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ABSTRACT
Evaluating a new ranking policy using data logged by a previously

deployed policy requires a counterfactual (off-policy) estimator

that corrects for presentation and selection biases. Some estimators

(e.g., the position-based model) perform this correction by making

strong assumptions about user behavior, which can lead to high

bias if the assumptions are not met. Other estimators (e.g., the item-
position model) rely on randomization to avoid these assumptions,

but they often suffer from high variance. In this paper, we develop

a new counterfactual estimator, called Interpol, that provides a

tunable trade-off in the assumptions it makes, thus providing a

novel ability to optimize the bias-variance trade-off. We analyze the

bias of our estimator, both theoretically and empirically, and show

that it achieves lower error than both the position-based model

and the item-position model, on both synthetic and real datasets.

This improvement in accuracy not only benefits offline evaluation

of ranking policies, we also find that Interpol improves learning

of new ranking policies when used as the training objective for

learning-to-rank.
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1 INTRODUCTION
The practice of evaluating new ranking policies using data logged

by a previously deployed policy is critical to improving search
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and recommendation systems. A key advantage of such offline

evaluation over online A/B tests is improved experimental velocity

and reduced impact on the user experience. In particular, offline

evaluation can screen out bad ranking policies so that users are

exposed only to the most promising new policies. Furthermore,

accurate offline evaluation enables offline learning of new ranking

policies, including model-selection processes (e.g., hyperparameter

tuning, feature selection) that would be difficult to perform online.

The core component of offline evaluation is counterfactual (a.k.a.

off-policy) estimation. It corrects for the difference between the

logging (or behavior) policy that produced the rankings when the

data was logged and the target policy that we want to evaluate

offline. Since the rankings of the logging and target policies are

typically different, the counterfactual estimator needs to address

the following counterfactual question: how would the new target

policy have performed if it had been used instead of the logging

policy? This question is somewhat easier to answer in the standard

contextual bandit setting, where we already have a healthy reper-

toire of accurate and practically effective counterfactual estimators

[17, 29, 30, 48, 52]. For the problem of ranking, however, we still

lack equally effective estimators that come with strong theoretical

guarantees for both learning and evaluation.

The key challenge in designing counterfactual estimators for

ranking lies in the combinatorial nature of rankings. In particular,

the large number of possible rankings would lead to unaccept-

able variance if we naively applied contextual-bandit estimators

[17, 29, 30, 48, 52]. To reduce variance, counterfactual estimators

are often designed with modeling assumptions about how the users’

interactions (e.g., clicks) decompose across positions in the ranking,

and correct for the associated presentation biases. Unfortunately,

no single model is right for every problem. Existing estimators

either make unrealistically strong modeling assumptions (e.g., the

position-based model (PBM) [12, 26, 50]) which lead to biased esti-

mates, or they do not provide sufficient variance reduction (e.g. the

item-position model (IPM) [31]). In many real-world situations, this

leaves practitioners with no good choice of estimator to achieve

a reasonable bias-variance trade-off, as modeling assumptions are

fixed and cannot be parameterized easily.

To fill this gap, we introduce a new estimator, called Interpol,
which provides flexible control over a rich space of modeling as-

sumptions so as to better balance bias and variance under realistic

conditions. In particular, Interpol is the first estimator that allows

practitioners to adjust its modeling assumptions to detailed prop-

erties of the user interface (e.g., screen size, pagination) in which

https://doi.org/10.1145/3626772.3657810
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ranking is applied. The estimator subsumes the PBM and IPM es-

timators as special cases, and we propose two variants that apply

to both the full and limited visibility settings. The key modeling

flexibility lies in the definition of windows in which a local version

of the PBM is (approximately) correct. Different window systems

model different user behavior; for example, if scrolling happens in

batches. Our approach thereby allows to tailor the estimator to the

specifics of the user interface. Different window systems character-

ize the user experience and how trustworthy we deem position bias

correction in these windows. We show that the choice of windows

and their size provides a bias-variance trade-off that can deliver

substantial improvements in estimation accuracy. Furthermore, we

show that Interpol is always unbiased when the position bias curve

is correctly specified; and since it can have lower variance than

both PBM and IPM, it can have lower overall error.

In addition to characterizing Interpol’s theoretical properties, we
evaluate its empirical performance on both synthetic and bench-

mark datasets, as well as on a real-world estimation problem from

a major media streaming service. Our experiments confirm that

Interpol can indeed provide improved estimation accuracy, com-

pared to the PBM and IPM estimators—especially when the position

bias curve is misspecified. We also show how to incorporate In-
terpol into the training objective of a learning-to-rank algorithm.

We thereby provide a novel training procedure for policies in the

span of the IPM and PBM at both extremes. This leads to improved

offline learning of new ranking policies.

2 RELATEDWORK
Our work addresses off-policy evaluation of ranking policies [26, 45,

50]. The primary challenge in off-policy evaluation is presentation

bias, such as positional examination bias or trust bias (see, e.g.,

[3, 24, 25]). To counteract these biases and to keep variance under

control, an estimator must make certain assumptions about how

users interact with the system, commonly referred to as a click
model [11, 31].We extend, and compare to, two popular clickmodels

and their corresponding estimators: the position-based model [12,

26, 50] and the item-position model [31]. Our focus is on these

two models using inverse propensity weighting, in contrast to

reward regression, see for example [34, 41]. Other popular click

models are based on, for example, cascade behavior and probabilistic

extensions, which we do not study here. See, for example, [7, 15,

18, 19, 49].

Another consideration is whether policies rank all available

items (i.e., the full visibility setting) or output only the top-𝑘 most

promising items (i.e., the limited visibility setting). Estimators for

the latter, more challenging setting have been proposed in [38].

One of our proposed estimators builds on this work.

The bias-variance trade-off inherent to importance weighting

estimators [22, 39] motivates our work. Other ways to mitigate vari-

ance include importance weight truncation (a.k.a. clipping) [23] and
control variates, such as self-normalization [33, 44], or doubly-robust
methods [14]—the latter of which have recently been extended to

the ranking setting [27, 37, 41]. Our key ideas are complementary

to all of these methods, and these techniques could also be com-

posed with our proposed estimators. The key novelty of our idea

is the interpolation between modelling assumptions (i.e., the PBM

and IPM) with its resulting bias-variance trade-off compared to the

aforementioned approaches.

While off-policy evaluation assumes that a target policy has

been given, off-policy learning tries to find a target policy that

maximizes reward. In this work, we focus on the policy gradient
[8, 9, 35, 36, 42, 53, 54] approach to off-policy learning, which di-

rectly optimizes a counterfactual reward estimator using a differ-

entiable class of policies. Studies have shown that policy learning

with more accurate counterfactual estimators leads to better poli-

cies [2, 21, 28]. Existing applications using counterfactual evalu-

ators [54] have been built on top of the PBM estimator. We are

therefore motivated to try the off-policy policy gradient with Inter-
pol, resulting in better performing models than using the PBM or

IPM as underlying reward estimators.

3 BACKGROUND
We are interested in estimating the expectation of a reward signal

based on clicks (or any other user feedback) for a given target

policy, 𝜋 , using recorded interactions from a logging policy, 𝜋0.

The expected reward depends on the user’s context, 𝑥 , the order

in which items were displayed (i.e., the ranking), 𝑌 , and the user’s

behavior when browsing the ranking (i.e., a click model). We denote

the expected reward by

Δ𝜆 (𝜋) = E𝑥E𝑐E𝑌∼𝜋 ( · |𝑥 )

[ ∑︁
𝑦∈𝑌

𝜆(𝑦 |𝑌 )𝑐 (𝑦 |𝑌 )
]
,

where 𝑐 (𝑦 |𝑌 ) ∈ {0, 1} denotes if the item 𝑦 in list 𝑌 was clicked

and 𝜆(𝑦 |𝑌 ) is a weighting factor that lets us represent different

linearly decomposable IR metrics (see also [2, 38]). For example, for

𝜆(𝑦 |𝑌 ) = log
2
(1 + 𝑌 [𝑦])−1, where 𝑌 [𝑦] denotes the rank of item

𝑦 in list 𝑌 , we obtain discounted cumulative gain (DCG); or, for

𝜆(𝑦 |𝑌 ) = 𝑌 [𝑦], we obtain the average relevance position (ARP).

Both the logging and target policies can be stochastic, and we

use 𝜋0 (·|𝑥) and 𝜋 (·|𝑥), respectively, to denote their conditional

distributions over the space of rankings.

For simplicity of exposition
1
we will focus on the case where

𝜆(𝑦 |𝑌 ) = 1, resulting in the expected number of total clicks,

Δ(𝜋) = E𝑥E𝑐E𝑌∼𝜋 ( · |𝑥 )

[ ∑︁
𝑦∈𝑌

𝑐 (𝑦 |𝑌 )
]
. (1)

To estimate Equation (1), we use a dataset of 𝑛 logged interactions,

D =
{
𝑥𝑖 , 𝑌 𝑖

0
, 𝑐 (·|𝑌 𝑖

0
), 𝜋0

}𝑛
𝑖=1

,

where rankings are produced by sampling 𝑌 𝑖
0
∼ 𝜋0 (·|𝑥𝑖 ). We use

𝑌 [𝑦] to denote the rank of item 𝑦 in ranking 𝑌 . If 𝑦 is not ranked

at a visible position (e.g., below 𝑘 in a top-𝑘 ranking), then 𝑌 [𝑦]
outputs a null value (i.e., 𝑌 [𝑦] = ∅).

Importance weighting estimators. The types of counterfac-
tual estimators for Δ(𝜋) that we consider employ some form of im-
portance weighting. For a non-negative weighting function,

𝑤 (𝑦 |𝑌,𝑌0) ≥ 0, we define a generic ranking estimator that weights

clicks at the item level,

Δ̂(𝜋 |D) = 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑦∈𝑌 𝑖

𝑤 (𝑦 |𝑌,𝑌0) × 𝑐 (𝑦 |𝑌 𝑖0 ), (2)

1
The generalization of our work is straightforward but omitted for the sake of suc-

cinctness; see for example [2, 38].
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which we instantiate with different weighting functions𝑤 (𝑦 |𝑌,𝑌0)
subsequently. In general, this weight can be a function of the item 𝑦

in question, the target and logged rankings 𝑌 and 𝑌0, and implicitly

other logged variables. It corrects for selection biases and user

behavior (e.g., position bias) under different click models. Following

are two popular click models used in the literature.

Item-position model. One general click model is the item-
position model (IPM) [31]. It allows clicks to jointly depend on the

displayed item, its rank and the context. By assumption, clicks are

independent of items displayed at other ranks. The expectation of a

click on item𝑦 in list𝑌 (in context 𝑥 ) is E𝑐 [𝑐 (𝑦 |𝑌 ) |𝑥] = 𝑐 (𝑦,𝑌 [𝑦] |𝑥).
In this model, we assume that the logging policy 𝜋0 is stochas-

tic, and that we know the marginal probability (i.e., propensity)
P(𝑌0 [𝑦] = 𝑗 | 𝑥, 𝜋0) with which item 𝑦 is ranked at position 𝑗 . The

assumption of independence between positions in the ranking im-

plies that it suffices to estimate the expected clicks for each position

in the ranking individually. We can therefore appeal to the stan-

dard inverse propensity score (IPS) estimator. The IPM estimator for

rankings is a sum of IPS estimators. It is expressed by the generic

estimator in Equation (2) with importance weight

𝑤𝑖𝑝 (𝑦 |𝑌,𝑌0) =
𝐼 {𝑌0 [𝑦] = 𝑌 [𝑦]}

P(𝑌0 [𝑦] = 𝑌 [𝑦] |𝑥, 𝜋0)
, (3)

where 𝐼 {·} denotes the indicator function that returns 1 if its ar-

gument is true, and 0 otherwise.
2
When its modeling assumptions

hold, the IPM estimator is unbiased. Unfortunately, it often suffers

from variance. It only weights a click if the clicked item has match-

ing rank under the logging and target policies, potentially dividing

by small propensities. It does not correct explicitly for differences

in positions, and thus uses less efficiently the available data.

Position-based model. Another popular click model [4, 12,

20, 51] is the position-based model (PBM). Like the IPM, the PBM

assumes that clicks are independent of other positions in the rank-

ing. However, the PBM makes an additional assumption that the

probability of each click factorizes as the product of the item’s ex-

pected relevance to the user (independent of where it is ranked),

and the probability that the user looks at the position in which

the item is ranked (independent of whether the item is relevant).

This explicitly models the user’s examination probability, which

we refer to as a position bias. Using rel(𝑦) to denote item relevance,

and 𝑝𝑘 = P(𝑜 (𝑦) |𝑌 [𝑦] = 𝑘) to denote the position bias (where

𝑜 (𝑦) denotes the event that item 𝑦 is observed), the expected click

value is E𝑐 [𝑐 (𝑦 |𝑌 ) |𝑥] = rel(𝑦 |𝑥) × P(𝑜 (𝑦) |𝑌 [𝑦]) . The PBM esti-

mator weights items according to the ratio of their examination

probabilities under the target ranking 𝑌 and the logged ranking 𝑌0.

This leads to the importance weight

𝑤𝑝𝑏𝑚 (𝑦 |𝑌,𝑌0) =
𝑝𝑌 [𝑦 ]
𝑝𝑌0 [𝑦 ]

, (4)

in Equation (2). This weight reflects the intuition that clicks on items

that have greater visibility under the target ranking should get a

higher weight, and vice versa. As no information about the logging

policy beyond the ranking itself is used, we will sometimes refer to

this estimator as being policy-oblivious. Like the IPM estimator, the

PBM estimator can be unbiased, but the conditions for unbiasedness

2
We could alternatively use the probability under the target policy instead of the

indicator function, which is equivalent in expectation for any stochastic target policy.

are more involved. Its modeling assumptions must hold and it

requires the true position biases to be known; further, in this version

of the estimator, all relevant items must be observable under the

logging policy [38] (i.e., the full visibility setting). In practice, the

true position biases are estimated from data [4, 6, 16, 40, 51], which

can introduce significant bias in the reward estimates. Yet, the PBM

estimator tends to have lower variance than the IPM estimator.

Informally speaking, the variance reduction comes from a more

efficient use of all data (not just matching ranks) combined with

stronger assumptions on the user behavior. Thus, the PBM estimator

trades an increase in bias for a reduction in variance.

Policy-aware estimation in the limited visibility setting.
If the number of slots 𝑘 where items are displayed is smaller than

the number of ranked items 𝐾 (i.e., the limited visibility setting),

the PBM estimator using Equation (4) suffers from a selection bias.

Recent work by [38] mitigates this bias by extending the PBM

estimator to explicitly account for visibility under the logging policy

(e.g., top-k rankings). This leads to the following importance weight:

𝑤𝑝𝑎 (𝑦 |𝑌,𝑌0) =
𝑝𝑌 [𝑦 ]∑𝑘

𝑗=1 P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)𝑝 𝑗
. (5)

The expression in the denominator equals the probability that an

item is observed in one of the 𝑘 visible positions under the logging

policy, i.e., P(𝑜 (𝑦) |𝑥, 𝜋0), and hence integrates out the position

where an item was shown. The policy-aware PBM estimator can

be unbiased in the limited visibility setting, provided the PBM

assumptions hold and the true position biases are known. However,

like the policy-oblivious PBM estimator, the policy-aware version

still suffers from bias when the position biases are misspecified, so

it represents a similar bias-variance trade-off.

4 INTERPOL ESTIMATOR
In the following, we define a spectrum of modeling assumptions

(on which the IPM and PBM are extreme cases) that will allow us

to control the bias-variance trade-off of off-policy evaluation in

these two click models. This leads us to developing a new class of

estimators that parameterizes the modeling assumptions, with the

IPM and PBM as special cases. This new estimator, called Interpol,
is based on the idea that a position bias correction of PBM can be

locally accurate, even if the full PBM may produce unacceptable

bias. For example, the PBM may be accurate enough to predict the

clickthrough rate of an item 𝑦 at position 1 in the target ranking if

the logging policy puts 𝑦 in position 2, but not if the logging policy

ranked 𝑦 in position 20. In the latter case, even small inaccuracies

greatly distort𝑤𝑝𝑏𝑚 (𝑦 |𝑌,𝑌0) and thus lead to unacceptable bias.

4.1 Window systems
Based on the above reasoning, we introduce the notion of a window
system to restrict where the PBM is used. Informally, a window

system defines regions of the ranking that are considered “safe" for

applying position bias correction. For a given item at a particular

rank under the target policy, we check if its rank under the logging

policy falls within the window; if so, we apply position bias correc-

tion. Otherwise the assigned weight is set to zero, as would be the

case under the IPM.

Definition 4.1 (Window System). A window system W assigns

every visible position 𝑗 in the target ranking a non-empty set of
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Figure 1: Illustration of the importance-weight computation
for the stacked and balanced versions of Interpol, for the
banded window system with 𝑇 = 1 (green region). The tar-
get and logging policies place an item at position 3 and 2

respectively. For stacked Interpol, we compute the probabil-
ity that the logging policy placed the item inside the window
corresponding to the rank assigned by the target policy. For
balanced Interpol, we compute the probability that the item
was seen by the user in the window under the logging policy.

associated visible positionsW( 𝑗) in the logged ranking in which

position bias correction can be applied.

We could alternatively define windows that differentiate on the

context 𝑥 and the full target ranking𝑌 , but for simplicity of notation

we do not consider this explicitly.

Note that the window system ∀𝑗 : W𝐼𝑃𝑀 ( 𝑗) = { 𝑗} recovers

the IPM (i.e., only consider cases where the rank under 𝜋0 and 𝜋

match). Similarly, the window system ∀𝑗 : W𝑃𝐵𝑀 ( 𝑗) = {1, 2, . . . }
recovers the PBM (i.e., always use position bias correction). More

generally, however, the choice of window system provides a means

of tailoring the assumptions of the estimator to the properties of

the user interface and its effect on user behavior, as the following

examples illustrate.

Paging Windows: In some interfaces, the user reads the rank-

ing in pages of 4. The PBM may be reasonably accurate

on each page, but not between pages. The window system

W( 𝑗) = {1, 2, 3, 4} for 𝑗 ∈ {1, 2, 3, 4},W( 𝑗) = {5, 6, 7, 8} for
𝑗 ∈ {5, 6, 7, 8}, etc. models this.

Scrolling Windows: In some interfaces (e.g., mobile apps),

the top 4 positions can be seen without scrolling, such that

the PBM is more accurate there. This motivates using win-

dowsW( 𝑗) = {1, 2, 3, 4} for 𝑗 ∈ {1, 2, 3, 4}, and then the IPM

windows in positions 𝑗 ≥ 5 with W( 𝑗) = { 𝑗}.
Banded Windows: The window system ∀𝑗 : W𝑇 ( 𝑗) = { 𝑗 −
𝑇, . . . , 𝑗 +𝑇 } applies the PBM to the local window of radius𝑇

around each position 𝑗 in the target ranking. This captures a

continuous scrolling UI, wherein the PBM is accurate within

a sliding window.

For the top-𝑘 setting, only the first 𝑘 positions are visible, so each

window needs to be suitably restricted to positions that are visible

under the logging policy.

In our experiments, we focus on the Banded Window System

W𝑇 , but we do not argue that any of the window systems listed

above is superior to the others. Our key point in providing these

examples lies in demonstrating the flexibility of our framework for

exploiting the properties of a given application.

In the following subsections, we develop two versions of Interpol.
One is related to the policy-oblivious approach [38], the other to

the policy-aware approach [38]. After introducing both Interpol
variants, we show that both versions are unbiased if user behavior

is correctly modeled by a position-based model under the given

window system W. Furthermore, we bound the bias of Interpol in
case the position bias curve is misspecified.

4.2 Stacked Interpol
The first variant of Interpol removes the selection bias of the logging

policy in a first step, and the position bias in a second step. This leads

to a stacked importance weight, where the first weight corrects for

the probability P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0) of the logging policy 𝜋0
hitting the window W(𝑌 [𝑦]) corresponding to the target position

𝑌 [𝑦], and the second weight corrects for the position mismatch

inside the window using the PBM:

𝑤
stack

(𝑦 |𝑌,𝑌0) =
𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}

P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)
𝑝𝑌 [𝑦 ]
𝑝𝑌0 [𝑦 ]

. (6)

The term 𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])} sets the weight to zero if the logging
policy places 𝑦 outside the target window.

For illustration, consider the example in Figure 1. Item𝑦 is ranked

at position 3 by the target policy, and at position 2 by the logging

policy. The green region indicates the Banded WindowW𝑇 (3) =
{2, 3, 4} around position 3 with radius 𝑇 = 1. The first weight

removes the selection bias by dividing by the probability of the

logging policy hitting this window, i.e. 1/(0.4+0.1+0.2). The second
weight 0.8/0.9 corrects the position bias of position 3 vs. 2 per the

PBM.

Observe that𝑤
stack

(𝑦 |𝑌,𝑌0) recovers the PBM and the IPM as ex-

treme cases. For the IPM window system ∀𝑗 : W𝐼𝑃𝑀 ( 𝑗) = { 𝑗}, the
ratio 𝑝𝑌 [𝑦 ]/𝑝𝑌0 [𝑦 ] is always 1, and the first part of𝑤

stack
(𝑦 |𝑌,𝑌0)

is identical to the IPM. Similarly, for the PBM window system ∀𝑗 :
W𝑃𝐵𝑀 ( 𝑗) = {1, 2, . . . }, the denominator P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)
is equal to 1 under full visibility, since the logging policy always

puts any item 𝑦 somewhere in the ranking. What remains is the

PBM weight, 𝑝𝑌 [𝑦 ]/𝑝𝑌0 [𝑦 ] .
For other window systems, the first term of𝑤

stack
(𝑦 |𝑌,𝑌0) gener-

alizes the IPM estimator by considering matches inside the window.

Interpol thus divides by the probability of hitting the window,

P(𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}|𝜋0, 𝑥) =
∑︁

𝑗∈W(𝑌 [𝑦 ] )
P(𝑌0 [𝑦] = 𝑗 |𝜋0, 𝑥),

instead of the probability of an exact match. The larger the window,

the bigger the probability that our Interpol estimator exploits an

observation. This can lead to variance reduction compared to the

IPM. Furthermore, we show that the following relaxed support

condition suffices for Interpol to be unbiased.

Definition 4.2 (Full Window Support). The logging policy 𝜋0 has

full window support for target policy 𝜋 in window systemW if, for

all contexts 𝑥 , items 𝑦, and positions 𝑗 with P(𝑌 [𝑦] = 𝑗 |𝑥, 𝜋) > 0

in the target ranking 𝑌 , it follows that P(𝑌0 [𝑦] ∈ W( 𝑗) |𝑥, 𝜋0) > 0.

Informally speaking, this means that for all positions where the

target policy could place an item, we require the logging policy to

provide a range of positions that intersects with the target positions.

Full window support is strictly weaker than the support condition

required by the IPM (i.e., positivity), where every position in the
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ranking must have full support under the logging policy. We now

show that the stacked Interpol estimator Δ̂stack

W (𝜋 |D) (Equation (2)

with the weight in Equation (6)) is unbiased for any window system.

Proposition 4.3. Δ̂stack
W (𝜋 |D) is an unbiased estimator of Δ(𝜋)

for a window systemW if the logging data is generated from a known
logging policy 𝜋0 with full window support for W (Definition 4.2),
under the position-based model with known position bias curve 𝑝 > 0.

Proof. Let Δ̂stack

W (𝜋 |𝑥,𝑌0, 𝑐) denote the estimator for a single ob-

servation (𝑥,𝑌0, 𝑐). To show that Δ̂stack

W (𝜋 |D) is unbiased, it suffices

to show that Δ̂stack

W (𝜋 |𝑥,𝑌0, 𝑐) is unbiased, since it is straightforward
to verify that E[Δ̂stack

W (𝜋 |D)] = E[Δ̂stack

W (𝜋 |𝑥,𝑌0, 𝑐)]. We evaluate

E
[
Δ̂stack

W (𝜋 |𝑥,𝑌0, 𝑐)
]

(7)

= E𝑐E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}
P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)

𝑝𝑌 [𝑦 ]
𝑝𝑌0 [𝑦 ]

𝑐 (𝑦 |𝑌0)
 (8)

= E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}
P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)

𝑝𝑌 [𝑦 ]
𝑝𝑌0 [𝑦 ]

E𝑐𝑐 (𝑦 |𝑌0)
 (9)

= E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}
P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)

𝑝𝑌 [𝑦 ]rel(𝑦)
 (10)

=
∑︁
𝑦∈𝑌

E𝜋0
[𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}]

P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)
𝑝𝑌 [𝑦 ]rel(𝑦) (11)

=
∑︁
𝑦∈𝑌

𝑝𝑌 [𝑦 ]rel(𝑦) = E𝑐E𝜋

∑︁
𝑦∈𝑌

𝑐 (𝑦)
 . (12)

Line (8) is obtained by using the definition of (2). In line (9) we

pull the expectation of the click model inside the sum, exploit-

ing its linearity. Then we use the definition of a click under the

PBM in line (10). Since 𝑝𝑌0 [𝑦 ] > 0 inside the window W(𝑌 [𝑦]),
the examination probabilities (i.e., position biases) under the log-

ging policy cancel out. In line (11) we pull the expectation with

respect to the logging policy inside the sum, then in line (12) we use

E𝜋0
[𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}] = P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0) and sim-

plify further. Note that the denominator P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0)
is always positive due to full window support, and it is not a random

variable w.r.t. 𝑌0 as we know the probability with which any item

appears in a window around 𝑌 [𝑦]. Finally, we apply the previous

identities in reverse using the PBM under the target policy 𝜋 . □

The conditions of the above proof can be further relaxed, as it

only applies the PBM inside of each window W( 𝑗). Each window

could use its own local position bias curve that is locally (but not

necessarily globally) correct. Such local position bias estimates are

naturally provided by the position bias estimators in [4].

Interestingly, this estimator is unbiased even in the limited vis-

ibility setting, providing an alternative to the estimator based on

(5). If an item 𝑦 is in 𝑌 but not visible in 𝑌0, then 𝑌0 [𝑦] = ∅ and

the importance weight is zero, since 𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])} = 0.

When 𝑦 is visible in 𝑌0, we use the probability of 𝜋0 ranking 𝑦 in

the window to up-weight the position bias ratio. Thus, we only

require that P(𝑌0 [𝑦] ∈ W(𝑌 [𝑦]) |𝑥, 𝜋0) > 0, which corresponds

precisely to full window support.

4.3 Balanced Interpol
We now present a policy-aware variant of Interpol that uses the
marginal of the twoweighting components as its importanceweight.

In analogy to [1], we call this balanced Interpol, and we denote it

by Δ̂bal

W (𝜋 |D). The importance weight of balanced Interpol,

𝑤
bal

(𝑦 |𝑌,𝑌0) =
𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])} × 𝑝𝑌 [𝑦 ]∑

𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗 × P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)
, (13)

computes the probability that an item is seen by the user in the

window around its target rank under the logging policy. This is

illustrated in Figure 1, where the examination probability is 0.9 ·
0.4 + 0.8 · 0.1 + 0.7 · 0.2 = 0.58.

Like the stacked Interpol estimator, the balanced Interpol estima-

tor coincides with the IPM estimator for the IPM window system.

Similarly, for the PBM window system we recover the policy-aware

PBM, and for the PBM window system restricted to the top-𝑘 posi-

tions ∀𝑗 : W( 𝑗) = {1, . . . , 𝑘} we recover the top-𝑘 estimator from

[38]. In between these extremes, the balanced estimator is a policy-

aware PBM confined to a window around the target rank. We now

show that the balanced Interpol estimator is unbiased.

Proposition 4.4. Δ̂bal
W (𝜋 |D) is an unbiased estimator of Δ(𝜋)

for a window systemW if the logging data is generated from a known
logging policy 𝜋0 with full window support for W, under the PBM
with a known position bias curve 𝑝 > 0.

Proof of Proposition 4.4. Let Δ̂bal

W (𝜋 |𝑥,𝑌0, 𝑐) again denote the
estimator for a single observation, we show that Δ̂bal

W (𝜋 |𝑥,𝑌0, 𝑐) is
unbiased, since E[Δ̂bal

W (𝜋 |D)] = E[Δ̂bal

W (𝜋 |𝑥,𝑌0, 𝑐)]. Recalling the
importance weight formula in (13), we note that the denominator is

the probability that item𝑦 is observed in the window corresponding

to its target rank, under the distribution induced by the user and

the logging policy; and further, that this quantity is not a random

variable w.r.t. 𝑌0 [𝑦]. Thus, for any window systemW we have

E𝑐E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}𝑝𝑌 [𝑦 ]𝑐 (𝑦 | 𝑌0)∑
𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)

 (14)

= E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}𝑝𝑌 [𝑦 ]E𝑐 [𝑐 (𝑦 | 𝑌0)]∑
𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)

 (15)

= E𝜋0


∑︁
𝑦∈𝑌

𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}𝑝𝑌 [𝑦 ]𝑝𝑌0 [𝑦 ]rel(𝑦)∑
𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)

 (16)

=
∑︁
𝑦∈𝑌

𝐸𝜋0
[𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}𝑝𝑌0 [𝑦 ] ]𝑝𝑌 [𝑦 ]rel(𝑦)∑

𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0)
(17)

=
∑︁
𝑦∈𝑌

𝑝𝑌 [𝑦 ]rel(𝑦) = E𝑐E𝜋

∑︁
𝑦∈𝑌

𝑐 (𝑦)
 . (18)

Line (15) pulls the expectation of the click model inside the

sum, exploiting the linearity of the expectation. Line (16) uses the

definition of a click under the PBM. Then in Line (17) we pull
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the expectation with respect to the logging policy inside the sum.

Finally line (18) simplifies the expression using identity

𝐸𝜋0
[𝐼 {𝑌0 [𝑦] ∈ W(𝑌 [𝑦])}𝑝𝑌0 [𝑦 ] ] =

∑︁
𝑗∈W(𝑌 [𝑦 ] )

𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0) .

This leads to the expected number of clicks under the PBM us-

ing target policy 𝜋 . In all steps we require that the denominator∑
𝑗∈W(𝑌 [𝑦 ] ) 𝑝 𝑗P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0) > 0, which is assured by full

window support and positivity of the position bias weights. □

4.4 Bias of Interpol for misspecified PBM
The two variants of our estimator are unbiased when using the

true position bias curves. In practice, however, we often only have

access to an inaccurately estimated 𝑝 . We now analyze the impact

of this misspecification on the bias of our estimators.

Proposition 4.5. Let 𝑝 be the correct position bias curve and let
𝑝 be the misspecified version used in our estimators. Define the short-
hand P𝑗 = P(𝑌0 [𝑦] = 𝑗 |𝑥, 𝜋0) and let Bias□ := E[Δ̂□W (𝜋 |𝑥, 𝜋0, 𝑌0)]−
Δ(𝜋) for □ ∈ {stack, bal} denote the respective biases of the Interpol
estimators defined by Equations (6) and (13). Then,

Bias□ =
∑︁
𝑦∈𝑌

[
𝑝𝑌 [𝑦 ]

(
𝐴□W (𝑦) −

𝑝𝑌 [𝑦 ]
𝑝𝑌 [𝑦 ]

)]
× rel(𝑦) . (19)

where

𝐴□W (𝑦) =


∑

𝑗 ∈W(𝑌 [𝑦 ]) P𝑗
𝑝 𝑗

�̂� 𝑗∑
𝑗 ∈W(𝑌 [𝑦 ]) P𝑗

, for stacked Interpol (□ = stack),∑
𝑗 ∈W(𝑌 [𝑦 ]) P𝑗𝑝 𝑗∑
𝑗 ∈W(𝑌 [𝑦 ]) P𝑗𝑝 𝑗

, for balanced Interpol (□ = bal) .
(20)

Proof sketch. The proof uses the same computations as in

Propositions 4.3 and 4.4 applied to the estimator that uses 𝑝 in-

stead of 𝑝 . We use the assumptions of our click model E[𝑐 (𝑦 |𝑌0)] =
rel(𝑦)𝑝𝑌0 [𝑦 ] , simplify the resulting expressions accordingly, then

rearrange the terms. Finally, we subtract the true reward to obtain

an expression for the bias. □

This result provides several insights. First, the bias of stacked

Interpol depends on a weighted average of the ratio 𝑝 𝑗/𝑝 𝑗 for all
positions 𝑗 inside window W(𝑌 [𝑦]), with weights proportional to

P𝑗 that are normalized to sum to 1. Meanwhile, the bias of balanced

Interpol depends on a ratio of windowed examination probabilities,

where the numerator uses the true and the denominator the mis-

specified position bias. Without additional assumptions it is not

possible to state a general relationship between the two variants.

Second, the bias could be positive or negative. A strong condition

that would allow a prediction of the sign, like ∀𝑦 : 𝐴□W (𝑦) ≥
𝑝𝑌 [𝑦 ]/𝑝𝑌 [𝑦 ] , is unlikely to hold in practice, as in all windows the

position bias ratios would be systematically exaggerated.

Third, the bias is not necessarily monotonically decreasing in

the size of the windows. Take the Banded Window system W𝑇

with decreasing width𝑇 as an example. We compare 𝐴□W𝑇
(𝑦) with

𝐴□W𝑇 −1
(𝑦). To derive a relationship between the two, we need ex-

plicit assumptions on the misspecification and the propensities of

𝜋0. Furthermore, it is easy to construct examples that contradict

monotonicity by considering items at the top or bottom of the list.

Whereas for PBM policy-aware/oblivious is an important dis-

tinction (oblivious is biased in the limited-visibility setting but does

not need propensities), for Interpol this distinction is less important

because both versions require propensities and both are unbiased.

In practice, we find them to perform similar with no clear winner

between the two.

5 INTERPOL FOR OFF-POLICY LEARNING
We now illustrate how Interpol applies to off-policy learning-to-

rank. Our reasoning is that an improved estimator leads to a more

reliable training objective. Optimizing this training objective should

lead to learning a better policy. We optimize a parametric policy

𝜋𝜃 , where 𝜃 ∈ Θ ⊂ R𝑑 denotes the model parameters. For example,

𝜃 can be the weights of a neural network that scores each item, and

items are ranked in descending order of score. We want to find a

policy with maximum expected reward,

𝜃★ ∈ argmax

𝜃 ∈Θ
Δ(𝜋𝜃 ), (21)

as defined in Equation (1). To approximate the optimization prob-

lem in (21) using a data set D from the logging policy 𝜋0, we

follow [2, 26] and optimize a counterfactual risk estimator. More

specifically, given a logged ranking 𝑌 𝑖
0
and a target ranking 𝑌 𝑖 , let

Δ̃(𝑌 𝑖 , 𝑌 𝑖
0
) =

∑
𝑦∈𝑌 𝑖 𝑤 (𝑦 |𝑌 𝑖

0
, 𝑌 𝑖 ) × 𝑐 (𝑦 |𝑌 𝑖

0
) denote the importance

weighted reward, where 𝑤 (𝑦 |𝑌 𝑖
0
, 𝑌 𝑖 ) is the importance weight of

either version of Interpol. A counterfactual risk minimization ob-

jective for policy learning is given by

ˆ𝜃 = argmax

𝜃 ∈Θ
1

𝑛

𝑛∑︁
𝑖=1

E𝑌 𝑖∼𝜋𝜃 ( · |𝑥𝑖 )
[
Δ̃(𝑌 𝑖 , 𝑌 𝑖

0
)
]
:= argmax

𝜃 ∈Θ
Δ̂(𝜋𝜃 |D) .

Gradient-based optimization of Δ̂(𝜋𝜃 |D) is difficult, because the

gradient ∇𝜃E𝑌 𝑖∼𝜋𝜃 ( · |𝑥𝑖 )
[
Δ̃(𝑌 𝑖 , 𝑌 𝑖

0
)
]
is not available in closed form.

However, following the policy gradient approach used in the PG-

Rank algorithm [42, 54], we use the “log-derivative trick" [53] to

rewrite the gradient as

∇𝜃 Δ̂(𝜋𝜃 |D) = 1

𝑛

𝑛∑︁
𝑖=1

E𝑌 𝑖∼𝜋𝜃 ( · |𝑥𝑖 )
[
∇𝜃 log𝜋𝜃 (·|𝑥𝑖 )Δ̃(𝑌 𝑖 , 𝑌 𝑖0 )

]
.

The above expectation over target rankings is approximated via

Monte-Carlo sampling by drawing𝑚 = 1, . . . , 𝑀 samples 𝑌 𝑖,𝑚 ∼
𝜋𝜃 (·|𝑥𝑖 ). This yields an approximate gradient

∇𝜃 Δ̂(𝜋𝜃 |D) ≈ 1

𝑛

𝑛∑︁
𝑖=1

1

𝑀

𝑀∑︁
𝑚=1

∇𝜃 log𝜋𝜃 (𝑌 𝑖,𝑚 |𝑥𝑖 )Δ̃(𝑌 𝑖,𝑚, 𝑌 𝑖
0
) .

We then use common gradient-based optimization on Δ̂(𝜋𝜃 |D).
Additional variance reduction methods may improve training [9,

35, 36], but our experiments focus on the basic variant above.

6 EXPERIMENTS
We first evaluate Interpol in a real-world setting using data from the

streaming media service Amazon Music, highlighting its practical

usefulness and its performance in comparison to three baselines.

Interpol provides non-trivial improvements in reward estimation,

as measured by mean squared error (MSE), at industry scale.

We then study Interpol in a synthetic setting. In this controlled

environment we study varying conditions; i.e., how position bias

misspecification, data set size and logging policy randomization

impact the estimation. This allows us to isolate Interpol’s behavior
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Figure 2: Experimental results on real world data from Ama-
zon Music. MSE (lower is better) of balanced Interpol (blue
boxplots) as a function of window size and three different
target policies 𝑇2, 𝑇3, and 𝑇4. MSE confidence intervals (90%)
of three baselines (PBM, IPM and DR-IPM) are shown as hor-
izontal bands with their respective color.

along these dimensions. Finally, we highlight Interpol’s effective-
ness for learning new ranking policies in an off-policy learning

framework, applied to a common learning-to-rank benchmark.

Our experiments focus on the Banded window system, W𝑇 for

the Interpol framework. This scenario is parameterized by a single

parameter, 𝑇 . This corresponds to a sliding window user interface,

in which the PBM is only accurate enough to compare positions

that are visible simultaneously. We compare to two natural base-

lines: the IPM estimator (equivalent to Interpol with 𝑇 = 0) and the

PBM estimator (equivalent to 𝑇 being the length of the ranked list).

For our real world experiment we also compare Interpol to a doubly
robust version of the IPM based on [13], where a reward regression

is fit to each position. We refer to this method as DR-IPM. The re-

ward regressor is a gradient boosted tree ensemble (lightGBM) that

includes the displayed position as an input feature. Weight clipping,

smoothing and control variates [5, 32, 33] are other methods to

reduce variance in importance weighting estimators. Since these

methods are complimentary to all estimators considered here, we

abstain from their use to simplify and focus our experiments.

6.1 Offline evaluation on real-world data
Our real-world experiment is based on user interaction logs of a

ranking task for the streaming media service Amazon Music. The

task is to rank candidate sets of 25 items that were selected by a

first-stage retriever. The data set consists of logs from four different

ranking polices: 𝑇1 is a stochastic policy that uses random swaps

on top of a deterministic ranker; 𝑇2 is a deterministic policy whose

ranker is very similar to 𝑇1’s, but not identical; 𝑇3 and 𝑇4 are sto-

chastic policies that sample actions according to a Plackett-Luce

model, where 𝑇3 has a less expressive feature representation than

𝑇4. The data 𝐷𝑖 corresponds to the policy𝑇𝑖 . Each data set contains

around 800, 000 records. Only 𝐷1 comes with exact propensities,

since they can be computed for the random swapping algorithm.

Thus, we designate 𝑇1 as the logging policy and use 𝐷1 to obtain

off-policy estimates of the other policies’ expected reward. Since we

also have data from running 𝑇2, 𝑇3 and 𝑇4 online, we can approxi-

mate their true expected rewards using the online estimates. We use

this approximate ground truth to assess the accuracy of off-policy

estimates. By evaluating policy 𝑇𝑖 : 𝑖 ∈ {2, 3, 4} on data set 𝐷1, we

get a predicted reward, which we then compare to the observed

Figure 3: Synthetic data experiment. MSE, bias2 and variance
(lower is better) for the stacked and balanced version of Inter-
pol for different window sizes, stay probability = 90%. Correct
(left) and the misspecified (right) position bias curve with
exponent 𝛼 = 1.8 (selected for illustrative purpose) under full
visibility with 50, 000 observations.

average reward calculated from 𝐷𝑖 . We measure the discrepancy

between the predicted and observed average rewards by MSE. The

position bias curve used in this experiment is estimated on𝐷1 using

the approach given in [4]. We obtain confidence intervals around

the mean by bootstrapping our estimates 100 times.

6.1.1 How does Interpol perform in a real world experiment? Fig-

ure 2 plots MSE (w.r.t. the approximate ground truth) as a function

of window size. For 𝑇3, a window size around 1 yields the lowest

MSE for balanced Interpol. For 𝑇4 a window size of 2 is best. For 𝑇2
there seems to be only a small benefit from increasing the window

size beyond 0. Note that the PBM performs particularly poorly on

𝑇2, suggesting that the PBM assumptions are substantially violated.

The doubly robust version of the IPM (DR-IPM) yields a variance

reduction for 𝑇2, but is otherwise harmful for 𝑇3 and of little effect

for 𝑇4. We also evaluated the stacked version of Interpol, and it per-

forms similarly to balanced Interpol (not shown here). Overall, we

conclude that Interpol can provide substantial benefits over PBM,

IPM, and DR-IPM in this real-world setting.

6.2 Offline evaluation on synthetic data
Our synthetic experiment is designed so that we know the true

reward by construction, and we can thus reliably evaluate the accu-

racy of the estimators under a range of conditions. In particular, it

is designed to allow control of the strength of the logging policy’s

randomization and the level of position bias misspecification. This

setup lets us study the key properties of Interpol in response to var-

ious environmental conditions. We simulate a ranking application

in which the reward function conforms to the PBM assumptions,

with a position bias curve that we control. We generate 50,000 ob-

servations from a logging policy that ranks 𝑘 = 5 different actions

out of a total of 10 actions in the limited visibility setting and 𝑘 = 10

in the full visibility setting. We set the true position bias curve to a

decreasing function of rank: 𝑝 = 1 − 𝑗/10, for rank 𝑗 = 0, . . . , 𝑘 . To

simulate misspecification of the PBM, we use biased curves defined

as 𝑝 = 𝑝𝛼 component-wise, where 𝛼 ∈ [0.2, 0.4, . . . , 1, . . . , 2.0].
Moving 𝛼 away from 1 controls the misspecification of the position

bias curve. Without loss of generality, there are four relevant items.
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Figure 4: Synthetic data experiment. Left Figure: MSE (lower
is better) over window sizes for different misspecification
exponents 𝛼 . Logging policy with stay probability 80% for
balanced Interpol under limited visibility. Right Figure: MSE
(lower is better) of balanced Interpol as a function of window
size, levels of logging policy randomization and a misspeci-
fied position bias curve (𝛼 = 1.4). Shaded areas correspond to
95% confidence intervals obtained from bootstrapping with
100 repetitions.

The logging policy 𝜋0 orders two relevant items at the top and the

other relevant items arbitrarily at the bottom of the list. Addition-

ally, the logging policy swaps the ranked items randomly, where

every item has a 𝑞% probability of staying in its original position

and a (100 − 𝑞%)/9 probability of being ranked in all other posi-

tions. We set these stay probabilities to [50%, 70%, 90%, 95%, 99%] to
control the randomness of the logging policy. The target policy 𝜋

deterministically ranks two relevant items in the first and fourth

position and the two other relevant items outside the visible range,

or at the bottom in the full visibility setting. The order of other

items is arbitrary. Relevant items get a reward of 1 that is revealed

according to the examination probability (i.e., the true position bias

curve 𝑝). The true expected reward for the target policy can be

computed analytically: it is 1.7 (resp. 2) in the limited (resp. full)

visibility setting. First, we study the impact of misspecification and

logging policy randomization on balanced Interpol under limited

visibility. Then, we evaluate how varying data sizes impact Interpol
and illustrate its bias-variance decomposition under full visibility.

6.2.1 How does stacked Interpol compare against balanced Inter-
pol? Figure 3 (left) highlights the behavior of stacked and balanced

Interpol with the correct position bias. Recall that we use the Banded
Window system W𝑇 , in which 𝑇 = 0 corresponds to the IPM base-

line and𝑇 = 10 corresponds to the PBM baseline. As expected, since

the data is indeed generated by a PBM, and the estimators have

access to the correct position bias, the MSE decreases as the window

size increases and the lowest MSE is achieved for the largest win-

dow sizes (i.e., the PBM). Since we use the correct position biases,

all estimators are unbiased; hence, the MSE is dominated by the

variance.

Figure 3 (right) illustrates how both versions of Interpol behave
with a misspecified position bias (exponent 𝛼 = 1.8), with a moder-

ately stochastic logging policy (stay probability = 90%), under full

visibility. As expected, variance decreases when we increase the

window size 𝑇 , whereas the squared bias increases.

Figure 5: Synthetic data experiment, full visibility. MSE
(lower is better) for data set sizes as a function of window
size, stay probability = 80%, misspecification 𝛼 = 1.4. As the
data size increases, balanced Interpol with window size 0

(IPM) performs best. For intermediate data sizes, window
sizes between 0 and 10 perform best. Shaded areas are to 95%

bootstrap confidence intervals (100 repetitions).

Both Figures in 3 show very similar behavior between the stacked

and balanced versions of Interpol. We therefore focus mainly on the

balanced version in the rest of our experiments.

6.2.2 How does Interpol behave under increasing position bias mis-
specification? Figure 4 (right) shows how MSE changes when vary-

ing the severity of misspecification, focusing on the limited visibility

setting for balanced Interpol. Even for small levels of misspecifi-

cation, the optimal window size is almost always smaller than

𝑇 = 4, i.e., the PBM. For all levels of misspecification but 0.8 we re-

cover erroneous PBM estimators at the maximum window size. The

stronger the misspecification, the more beneficial it is to use Interpol
with small window sizes and regularise towards the IPM. Conse-

quently, the estimator that offers the best bias-variance trade-off is

Interpol with a properly chosen window size.

6.2.3 How does Interpol depend on the randomization of the logging
policy? Figure 4 (left) illustrates the effect of the logging policy’s

randomization (via stay probability)—which implicitly affects the

amount of usable data; and hence, the bias-variance trade-off. With

more randomization (i.e., lower stay probability), we find that mov-

ing towards the IPM is beneficial, as we have a greater chance of

finding exact matches between the logging and target policies. With

less randomization (i.e., high stay probability), we are less likely

to find exact matches; and with fewer matches, we incur a larger

variance. Consequently, it is better to increase the window size

and leverage the (biased) position bias curve in order to reduce

variance.

6.2.4 How do different data set sizes impact Interpol? When in-

creasing the amount of data, the variance of estimates decreases,

leading to smaller MSE. This change in variance can result in other

window sizes being optimal. We highlight this in Figure 5 for bal-

anced Interpol under full visibility. Overall, larger sample sizes favor

smaller window sizes. This is consistent with our previous discus-

sion; having more data lets us stay closer to the IPM, as variance

contributes less to MSE.
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6.3 Off-policy learning
We now evaluate Interpol for off-policy learning and compare it

to conventional learning-to-rank algorithms that rely on the PBM

model [26, 54]. We use click data derived from the Yahoo! learning-

to-rank data set (YLTR, [10]) and largely follow the setup of [26] to

simulate clicks. Training and testing sets were generated according

to the position bias model based on binarized relevances from their

respective full-information data sets. The rankings were generated

by a neural network logging policy with randomly generated but

fixed policy weights. To facilitate the comparison of different win-

dow sizes for the Interpol learning algorithm, we only used action

set sizes with at least 10 actions and trimmed larger action sets to

use only the first 10 actions, resulting in a training set of 14,665

instances and a testing set of 5,156 instances. The rankings were of

length 𝑘 = 10 and we use the same linearly decreasing true position

bias curve as in our synthetic experiments, 𝑝 = [1.0, 0.9, . . . , 0.1].
6.3.1 Algorithms and Baselines. We use our modification of the PG-

Rank learning algorithm described in Section 5 with the balanced

Interpol importanceweight,𝑤bal

𝑇
(𝑦 |𝑌,𝑌0), and bandedwindows.We

call this method PGR-Interpol. For large enough window sizes (and

using DCG to weight observed clicks), PGR-Interpol is equivalent

to the purely position bias-based version of PG-Rank used in [54]

and [26] and hence serves as baseline (PGR-PBM). The ranking

model trained in our experiments is a feed-forward neural network

with a single hidden layer of 200 neurons, and learning rate of

0.005. Models were trained using mini-batches of size 1000, with 30

Monte-Carlo samples to approximate each gradient and stochastic

gradient ascent. We varied the window size, 𝑇 = [0, 1, 3, 5, 7, 9],
to recover learning with the PGR-IPM baseline (𝑇 = 0) or the

PGR-PBM baseline (𝑇 = 9), as well as all versions of PGR-Interpol

between those extremes.

6.3.2 Experiment setup. We vary experiment conditions using the

same mechanisms as in Section 6.2. Specifically, we vary the po-

sition bias misspecification exponent, 𝛼 ∈ [0, 0.01, 0.1, 1, 2, 3, 4],
and the stay probability of the logging policy in [10%, 90%, 99.9%].
After 30 training epochs over the training data set, we evaluate

the model’s performance on the test set, using the same reward

function (based on the true PBM) used to create the training data.

6.3.3 When is it beneficial to use Interpol instead of IPM or PBM?.
Figure 6 shows DCG on the test set as a function of Interpol’s win-
dow size for three different levels of logging policy randomization

and across different misspecifcation levels. The PGR-Interpol esti-
mator routinely outperformed the pure PGR-IPM or PGR-PBM vari-

ants, as the maximum DCG is observed for window sizes 0 < 𝑇 < 9.

The effect is most pronounced when the position bias is strongly

misspecified and under weakly randomized logging policies. Using

the pure PBM estimator (𝑇 = 9) produced low DCG for position

bias exponents close to 0. Using the pure IPM estimator (𝑇 = 0)

produced worse results when increasing stay probability (moving

from left to right panel), which increases variance.

7 DISCUSSION
The size of the windows controls a bias-variance trade-off between

the more general IPM and the potentially more biased PBM. For the

Banded Window systemW𝑇 , this is controlled by the parameter

𝑇 . Choosing the window size is a model selection problem, as the

Figure 6: Off-policy learning results on YLTR dataset for
PGR-Interpol and PGR-PBM and PGR-IPM baselines. DCG
averaged across 100 random seeds (higher is better) for dif-
ferent window sizes, different levels of logging policy ran-
domization (decreasing randomness from left to right), and
different position bias misspecification factors (line color).
95% confidence intervals are shaded.

true MSE is in general not accessible. To address model selection,

recent work [43] proposes an adaptive method called SLOPE, which
was explored for choosing the clipping constant. It was used for off-

policy evaluation [47] and was further improved in [46]. Though

Interpol’s window size parameter seems like it could be tuned using

SLOPE, we note that SLOPE requires the bias to be monotonic in the

free parameter. While we have seen in some experiments that the

bias and variance are not necessarily monotonic in 𝑇 , we tried this

approach (not exposed) and found it to work well overall and hence

can serve as a starting point for practical applications. However, a

full assessment of this approach is still needed.

When Interpol is used for learning, the window size is a hy-

perparameter that can be tuned alongside other hyperparameters

(such as learning rate, neural network structure, etc.) in the spirit

of supervised learning problems, using common hyperparameter

optimization techniques. The evaluation of the trained policy could

again be done using the SLOPE procedure. From a practical per-

spective, window sizes of 1 and 2 work well, which could serve as

a starting point for tuning policies.

8 CONCLUSION
We have introduced a novel counterfactual estimator for ranking

evaluation, called Interpol, that spans a range of estimators between

the IPM and PBM. Interpol has a favorable MSE, especially in the

realistic situation when the modeling assumptions of the PBM are

not fully satisfied. Furthermore, Interpol provides a rich modeling

space to best match application requirements such as the visual

layout of a ranking system. Our window system formalism allows

flexibility in howmuch we trust the PBM and weakens the common

assumption of full support. With Interpol we introduce a novel class
of estimators that allows us to model a bias-variance trade-off

explicitly, which leads to better evaluation and learning. We expect

that further practical improvements can be achieved by combining

our estimator with doubly-robust methods or self-normalization,

which we conjecture will lead to further variance reduction.
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