] from 𝑃 (𝑅) enjoys
the following approximation guarantee for each top-𝑘 set 𝑋𝑘 in 𝜎 :
with probability 1 − 𝛿 (where 0 < 𝛿 < 1/2),

𝑀 (𝑋𝑘) ≥
(
1 − 1

𝑒

)
𝑀 (𝑋 ∗

𝑘
) − 2𝑠

√︂
𝑂 (𝑘 ln𝑘) + ln(2/𝛿)

2𝑛
,

where 𝑋 ∗
𝑘
= argmax𝑋 ⊆C∧|𝑋 |=𝑘 𝑀 (𝑋) is the optimal set.

The proof of Theorem 3.1 is given in Appendix A. Its main

steps are to first show that �̂� (𝑋) is monotone submodular, which

implies that the greedy nature of MatchRank provides a (1 − 1/𝑒)
approximation guarantee for �̂� (𝑋). We then show that optimizing

�̂� (𝑋) provides a solution that is close to optimizing𝑀 (𝑋) directly.

3.4 Computational Efficiency of MatchRank
and Improvements

The MatchRank algorithm as written in Algorithm 1 is optimized

for clarity, but there are a number of improvements that can sub-

stantially speed up computation. To motivate these improvements,

we first analyze the runtime complexity of Algorithm 1.

For computing the top 𝑘 positions of the ranking when there

are 𝑐 candidates, 𝑠 slots, and 𝑛 Monte-Carlo samples, the greedy

maximizer inside Algorithm 1 will evaluate 𝑂 (𝑘 𝑐) sets. For each
such set, it will find the MBM solutions of all bipartite graphs from

R, which takes 𝑂 (𝑛 𝑐 𝑠
√
𝑐 + 𝑠) time per set when using the classic

Hopcroft-Karp MBM algorithm [19]. So, a naive implementation

will take 𝑂 (𝑘 𝑛 𝑐2 𝑠
√
𝑐 + 𝑠) time. However, this implementation is

unnecessarily slow.

We can improve the time efficiency of MatchRank by following

the principle that any unmatched candidate can increase the match-

ing size by at most 1. So, if we are given a candidate set 𝑋 ⊆ C and

an unmatched candidate𝐶 , finding the MBM(𝑋 ∪ {𝐶},S|𝑅) can be

reduced to determining if there is an augmenting path to the match-

ing of MBM(𝑋,S|𝑅) starting from 𝐶 . If such an augmenting path

exists, then we can extend the matching andMBM(𝑋 ∪ {𝐶},S|𝑅) =
MBM(𝑋,S|𝑅) + 1. It no augmenting path exists, then we will know

that MBM(𝑋 ∪ {𝐶},S|𝑅) = MBM(𝑋,S|𝑅) and the matching re-

mains unchanged. Therefore, it will take 𝑂 (𝑐 𝑠) time (a BFS) per

each unmatched candidate per ranking step, and we obtain an

𝑂 (𝑘 𝑛 𝑐 (𝑐 𝑠)) = 𝑂 (𝑘 𝑛 𝑐2 𝑠) algorithm.

959

Ranking with Slot Constraints KDD ’24, August 25–29, 2024, Barcelona, Spain

Ranking
algorithms

5. obtain a ranking
shortlist over all

candidates

3. obtain Monte-Carlo samples of
biadjacency relevance matrices

via i.i.d. sampling from

4. obtain slot
constraints

Regression models

1. train regression models to
predict relevances between any

given candidate and any given slot

Candidate features

2. obtain predicted
probability of

relevances

6. obtain ground-
truth relevances
from human reviews

6. Find the minimum such
that all slots are filled
by relevant candidates in

Predicting relevances Ranking Evaluation

Figure 2: Application and evaluation pipeline used in ranking experiments.

If we consider the typical scenario where 𝑐 > 𝑠 , we can improve

the time complexity by keeping a list of unmatched slots instead
of candidates for each bipartite graph, and on each ranking step

we start from each unmatched slot and follow the BFS to find all

augmenting paths that end on unmatched candidates. We need

𝑂 (𝑐 𝑠2) time per ranking step, and in total only𝑂 (𝑘 𝑛 𝑐 𝑠2) time. We

also note that on each ranking step each Monte-Carlo estimate 𝑅𝑖
is independent and with perfect parallelism, we could eliminate the

dependency over 𝑛 to get 𝑂 (𝑘 𝑐 𝑠2) time complexity.

A further improvement in runtime can be achieved by exploiting

that MatchRank is a greedy algorithm for maximizing a submodular

objective. For any such algorithm, we can use lazy evaluation [23] to

accelerate the ranking process in practice
1
. Lazy greedy maintains

a priority queue of stale marginal gains to reduce unnecessary

computation of marginal gains for many examples per step. Since

marginal gains can never increase due to the submodularity of the

objective, the stale marginal gains provide an upper bound on the

improvement. Thus, if a stale marginal gain is not large enough

to propose a candidate as a greedy maximizer, then recomputing

its marginal gain is not necessary. This is particularly effective in

our matching scenarios, since many candidates are not relevant

for some slots. This means they will have small marginal gains

even in the first step of ranking, and we can significantly reduce

computation of their marginal gains during subsequent iterations

when using lazy greedy.

Finally, we could replace the greedy algorithmwith some approx-

imate version of greedy that is substantially faster, such as stochastic

greedy [24] and threshold greedy [6] for monotone submodular

maximization problem. We have performed initial evaluations of

these methods with promising results, but did not find a need for

them for our experiments. Generally, we found the exact greedy

algorithm to be tractable for datasets with up to 50,000 candidates.

Note that the
√
. term approaches zero as we increase the number

𝑛 of sampled relevance matrices. This means that for large Monte-

Carlo samples, the approximation factor approaches 1− 1/𝑒 , where
𝑒 is Euler’s number.

The monotone submodularity of �̂� (𝑋) opens a large arsenal of
submodular optimization methods for constructing candidate sets

𝑋𝑘 with provable approximation guarantees. We opt for the greedy

algorithm, since it naturally constructs a ranking.

1
We run all of our experiments with lazy greedy.

4 EMPIRICAL EVALUATION
We now evaluate the MatchRank algorithm on three types of data.

The first is fully synthetic data, where we can control all aspects of

the ranking problems to understand the conditions under which

MatchRank improves over baseline heuristics. Second, we evalu-

ate MatchRank on a number of benchmark datasets. And finally,

we verify the applicability of MatchRank on a real-world college-

admissions problem. We provide software for reproducing the em-

pirical results and to enable followup work on MatchRank
2
.

Evaluation Process and Metric. For each problem, our evaluation

follows the process depicted in Figure 2. We first use a training set

to learn a model — usually a calibrated regression model – which we

can use to infer the relevance probabilities 𝑃 (𝑅) for the candidates
in the test set. We apply MatchRank and other baseline rankers to

rank this test set, which only requires sampling from 𝑃 (𝑅).
To evaluate any ranking 𝜎 , we use the following process and

metric. For each top-𝑘 prefix 𝜎𝑘 of 𝜎 , we reveal the ground-truth

relevance labels 𝑅 of these 𝑘 candidates and compute how many

slots can be filled when optimally matching these 𝑘 candidates to

the slots. This is precisely the size of the matching 𝑀𝐵𝑀 (𝜎𝑘 ,S|𝑅).
Our final evaluation metric for 𝜎 is the smallest 𝑘 for which the

prefix 𝜎𝑘 fills all |S| slots with relevant candidates.

𝑘min = argmin

𝑘∈[𝑐]
{𝑀𝐵𝑀 (𝜎𝑘 ,S|𝑅) = |S|} (5)

This means that 𝑘min is the number of candidates in 𝜎 that need to

be reviewed before all slots are filled.

Since 𝑘min scales with the total number of slots, we report the

normalized 𝑘min/|S|, so that the best possible score is 1.

Baseline Rankers. We compare MatchRank against the following

baselines rankers. These methods compute a score for each candi-

date, and then rank by this score. The baseline rankers differ by

how they aggregate the estimated marginal relevance probabilities

𝑃 (𝑅𝐶,𝑆) (estimated from the Monte-Carlo samples) for each can-

didate 𝐶 across all slots 𝑆 . The first heuristic is motivated by the

soft AND rule

∏
𝑆 ∈S 𝑃 (𝑅𝐶,𝑆). The second uses the soft OR rule

1−∏𝑆 ∈S (1−𝑃 (𝑅𝐶,𝑆)). Both theAND and theOR rule skip probabil-

ities that are zero when computing the product. The third heuristic,

called Total Relevance (TR) merely sums the relevance probabilities∑
𝑆 ∈S 𝑃 (𝑅𝐶,𝑆) across all slots. The final heuristic is a normalized

version of the total relevances, called NTR, that normalizes with

the competition for each slot (number of relevant candidates for

2
https://github.com/GarlGuo/ranking_with_slot_constraints.git

960

https://github.com/GarlGuo/ranking_with_slot_constraints.git

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

Table 1: Synthetic Datasets: Performance of MatchRank in comparison to the heuristic baselines, reporting mean and standard
deviation in the format of “meanstd” (for standard error divide by

√
1000) of 𝑘min/|S| over 1000 random draws of the true

relevance matrix 𝑅 from 𝑃 (𝑅).

Default # Slots Per Group # Group Memberships # Samples 𝑃 (𝑅)
30 70 1 3 100 1000 S L

MatchRank 1.270.06 1.260.07 1.290.05 2.050.20 1.120.03 1.320.10 1.250.03 1.520.13 1.140.03
AND 5.010.29 6.060.64 4.290.20 11.260.31 2.730.24 5.010.29 5.000.28 5.840.39 4.450.25
OR 4.200.33 4.560.53 3.850.22 11.260.31 2.290.21 4.210.34 4.200.33 5.310.41 3.290.29
TR 4.410.31 5.480.39 4.000.23 10.730.44 2.570.17 4.140.31 4.730.31 5.460.41 3.900.26
NTR 1.350.07 1.450.12 1.300.04 3.690.14 1.120.02 1.450.07 1.390.09 1.660.13 1.200.05
Random 1.690.11 1.780.18 1.680.02 3.700.40 1.230.04 1.690.11 1.690.11 2.510.25 1.350.07

each slot in each sampled relevance matrix)

∑
𝑆 ∈S

𝑃 (𝑅𝐶,𝑆)∑
𝐶′∈C 𝑃 (𝑅𝐶′,𝑆)

.

We use the same sampled relevance matrices R = [𝑅1, . . . , 𝑅𝑛] as
what we use for MatchRank when computing the ranking shortlist

for TR and NTR. Note that the conventional diversification methods

we discussed in the related work section cannot handle relevance

signals that are multivariate vectors to optimize the number of filled

slots, and thus an empirical comparison is not sensible.

4.1 Synthetic Datasets
We first focus on a synthetic dataset where we can control the

structure of 𝑃 (𝑅), so that we can investigate all problem dimensions

that affect the MatchRank algorithm. Furthermore, we can directly

use 𝑃 (𝑅) instead of 𝑃 (𝑅), which avoids confounding the algorithm’s

behavior with potential inaccuracies in a learned 𝑃 (𝑅).

Experiment Setup. To construct synthetic 𝑃 (𝑅), we define𝑔 groups
(default 𝑔 = 10) and each group has 𝑠 slots (default 𝑠 = 50). We

then create 10,000 candidates, where each candidate is randomly

assigned to 𝑎 groups (default 𝑎 = 2). If candidate 𝐶 is a member

of group 𝑗 ∈ {1, ..., 𝑔}, we first sample 𝑝 from the Gaussian distri-

bution N(𝑝
base
+ 0.03 ∗ 𝑗, 0.1) with default 𝑝

base
as 0.3, and clip 𝑝

to the range of (0.0001, 0.9999). We then sample from a Bernoulli

distribution with probability 𝑝 , and the success outcome means 𝐶

is relevant for all slots associated with group 𝑗 . If candidate𝐶 is not

member of group 𝑗 , then 𝐶 is not relevant for any slots associated

with group 𝑗 , or formally 𝑃 (𝑅𝐶,𝑆) = 0 if slot 𝑆 belongs to group 𝑗 .

If not mentioned otherwise, parameters are at their default value.

We draw 200 Monte-Carlo i.i.d. samples R = [𝑅1, ..., 𝑅200] as
input to the ranking algorithms. For evaluation, we draw a ground-

truth relevance matrix 𝑅 and compute 𝑘min/|S|, repeat this evalua-
tion 1000 times, and report the mean and standard deviation.

Comparing MatchRank against the Baselines. The first column

of Table 1 shows the performance of MatchRank and the baselines

for the default values of the synthetic data generator. MatchRank

achieves a performance of 1.27, which means that on average only

an additional 27% of candidates need to be reviewed beyond the

number of slots. The best heuristic is NTR, which averages 35%.

Most heuristics do worse than random, which requires 69%. The

reason is that the heuristics systematically miss candidates of some

group, such that those slots cannot be filled.

Effects of the Number of Slots Per Group. We now vary the number

of slots per group from the default of 50 to 30 and 70. The results

for 30 and 70 are in the third main column of Table 1, while the

results for 50 are in the default column. All other parameters are

at their default values. MatchRank again show stable performance

over all three settings and dominates most baselines. Only NTR

comes close for larger numbers of slots.

Effects of Number of Group Memberships. We now assign each

candidate to be a member of 1, 2 (default) and 3 groups respec-

tively. All other parameters are at their default. The fourth main

column of Table 1 shows that the problem becomes easier for all

methods, when each candidate can be in more groups. We see that

the advantage of MatchRank is greater for harder problems.

Effect of Number of Monte-Carlo Samples. We now investigate

how important the number 𝑛 of Monte-Carlo samples R is, as we

vary 𝑛 among 100, 200 (default), and 1000. The results can be found

in the fifth main column of Table 1. We find thatMatchRank already
performs well for 𝑛 = 100, although having larger samples still

improve the results. A larger 𝑛 may be even more important for

𝑃 (𝑅) with stronger dependencies between candidates and slots.

Effect of Overall Relevance Level. We now vary the overall proba-

bility of relevance. In our model, this is controlled by the parameter

𝑝
base

, and the higher 𝑝
base

the greater the overall probability of

relevance. We vary 𝑝
base

between 0.2 (S), 0.3 (default), and 0.4 (L).

The results can be found in the last major column of Table 1. As

𝑝
base

increases, the problem of finding relevant candidates to fill

the slots becomes easier. Both MatchRank and the baselines benefit

from this, but MatchRank maintains a consistent advantage.

Analyzing the Variability of MatchRank. We want to further un-

derstand the variability of 𝑘min/|S| of MatchRank across ground-

truth relevance matrices. So we prepare a histogram of 𝑘min/|S|
for MatchRank evaluating on Rtest in default settings as shown in

Figure 3. This figure demonstrates that the distribution of 𝑘min/|S|
is slightly right-tailed as the sample mean is higher than the sam-

ple median. This could be explained as MatchRank being prone to

overestimating candidates’ probability of relevances. Therefore, it

is likely that some slots are not filled by relevant candidates even

when MatchRank believes all slots have been filled. Such phenom-

enon is illustrated by the fact that there are still 24.9% 𝑅 samples

for which slots have not been filled after ΔR becomes 0 (the purple

line) in the Figure 3.

961

Ranking with Slot Constraints KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 2: Real-World Benchmarks: Performance of MatchRank in comparison to heuristic baselines in terms of 𝑘min/|S|. For
each trial, we repeat for 3 random seeds and report the mean and standard deviation of 𝑘min/|S| in the format of “meanstd”.

Datasets Medical Bibtex Delicious
Slots Per Label 5 10 15 10 20 30 10 30 50

MatchRank 2.170.26 2.000.10 2.230.37 2.620.53 2.330.51 2.070.12 1.090.07 1.050.01 1.070.01
AND 4.120.72 3.000.16 2.570.23 7.741.00 4.920.36 4.200.23 1.680.06 1.940.17 1.690.03
OR 4.820.99 3.360.17 2.800.25 6.420.43 4.400.17 3.680.04 2.490.11 2.100.09 2.050.08
TR 4.400.50 3.270.43 2.750.29 6.350.44 4.330.15 3.680.08 2.210.29 2.110.10 1.980.05
NTR 4.830.43 2.870.21 2.080.09 5.960.40 3.350.17 2.480.05 1.520.25 1.520.26 1.500.01
Random 4.560.59 3.950.42 3.490.22 8.100.06 6.480.17 6.410.27 1.370.02 1.420.06 1.390.04

Datasets TMC2007 Mediamill Bookmarks
Slots Per Label 30 50 70 10 30 50 10 30 50

MatchRank 1.240.09 1.300.04 1.280.02 1.030.00 1.070.03 1.110.01 4.660.29 3.600.44 3.700.13
AND 13.681.47 9.711.09 7.981.08 1.840.11 2.070.21 2.060.03 68.601.83 26.954.57 24.810.92
OR 3.180.42 3.310.16 3.590.39 2.770.29 2.660.29 2.220.10 20.121.56 10.950.62 8.930.68
TR 8.710.25 6.260.25 5.520.30 3.120.17 2.270.11 2.110.05 19.632.01 11.640.60 9.230.43
NTR 1.820.09 1.480.08 1.370.07 2.630.24 1.670.03 1.490.04 22.712.40 10.130.73 7.020.23
Random 4.370.05 3.790.05 3.550.12 2.740.48 2.460.31 2.800.14 13.780.69 11.930.50 13.140.57

1.2 1.3 1.4 1.5

kmin / |S|

0.00

0.04

0.08

0.12

0.16

F
re

qu
en

cy

sample mean

sample median

sample mean ± sample std

∆R = 0

Figure 3: Synthetic Datasets: Histogram of 𝑘min/|S| for
MatchRank under default settings for 1000 draws of the
ground-truth relevances from 𝑃 (𝑅). The vertical lines are
the mean, median, and standard deviation of the histogram.
ΔR = 0 is the position in the ranking when all slots in the
Monte-Carlo R samples are filled and the marginal gain of
adding another candidate becomes 0.

Analyzing the Robustness of MatchRank to 𝑃 (𝑅) Misspecification.
We now investigate how robust MatchRank is against an inaccu-

rately learned 𝑃 (𝑅). We draw the ground-truth relevance labels

from a model 𝑃 (𝑅) with 𝑝
base

= 0.3 (Ref), but draw the Monte-

Carlo samples from misspecified models 𝑃 (𝑅) with 𝑝
base

set to 0.1

(XS), 0.2 (S), 0.4 (L), and 0.5 (XL). Figure 4 shows that MatchRank

performs best for the correctly specified 𝑃 (𝑅) as expected. Among

the misspecified 𝑃 (𝑅), we can observe that MatchRank is more

vulnerable to overestimation of relevance probabilities than un-

derestimation. This can be explained as follows. If MatchRank is

erroneously convinced that a slot is filled with high probability, it

will not add an alternative candidate for this slot to the ranking.

This fact is illustrated in the middle subfigure of Figure 4, where

XS S Ref L XL
1.00

1.25

1.50

1.75

2.00

k
m

in
/
|S
|

500 750 1000
460

470

480

490

|S|

N
u

m
b

er
of

F
ill

ed
S

lo
ts

Monte-Carlo R Samples

XS

S

Ref

L

XL

500 750 1000
460

470

480

490

|S|

A
vg

N
u

m
b

er
of

F
ill

ed
S

lo
ts

Ground-Truth R

Figure 4: Effect from 𝑃 (𝑅) misspecification, where Ref is the
correct model. The left subfigure shows mean and standard
deviation of 𝑘min/|S|.

MatchRank fills all slots in the Monte-Carlo R samples faster as the

overall relevance level increases. However, the average number of

filled slots using the ground-truth relevances 𝑅 is not necessarily

higher, and in fact both L and XL have fewer filled slots per ranking

step than S and XS for 𝑅. So it may be advisable to clip 𝑃 (𝑅) to
a maximum value that is well below 1 to increase robustness to

misspecification.

4.2 Real-World Benchmark Datasets
We now evaluate MatchRank on six benchmark datasets, where

we now learn the relevance model 𝑃 (𝑅) from training data. These

benchmark datasets are constructed from the multi-label datasets

Medical [26], Bibtex [20], Delicious [39], TMC2007 [35], Mediamill

[34], and Bookmarks [20] from the Mulan data repository [40]. Our

data source is the scikit-multilearn library [37].

962

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

Experiment Setup. Each dataset comes with a train/test split. We

consider each example in test set as a candidate, and each label

as a group. We first select 10 labels that cover different numbers

of relevant candidates (the specific label choices are included in

Table 4 in Appendix B), and then allocate a certain number of slots

for each label. We train 𝑃 (𝑅) on the training set using a calibrated

binary logistic regression for each label. For the Medical, Bibtex,

Delicious, Mediamill, and Bookmarks dataset, we use Platt scaling

method [27] to calibrate the probabilistic predictions while for the

TMC2007 dataset, we use isotonic regression. To raise the noise in

the relevance prediction to amore challenging and realistic level, we

mask 20% of the label in both the train and test set.We then draw 100

Monte-Carlo samples from 𝑃 (𝑅) as input to the ranking algorithm.

All rankers are evaluated against the true masked relevance labels

in the test set, meaning that a test example matches a slot if it

contains the corresponding label.

Results. The result are shown in Table 2. For all benchmark

datasets and all numbers of slots per label, MatchRank delivers the

best ranking performance in terms of 𝑘min/|S|. The most competi-

tive heuristic ranker is NTR, but the results show that its heuristic

can fail on some datasets and provide substantially worse rank-

ing performance than MatchRank (e.g. Bookmarks). These results

demonstrate that MatchRank performs robustly over a wide range

of datasets where the 𝑃 (𝑅) is learned from training data.

Analysis. To provide additional insights into the behavior of

MatchRank in comparison to the heuristic rankers, Figure 5 shows

their behavior on each dataset with medium amount of slots per

label. On each subfigure, left panels show the average number of

filled slots over the Monte-Carlo samples as the shortlist size 𝑘

grows. Across all datasets, MatchRank finds a close to optimal rank-

ing while all heuristics require a substantially longer shortlist. This

indicates that the heuristics optimize a fundamentally wrong objec-

tive. Right panels of each subfigure in Figure 5 show the number

of filled slots when using the ground-truth labels for matching.

These plots generally show a gap between MatchRank and the

optimal ranking one can compute from the ground-truth labels.

Since MatchRank performs close to optimal on the Monte-Carlo

samples, this gap can be attributed to the inherent inaccuracy and

uncertainty of 𝑃 (𝑅) in predicting the ground-truth relevance. This

suggests that MatchRank performs close to optimal in terms of its

optimization performance, and that the remaining suboptimality is

largely a result of an imperfect 𝑃 (𝑅).

4.3 College Admission Dataset
To verify the effectiveness of MatchRank under real-world condi-

tions, we consider an anonymized undergraduate admission dataset

from a selective US university. The groups in this datasets are ma-

jors, and we posit that each major has only a fixed number of slots

for admitting qualified students. We consider all majors that ad-

mitted at least 50 students, which leaves us with 13 majors and

19421 applicants in the test set. On the admission decisions from

the prior year we train a boosted tree model with XGBoost [11]

using a logistic loss objective and L2-regularization. This model is

used to predict each applicant’s probability of being admitted, and

we clip the maximum 𝑃 (𝑅) by 0.3. Applicants can indicate their

Table 3: College Admission: Performance of MatchRank in
comparison to heuristics in terms of 𝑘min/|S|. For each trial,
we repeat for 3 random seeds and report the mean and stan-
dard deviation of 𝑘min/|S| in the format of “meanstd”.

𝑠max 30 50 70 100

MatchRank 5.740.26 7.653.08 7.342.87 7.523.07
AND 12.635.98 8.693.48 10.644.45 9.433.16
OR 22.8412.13 19.8710.14 17.658.64 16.447.81
TR 22.5811.07 16.897.58 14.076.03 12.575.02
NTR 7.022.73 8.323.58 8.103.49 7.733.38
Random 30.7816.13 23.1111.61 19.189.32 17.017.83

interests in majors, and the probability of admission to a major that

the applicant did not indicate interest in is set to zero. This provides

us with 𝑃 (𝑅) for all test applicants.
We create 100 Monte-Carlo sampled relevance matrices from this

𝑃 (𝑅) as input to all ranking algorithms. To set the number of avail-

able slots for each member, we use min(⌊0.7 ∗ |relevant applicants
for this major|⌋, 𝑠max) to get an interesting relationship between

supply and demand, and we vary 𝑠max in the following experiments.

We then run our ranking algorithms, and during evaluation we

reveal the applicants ground-truth admissions decisions (i.e. the

true relevance matrix 𝑅) for each candidate. To evaluate, we again

find the minimum shortlist size 𝑘 for each algorithm at which all

slots are filled with relevant applicants.

The results are provided in Table 3. This dataset is substantially

more challenging for all methods, as the density of relevant candi-

dates is small and we need to find a larger fraction of the relevant

candidates to fill all slots. However, even in this challenging setting,

we see that MatchRank is more effective than the heuristic base-

lines. This holds particularly when the number of slots per major

is smaller, as the performance gap between MatchRank and other

heuristic algorithms becomes larger. For larger 𝑠max the majority of

relevant candidates need to be found, such that even a small degree

of inaccuracy in 𝑃 (𝑅) can have large impact.

5 EXTENSIONS AND FUTUREWORK
Instead of binary relevances as assumed in this paper, some ap-

plications may require real-valued relevances (e.g., star-ratings)

where the decision maker aims to maximize the sum of relevances

under slot constraints. In this setting, the optimal solution is given

by the Maximum Weight Bipartite Matching 𝑀𝑊𝐵𝑀 (𝑋,S|𝑅) for
the weighted biadjacency matrix 𝑅. If the MWBM objective is

also monotone submodular
3
, we could simply replace the MBM in

MatchRankwith the MWBM and provide a similar approximation

guarantee for this weighted version of MatchRank.

Another extension is the use of high-dimensional matching in-

stead of the bipartite matching considered in this paper. This could

model slot constraints over more than one category. For example,

college admission may have slot constraints not only for majors but

also for extracurricular teams (e.g., orchestra, athletics). Since slots

for majors are orthogonal to the slots for extracurricular teams, this

3
We find a submodularity proof for maximum generalized flow problem in Fleis-

cher [15], and we would refer readers to that paper as such discussion is beyond the

scope of this paper.

963

Ranking with Slot Constraints KDD ’24, August 25–29, 2024, Barcelona, Spain

100 200 300 400

Ranking Shortlist Size

40

60

80

|S|

N
um

b
er

of
F

ill
ed

S
lo

ts
Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

100 200 300 400

Ranking Shortlist Size

kmin = 1.860|S|

Ground-Truth R

(a) Medical (10 slots per label)

100 300 500 700

Ranking Shortlist Size

50

100

150

|S|

N
um

b
er

of
F

ill
ed

S
lo

ts

Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

100 300 500 700

Ranking Shortlist Size

kmin = 2.265|S|

Ground-Truth R

(b) Bibtex (20 slots per label)

250 300 350 400 450

Ranking Shortlist Size

250

260

270

280

290

|S|

N
um

b
er

of
F

ill
ed

S
lo

ts

Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

250 300 350 400 450

Ranking Shortlist Size

kmin = 1.053|S|

Ground-Truth R

(c) Delicious (30 slots per label)

400 600 800 1000 1200

Ranking Shortlist Size

200

300

400

|S|

N
um

b
er

of
F

ill
ed

S
lo

ts

Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

400 600 800 1000 1200

Ranking Shortlist Size

kmin = 1.322|S|

Ground-Truth R

(d) TMC2007 (50 slots per label)

200 300 400 500

Ranking Shortlist Size

150

200

250

|S|

N
um

b
er

of
F

ill
ed

S
lo

ts

Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

200 300 400 500

Ranking Shortlist Size

kmin = 1.043|S|

Ground-Truth R

(e) Mediamill (30 slots per label)

200 600 1000 1400 1800

Ranking Shortlist Size

0

100

200

|S|
N

um
b

er
of

F
ill

ed
S

lo
ts

Monte-Carlo R Samples

OPT

MatchRank

AND

OR

TR

NTR

Random

kmin for MatchRank

200 600 1000 1400 1800

Ranking Shortlist Size

kmin = 4.090|S|

Ground-Truth R

(f) Bookmarks (30 slots per label)

Figure 5: Real-World Benchmarks: number of filled slots on the Monte-Carlo samples versus the expected number of filled
slots w.r.t. the ground-truth relevances 𝑅. On the right plot of each subfigure, “OPT” is the optimal ranking if the ground-truth
𝑅 was known, which achieves𝑀𝐵𝑀 (𝜎𝑂𝑃𝑇

|S | ,S|𝑅) = |S|. The dashed blue line represents the 𝑘min result for MatchRank, with the
exact ratio over |S| illustrated nearby. Each subfigure represents a single seed result of the described experiment setting.

corresponds to a three-dimensional matching (3-DM) problem. The

3-DM problem is NP-hard and even APX-hard [18], and the best

approximation algorithm so far achieves an error bound of (4/3 +

𝜖) [12]. In general, Hazan et al. [18] show that all 𝑑-DM (𝑑 ≥ 3)

problems cannot be approximated within a factor of 𝑂 (𝑑/ln𝑑) un-
less P = NP. But even if this matching problem cannot be solved

exactly any more, the approximate solutions could give rise to an

approximate ranking algorithm analogous to MatchRank.

6 CONCLUSION
We introduce the problem of ranking under slot constraints, which

allows practitioners to specify conditions that arise in a wide va-

riety of applications. To solve this ranking problem, we develop

the MatchRank algorithm and show that it provides a theoretical

guarantee on its ranking performance. A key insight is that the

ranking objective can be related to the maximum bipartite matching

problem, and that it is monotone submodular. We also show how

MatchRank can be implemented efficiently so that it can efficiently

handle real-world ranking problems of substantial size. Beyond its

theoretical guarantees, MatchRank shows superior ranking perfor-

mance across extensive experiments compared to several heuristic

baselines. This holds across a wide range of datasets and experiment

conditions, and MatchRank shows robustness to sample size and

misspecified relevance distributions. We conclude that the ability

to model complex problems and provide accurate rankings across a

wide range of domains, backed by theoretical guarantees, makes

the slot constraint framework a promising paradigm for tackling

complex real-world ranking problems.

ACKNOWLEDGMENTS
This research was supported in part by NSF Awards IIS-2008139,

IIS-2312865, and OAC-2311521. All content represents the opinion

of the authors, which is not necessarily shared or endorsed by their

respective employers and/or sponsors.

964

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

REFERENCES
[1] Marek Adamczyk, Brian Brubach, Fabrizio Grandoni, Karthik A Sankararaman,

Aravind Srinivasan, and Pan Xu. 2020. Improved approximation algorithms for

stochastic-matching problems. arXiv:2010.08142

[2] Deepak Agarwal, Shaunak Chatterjee, Yang Yang, and Liang Zhang. 2015. Con-

strained Optimization for Homepage Relevance. In Proceedings of the 24th In-
ternational Conference on World Wide Web (Florence, Italy) (WWW ’15 Com-
panion). Association for Computing Machinery, New York, NY, USA, 375–384.

https://doi.org/10.1145/2740908.2745398

[3] Faez Ahmed, John P Dickerson, and Mark Fuge. 2017. Diverse weighted bipartite

b-matching. arXiv:1702.07134

[4] Peter Arcidiacono, Michael Lovenheim, and Maria Zhu. 2015. Affirmative action

in undergraduate education. Annu. Rev. Econ. 7, 1 (2015), 487–518.
[5] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2019. The stochastic matching prob-

lem with (very) few queries. ACM Transactions on Economics and Computation
(TEAC) 7, 3 (2019), 1–19.

[6] Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maximiz-

ing submodular functions. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 1497–1514.

[7] Claudia R Baquet, Patricia Commiskey, C Daniel Mullins, and Shiraz I Mishra.

2006. Recruitment and participation in clinical trials: socio-demographic, ru-

ral/urban, and health care access predictors. Cancer detection and prevention 30,

1 (2006), 24–33.

[8] Robert Bredereck, Piotr Faliszewski, Ayumi Igarashi, Martin Lackner, and Piotr

Skowron. 2018. Multiwinner elections with diversity constraints. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[9] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335–336.

[10] Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and Su-

Lin Wu. 2011. Intent-based diversification of web search results: metrics and

algorithms. Information Retrieval 14 (2011), 572–592.
[11] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[12] Marek Cygan. 2013. Improved approximation for 3-dimensional matching via

bounded pathwidth local search. In 2013 IEEE 54th Annual Symposium on Foun-
dations of Computer Science. IEEE, 509–518.

[13] Van Dang and W. Bruce Croft. 2012. Diversity by Proportionality: An Election-

Based Approach to Search Result Diversification. In Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (Portland, Oregon, USA) (SIGIR ’12). Association for Computing Ma-

chinery, New York, NY, USA, 65–74. https://doi.org/10.1145/2348283.2348296

[14] John P Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2019. Balancing relevance and diversity in online bipartite matching via

submodularity. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 1877–1884.

[15] Lisa Fleischer. 2010. Data center scheduling, generalized flows, and submodu-

larity. In 2010 Proceedings of the Seventh Workshop on Analytic Algorithmics and
Combinatorics (ANALCO). SIAM, 56–65.

[16] Nikhil Garg, Hannah Li, and Faidra Monachou. 2021. Dropping Standardized

Testing for Admissions Trades Off Information and Access. arXiv:2010.04396

[cs] http://arxiv.org/abs/2010.04396

[17] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-

Aware Ranking in Search & Recommendation Systems with Application to

LinkedIn Talent Search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 2221–2231.

https://doi.org/10.1145/3292500.3330691

[18] Elad Hazan, Shmuel Safra, and Oded Schwartz. 2003. On the complexity of

approximating k-dimensional matching. In Approximation, Randomization, and
Combinatorial Optimization.. Algorithms and Techniques. Springer, 83–97.

[19] John E Hopcroft and Richard M Karp. 1973. An nˆ5/2 algorithm for maximum

matchings in bipartite graphs. SIAM Journal on computing 2, 4 (1973), 225–231.

[20] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2008. Multilabel

text classification for automated tag suggestion. In Proceedings of the ECML/PKDD,

Vol. 18. Citeseer, 5.

[21] Samir Khuller, Stephen GMitchell, and Vijay V Vazirani. 1994. On-line algorithms

for weighted bipartite matching and stable marriages. Theoretical Computer
Science 127, 2 (1994), 255–267.

[22] Jon Kleinberg and Manish Raghavan. 2018. Selection Problems in the Presence

of Implicit Bias. arXiv:1801.03533 [cs, stat] http://arxiv.org/abs/1801.03533

[23] Michel Minoux. 1978. Accelerated greedy algorithms for maximizing submodular

set functions. In Optimization techniques. Springer, 234–243.
[24] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. 2015. Lazier than lazy greedy. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 29.

[25] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical
programming 14, 1 (1978), 265–294.

[26] John Pestian, Chris Brew, Pawel Matykiewicz, Dj J Hovermale, Neil Johnson,

K Bretonnel Cohen, and Wlodzislaw Duch. 2007. A shared task involving multi-

label classification of clinical free text. In Biological, translational, and clinical
language processing. 97–104.

[27] John Platt et al. 1999. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Advances in large margin classifiers
10, 3 (1999), 61–74.

[28] Filip Radlinski, Paul N. Bennett, Ben Carterette, and Thorsten Joachims. 2009.

Redundancy, Diversity and Interdependent Document Relevance. SIGIR Forum
43, 2 (dec 2009), 46–52. https://doi.org/10.1145/1670564.1670572

[29] Leonard Ramist, Charles Lewis, and Laura McCamley-Jenkins. 1994. Student

Group Differences in Predicting College Grades: Sex, Language, and Ethnic

Groups. ETS Research Report Series 1994 (1994), 41.
[30] Stephen E Robertson. 1977. The probability ranking principle in IR. Journal of

documentation 33, 4 (1977), 294–304.

[31] Gerard Salton (Ed.). 1971. The SMART Retrieval System: Experiments in Automatic
Document Processing. Prentice-Hall, Englewood Cliffs, NJ.

[32] Rodrygo Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting query

reformulations for web search result diversification. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10. 881–890. https://doi.

org/10.1145/1772690.1772780

[33] A. Singh, D. Kempe, and T. Joachims. 2021. Fairness in Ranking under Uncertainty.

In Neural Information Processing Systems (NeurIPS).
[34] Cees GM Snoek, Marcel Worring, Jan C Van Gemert, Jan-Mark Geusebroek, and

Arnold WM Smeulders. 2006. The challenge problem for automated detection of

101 semantic concepts in multimedia. In Proceedings of the 14th ACM international
conference on Multimedia. 421–430.

[35] Ashok N Srivastava and Brett Zane-Ulman. 2005. Discovering recurring anom-

alies in text reports regarding complex space systems. In 2005 IEEE aerospace
conference. IEEE, 3853–3862.

[36] Zhan Su, Zhicheng Dou, Yutao Zhu, Xubo Qin, and Ji-Rong Wen. 2021. Modeling

Intent Graph for Search Result Diversification. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(Virtual Event, Canada) (SIGIR ’21). Association for Computing Machinery, New

York, NY, USA, 736–746. https://doi.org/10.1145/3404835.3462872

[37] P. Szymański and T. Kajdanowicz. 2017. A scikit-based Python environment for

performing multi-label classification. arXiv:1702.01460 [cs.LG]

[38] Joseph Thekinen and Jitesh H Panchal. 2017. Resource allocation in cloud-

based design and manufacturing: A mechanism design approach. Journal of
Manufacturing Systems 43 (2017), 327–338.

[39] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2008. Effective and

efficient multilabel classification in domains with large number of labels. In Proc.
ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08), Vol. 21.
53–59.

[40] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2009. Mining multi-

label data. Data mining and knowledge discovery handbook (2009), 667–685.

[41] LequnWang, Thorsten Joachims, and Manuel Gomez Rodriguez. 2022. Improving

Screening Processes via Calibrated Subset Selection. arXiv:2202.01147 [cs, stat]

http://arxiv.org/abs/2202.01147

[42] Yisong Yue and T. Joachims. 2008. Predicting Diverse Subsets Using Structural

SVMs. In International Conference on Machine Learning (ICML). 271–278.
[43] ChengXiang Zhai, William W Cohen, and John Lafferty. 2015. Beyond indepen-

dent relevance: methods and evaluation metrics for subtopic retrieval. In Acm
sigir forum, Vol. 49. ACM New York, NY, USA, 2–9.

965

https://arxiv.org/abs/2010.08142
https://doi.org/10.1145/2740908.2745398
https://arxiv.org/abs/1702.07134
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2348283.2348296
https://arxiv.org/abs/2010.04396 [cs]
https://arxiv.org/abs/2010.04396 [cs]
http://arxiv.org/abs/2010.04396
https://doi.org/10.1145/3292500.3330691
https://arxiv.org/abs/1801.03533 [cs, stat]
http://arxiv.org/abs/1801.03533
https://doi.org/10.1145/1670564.1670572
https://doi.org/10.1145/1772690.1772780
https://doi.org/10.1145/1772690.1772780
https://doi.org/10.1145/3404835.3462872
https://arxiv.org/abs/1702.01460
https://arxiv.org/abs/2202.01147 [cs, stat]
http://arxiv.org/abs/2202.01147

Ranking with Slot Constraints KDD ’24, August 25–29, 2024, Barcelona, Spain

In Section A we will provide a proof of Theorem 3.1. In Sec-

tion B, we report the selected labels in our real-world benchmark

experiments.

A PROOF OF THEOREM 3.1
The first step in proving Theorem 3.1 is to prove that the maximum

bipartite matching is monotone submodular.

Lemma A.1. For any relevance matrix 𝑅 and any set of slots S, the
size of the maximum bipartite matching is monotone in 𝑋

∀𝑋⊆C,∀𝐶 ∈C : MBM(𝑋∪{𝐶},S|𝑅) ≥ MBM(𝑋,S|𝑅) (6)

and also submodular in 𝑋 , which means that ∀𝑋 ⊆ C,∀𝐶,𝐶 ′ ∈ C
MBM(𝑋 ∪ {𝐶},S|𝑅) −MBM(𝑋,S|𝑅)

≥ MBM(𝑋 ∪ {𝐶,𝐶 ′},S|𝑅) −MBM(𝑋 ∪ {𝐶 ′},S|𝑅) .

Proof. By a matching M from 𝑋 to S, we refer to a set of

candidate-slot pairsM ⊂ 𝑋 × S such that all pairs are relevant

(𝑅𝑐𝑠 = 1 for all (𝑐, 𝑠) ∈ M) and no candidate or slot appears in more

than one pair inM. We call a matchingM from 𝑋 to S maximum

if |M| is maximized over all matchings from 𝑋 to S.
For monotonicity, we know that every single matching from 𝑋

to S is also a possible matching from 𝑋 ∪ {𝐶} to S, thus the size
of the maximum matching from 𝑋 ∪ {𝐶} to S must be at least the

size of the maximum matching from 𝑋 to S. So Equation 6 holds.

For submodularity, if we denote

𝑀0 = MBM(𝑋,S|𝑅) (7)

𝑀1 = MBM(𝑋 ∪ {𝐶},S|𝑅) (8)

𝑀2 = MBM(𝑋 ∪ {𝐶 ′},S|𝑅) (9)

𝑀12 = MBM(𝑋 ∪ {𝐶,𝐶 ′},S|𝑅) (10)

We want to show that

𝑀1 −𝑀0 ≥ 𝑀12 −𝑀2 . (11)

Let us denote 𝑀1 − 𝑀0 as the LHS and 𝑀12 − 𝑀2 as the RHS

for Equation (11). Equation (6) says both the LHS and RHS are

nonnegative. Additionally, the LHS is upper bounded by 1, as given

any matchingM of size𝑀1 from 𝑋 ∪ {𝐶} to S, we can construct

a matchingM ′ from 𝑋 to S of size at least 𝑀1 − 1 by removing

the unique pair involving 𝐶 from M, if it exists, which shows

𝑀0 ≥ |M ′ | ≥ 𝑀1 − 1. By the same reasoning, the RHS is upper

bounded by 1, and indeed we also have 0 ≤ 𝑀2 − 𝑀0 ≤ 1. Then

since both the LHS and RHS can only take on values 0 or 1, in order

to prove equation (11) it suffices to show that if the RHS equals 1,

then the LHS equals 1.

Assume the RHS equals 1. Then any maximum matchingM
from 𝑋 ∪ {𝐶,𝐶 ′} to S must include a pair (𝐶, 𝑆) for some 𝑆 ∈ S, or
elseM would also be a valid matching from 𝑋 ∪ {𝐶 ′} to S, which
would imply that𝑀2 ≥ |M| = 𝑀12, violating the assumption. We

split on two cases, which as we noted earlier are exhaustive.

Case:𝑀2 −𝑀0 = 0. LetM0 be some maximum matchings from

𝑋 to S. Since 𝑀2 = 𝑀0 by assumption,M0 is also a maximum

matching from 𝑋 ∪ {𝐶 ′} to S. Indeed, M0 is also a matching

from 𝑋 ∪ {𝐶,𝐶 ′} to S, but not a maximum matching, as 𝑀12 >

𝑀2 by assumption. Therefore, by Berge’s theorem, there must

exist an “augmenting path” 𝑃 consisting of candidate-slot pairs

(𝑐1, 𝑠1), . . . , (𝑐𝑇 , 𝑠𝑇) ∈ (𝑋 ∪ {𝐶,𝐶 ′}) × S for all 𝑡 such that all

pairs are relevant, i.e. 𝑅𝑐𝑡 ,𝑠𝑡 = 1 for all 𝑡 , and the path starts and

ends on unmatched edges and alternates between matched and

unmatched edges, i.e. (𝑐𝑡 , 𝑠𝑡) ∉M0 for all 𝑡 and (𝑐𝑡 , 𝑠𝑡−1) ∈ M0 for

all 𝑡 ∈ {2, . . . ,𝑇 }. But then since 𝑃 contains one more unmatched

than matched edge, “applying” 𝑃 toM0 via the set difference op-

eration gives a maximum matching from 𝑋 ∪ {𝐶,𝐶 ′} to S, since
M := (M0 \ 𝑃) ∪ (𝑃 \M0) satisfies |M| = 𝑀0 + 1 = 𝑀2 + 1 = 𝑀12.

But sinceM is a maximum matching from 𝑋 ∪ {𝐶,𝐶 ′} to S, we
must have thatM contains candidate 𝐶 as shown earlier, thus it

cannot contain 𝐶 ′ by the alternating edges property of 𝑃 as both 𝐶

and𝐶 ′ are unmatched inM0. But thenM is a valid matching from

𝑋 ∪ {𝐶} to S, hence𝑀1 ≥ |M| = 𝑀12 = 𝑀0 + 1 as desired.
Case: 𝑀2 −𝑀0 = 1. LetM be a maximum matching from 𝑋 ∪

{𝐶,𝐶 ′} toS; then wemust have |M| = 𝑀12 = 𝑀0+2 by assumption.

If candidate 𝐶 ′ does not appear inM, thenM is a valid matching

from𝑋 ∪{𝐶} toS, so𝑀1 ≥ |M| = 𝑀2+1 ≥ 𝑀0+1 and we are done.
Otherwise, assumeM includes a pair (𝐶 ′, 𝑆 ′) for some 𝑆 ′ ∈ S. But
thenM ′′ :=M \ {(𝐶 ′, 𝑆 ′)} is a valid matching from 𝑋 ∪ {𝐶} to S
with |M ′′ | = 𝑀12 − 1 = 𝑀0 + 1, hence𝑀1 ≥ 𝑀0 + 1 as desired.

□

The monotone submodularity of MBM(𝑋,S|𝑅) implies that our

estimate �̂� (𝑋) is also monotone submodular, since this property is

closed under addition.

Lemma A.2. For any sample of relevance matrices R = [𝑅1, ..., 𝑅𝑛]
and set of slots S, �̂� (𝑋) from Equation (4) is monotone in 𝑋

∀𝑋 ⊆ C,∀𝐶 ∈ C : �̂� (𝑋 ∪ {𝐶}) ≥ �̂� (𝑋)
and also submodular in 𝑋 , which means that ∀𝑋 ⊆ C,∀𝐶,𝐶 ′ ∈ C

�̂� (𝑋∪{𝐶})−�̂� (𝑋) ≥ �̂� (𝑋∪{𝐶,𝐶 ′})−�̂� (𝑋∪{𝐶 ′}) .

Proof. Weknow fromLemmaA.1 that each eachMBM(𝑋,S|𝑅𝑖)
is monotone and submodular. This means that �̂� (𝑋) is a sum of

monotone submodular function, and it is well known that sum is

monotone submodular as well. □

We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Our goal is to bound with high proba-

bility the suboptimality𝑀 (𝑋𝑘) −𝑀 (𝑋 ∗𝑘) between the candidate set

𝑋𝑘 output by the model and the optimal candidate set 𝑋 ∗
𝑘
.

First, note that the approximation guarantee of the greedy algo-

rithm for monotone submodular maximization with a cardinality

constraint [25] guarantees

�̂� (𝑋𝑘) ≥ (1 − 1/𝑒)�̂� (𝑋 ∗𝑘) ≥ (1 − 1/𝑒)�̂� (𝑋
∗
𝑘
), (12)

where 𝑋 ∗
𝑘
= argmax |𝑋 |=𝑘 �̂� (𝑋) is the optimal set on the Monte-

Carlo samples. The second inequality follows from �̂� (𝑋 ∗
𝑘
) ≤ �̂� (𝑋 ∗

𝑘
).

To get a bound in terms of 𝑀 (.) instead of �̂� (.), we need to

bound the error due to Monte-Carlo sampling. We start with the

following equivalent expansion of Equation (12).

𝑀 (𝑋𝑘) ≥
(
1− 1

𝑒

) (
𝑀 (𝑋 ∗

𝑘
)
(
�̂� (𝑋 ∗

𝑘
)−𝑀 (𝑋 ∗

𝑘
)
))
+

(
𝑀 (𝑋𝑘)−�̂� (𝑋𝑘)

)
First, we upper bound �̂� (𝑋 ∗

𝑘
) − 𝑀 (𝑋 ∗

𝑘
), for which we can use

Hoeffding’s inequality since for any 𝑋 it holds that 𝐸𝑅 [�̂� (𝑋)] =

966

KDD ’24, August 25–29, 2024, Barcelona, Spain Wentao Guo∗ , Andrew Wang∗ , Bradon Thymes, and Thorsten Joachims

Table 4: Selected Labels in Real-world Benchmark Experi-
ments.

Dataset
names

Selected
label
indices

Selected label names

Medical 0, 23,

41, 44,

32, 24,

31, 9,

4, 31

Class-0-593_70, Class-23-786_50,

Class-41-591, Class-44-786_07,

Class-32-486, Class-24-596_54,

Class-31-780_6, Class-9-599_0,

Class-4-753_0, Class-31-780_6

Bibtex 44, 134,

63, 10,

14, 104,

131, 52,

117, 83

TAG_electrochemistry,

TAG_statphys23,

TAG_immunoassay, TAG_apob,

TAG_bibteximport, TAG_ontology,

TAG_software, TAG_evolution,

TAG_requirements,

TAG_mathematics

Delicious 924, 452,

809, 99,

941, 733,

540, 897,

946, 700

TAG_video, TAG_howto,

TAG_software, TAG_blog,

TAG_web, TAG_reference,

TAG_linux, TAG_tutorial,

TAG_webdesign,

TAG_programming

TMC2007 13, 7,

21, 5,

18, 4,

1, 12,

11, 17

class14, class08,

class22, class06,

class19, class05,

class02, class13,

class12, class18

Mediamill 78, 24,

84, 94,

65, 96,

51, 2,

67, 66

Class79, Class25,

Class85, Class95,

Class66, Class97,

Class52, Class3,

Class68, Class67

Bookmarks 20, 163,

151, 144,

145, 109,

57, 89,

92, 87

TAG_books, TAG_shipyard,

TAG_rssfeedek, TAG_recept,

TAG_recipe, TAG_medical,

TAG_firefox, TAG_journal,

TAG_kultur, TAG_java

𝑀 (𝑋) and the𝑀𝐵𝑀 (𝑋,S|𝑅𝑖) (𝑖 ∈ {1, . . . , 𝑛}) are i.i.d. Monte-Carlo

samples with 0 ≤ 𝑀𝐵𝑀 (𝑋,S|𝑅𝑖) ≤ 𝑠 .

𝑃 (𝑀 (𝑋) − �̂� (𝑋) > 𝜖) ≤ exp(−2𝑛𝜖2/𝑠2).
We thus get for our particular𝑋 ∗

𝑘
that with probability 0 ≤ 𝛿1 ≤ 1/2

�̂� (𝑋 ∗
𝑘
) −𝑀 (𝑋 ∗

𝑘
) ≤ 𝑠

√︂
ln(1/𝛿1)

2𝑛
:= 𝜖1 .

Second, we need to upper bound 𝑀 (𝑋𝑘) − �̂� (𝑋𝑘). Since 𝑋𝑘 is

selected on the same Monte-Carlo sample we evaluate it on, we

need to ensure uniform convergence over all 𝑋 . We thus take the

union bound over the setH𝑘 of all possible candidate sets of size 𝑘 :

𝑃 (max

𝑋
(𝑀 (𝑋) − �̂� (𝑋)) > 𝜖) ≤ |H𝑘 | exp(−2𝑛𝜖2/𝑠2)

≤
(
√
2𝜋𝑘

(
𝑘

𝑒

)𝑘
𝑒

1

12𝑘

)
exp

(
−2𝑛𝜖2
𝑠2

)
The second step uses Stirling’s inequality, since |H𝑘 | = 𝑘!. By

letting the final expression equal 𝛿2 and solving for 𝜖 , we get that

with probability 0 ≤ 𝛿2 ≤ 1/2 it holds for all 𝑋 (and therefore also

for any 𝑋𝑘 our algorithm picks) that

𝑀 (𝑋𝑘) − �̂� (𝑋𝑘) ≤ 𝑠

√︃
(𝑘 ln𝑘−𝑘+𝑂 (ln𝑘))+ln(1/𝛿2)

2𝑛 := 𝜖2 .

Putting these bounds together, we get that for all 0 < 𝛿1, 𝛿2 < 1/2,
we have with probability 1 − 𝛿1 − 𝛿2,

𝑀 (𝑋𝑘) ≥
(
1 − 1

𝑒

)
(𝑀 (𝑋 ∗

𝑘
) − 𝜖1) − 𝜖2

≥
(
1 − 1

𝑒

)
𝑀 (𝑋 ∗

𝑘
) − (𝜖1 + 𝜖2) .

Setting 𝛿1 = 𝛿2 = 𝛿/2 gives the claimed bound.

□

B SELECTED LABELS IN REAL-WORLD
BENCHMARK EXPERIMENTS

We report the selected labels for our real-world benchmark experi-

ments in Table 4. We pick these labels with a consideration of both

prediction precision (these labels are not hard to predict by logistic

regression models) and sufficient competition among candidates

(the positive occurrences of these labels should be larger than the

number of slots). We do not change the selected labels when we

change the number of slots per label in Table 2.

967

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	3.1 Ranking Objective
	3.2 MatchRank Algorithm
	3.3 Theoretical Analysis
	3.4 Computational Efficiency of MatchRank and Improvements

	4 Empirical Evaluation
	4.1 Synthetic Datasets
	4.2 Real-World Benchmark Datasets
	4.3 College Admission Dataset

	5 Extensions and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 3.1
	B Selected labels in real-world benchmark experiments

