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Chapter 1

Introduction

1.1 Motivation

This thesis is based upon an article written by Radu Grosu and Ketil St�len
[GS96]. They describe a denotational model for mobile networks whose compo-
nents share channels. It models nondeterministic data-ow networks by sets of
stream processing functions which are contractive with respect to the metric of
streams. This view is based on the works of Kahn [Kah74], who describes static
networks, of Park [Par83], of Broy [Bro87], and of Russell [Rus90]. Contrary
to all these, Grosu and St�len describe dynamically changing networks, i.e.,
the channel access of each component may change dependently on the received
channel names.

There were three motivations for our further work on this model; �rst, we
tried to formalize the theory within the theorem prover Isabelle (see [Pau94a],
[Pau94b]) using the object logic HOL (see [Pau94c]). The idea was to realize a
development environment on which some of the design techniques of the project
Focus (see [BDD+95]) could be based. There are already formalizations for
that purpose, but none are using HOL and none are realizing mobility. This
thesis can be seen as preparatory work for a future formalization of mobile
networks in Isabelle 1.

The second motivation stems from examinations of term algebras for mobile
networks and their axiomatisation (compare [BS�95]). Some of the considera-
tions about renaming, name abstractness, and the operators where guided by
these algebraic goals.

The last and most important inspiration was the search for a denotational
model of the �-calculus of Milner ([MPW92a],[MPW92b]). We tried to make the
theory apt to model synchronous communication as in the �-calculus. This was
realized through the synchronous operations, the name abstractness principle,
the equivalence of components, and the concatenation operation.

1Some sources implementing real numbers, metric spaces, and the original model of [GS96]
are available. Please contact the author.
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8 CHAPTER 1. INTRODUCTION

1.2 Survey of Contents

The second chapter begins by de�ning the basics of networks: named message
streams and contractive functions on such streams. Due to the contractivity
with respect to the complete metric space of streams, these functions, called
behaviors, have unique �xed points according to Bannach's �xed point theorem
(T.B.4).

After that we de�ne genericity, the correspondence to dynamic channel access
rules. Here we use a di�erent approach than [GS96], based on an idea of Radu
Grosu, privacy of channel names is no longer explicitly controlled by each com-
ponent's genericity rules, rather it is guaranteed in an assumption/commitment
style. Private channels are simply active channels which cannot be initially used
by the other components. This change brought remarkable simpli�cations in
most of the proofs and de�nitions below.

The second new approach lays in our concept of partial behaviors, which are
functions on pre�xes of streams. They represent �nite processes which are
followed up by arbitrary behaviors, which possibly use access rights acquired
by the pre�x. Compare these pre�xes with the pre�xes of the �-calculus for
which they can serve as interpretations.

As a base for name abstractness and equivalence of components, we intro-
duce the renaming of components. Renaming was motivated by the structural
congruence rule of the �-calculus which states that bound variables can be re-
named. The two kinds of bound variables, hidden names and received names,
appear as private and as received (or available) names in our model. The re-
nameability of private names is realized through the equivalence of privately
renamed components. Received names, in our case, available names, have to
be present in all possible variations because of name abstractness. 2

A component is name abstract if it is independent of the concrete names it
receives additionally to its initially active channels, or in our case, if it is closed
with respect to the name abstract closure. After proo�ng the properties of
these concepts, we can de�ne the set of components and structure it with an
equivalence relation which identi�es components which only di�er by the choice
of their private names.

The third chapter examines the operations on the de�ned components. Besides
the operators which correspond to the ones given in [GS96] (in the context of
our changed model), we introduce the union, which corresponds to the sum
operator of the �-calculus. Furthermore we de�ne the concatenation of partial
components, giving expression to our concept of time partiality in acordance to
the � pre�x operator `..

The biggest part of the chapter however, is devoted to the three main operators:
feedback, parallel composition, and mutual feedback composition. All three
are given in an asynchronous version, like the ones given in [GS96] and in a

2Name abstractness however, does not include the possiblity of receiving an already active
channel name. This case has to be included explicitly, which is a clear weakness of our model.
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synchronous one. The explicit discussion of synchronizity with its fair split
operator was necessary to form a model for the also synchronous �-calculus.

For each operator we give proofs of genericity, which includes genericity of the
result, but also full abstractness, name abstractness, and the congruence of the
operator to our equivalence relation.

1.3 Results

In our opinion, we made some important steps towards a denotational model
of the �-calculus, but as yet this task is un�nished in two aspects: Firstly,
there are still some technical di�culties in our modelling. Secondly, we need to
demonstrate the validity of the �-reduction relation in our model. That would
mean some kind of reduction relation on components, which has the interpreted
�-reduction as a subrelation.

Nevertheless, our attempt proves the expressiveness of the used model and it
could also help to learn something about Milner's calculus. In any case, this
is just the starting point for a more thorough and outreaching examination
of the relation between the denotational and the operational models of mobile
networks. We hope that this thesis can serve as a contribution upon which such
examinations could be based.

Our concept of name abstractness, although motivated by the �-calculus, can
play an important role independently of its motivation. Renaming in general,
not only in this application, is a necessary tool for solving the problems arising
when using names. And, talking about mobile networks, it will be di�cult to
do without names. Like in logic formulae, we have to handle identi�ers in a
very abstract manner by ignoring all inessential aspects of a name. Perhaps,
name abstractness and renaming are �rst steps in this direction.

While deepening our understanding of mobile networks and their denotational
models, there were important results as by-products. For example, the compo-
sition of [GS96] is not associative. That was our main motivation for turning
down the list representation in favor of multisets as representation for messages
sent during a time unit on one channel.

We hope to be able to present proofs for basic algebraic properties and for
the validity of our �-interpretation, and also a data-ow term language for the
description of networks in a later, extended version of this paper.
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Chapter 2

Components

We will now introduce our understanding of Mobile Networks, which are, in our
terminology, components. This indicates that they can be elements of greater
networks which, due to their abstractness, form components again.

2.1 Behaviors

Behaviors are stream processing functions which deterministically model the
reactions of a component to all possible inputs. At �rst, the arguments of such
functions are de�ned. We will see that they are uniform to any component, re-
gardless of its initial access rights. Mobility is modeled by a dynamic restriction
on the channels that may inuence the reaction of a behavior, i.e., its values.
Therefore, the outward appeareance of such a function, its functionality, allows
arbitrary communications.

2.1.1 Message Streams

Messages

The objects of the communication in a network are messages. They can be
divided into names and proper messages, that are carrying information which
is unrelated to channel access. Thus, they are not interesting to our model {
we simply assume them to be an arbitrary set: D is the set of proper messages.
Completely ignoring these messages would also be possible, as, e.g., it is done
in the context of the �-Calculus.

Central to our model is the set of channel names N. We do not assume it to be
structured; all distinctions within the set are done by the components, which
choose their speci�c initial channels (private and public).

Based on channel names, we de�ne port names: each channel has an input and
an output port, representing read and write access to the channel.

! and ? are constructors on N, for each channel name n 2 N !n denotes the
output port and ?n the input port of the channel. Certainly a channel cannot

11



12 CHAPTER 2. COMPONENTS

be an output port and an input port at the same time. More formally:

8n;m 2 N : n 6= m)!n 6=!m^ ?n 6=?m

N\!N = N\?N = !N\?N = ;

M � N : ?!M := ?M[!M

M �?!N : ~M := fn 2 Nj?n 2M _ !n 2Mg

M := D[!N[?N

Care has to be taken in the distinction of channel names and port names, for
an example, see section 2.3.4.

Named Message Streams

Proper messages and port names form the contents of input and output streams.
These contents will be structured by the channel names and by time units. The
communications of each unit and each name are represented by a multiset of
messages.

NMS := IN! (N! M+)

PNMS := f� #n j� 2 NMS ^ n 2 IN1g

Along with the named message streams we also introduced partial named mes-
sage streams, which can be seen as pre�xes of a complete stream. The following
de�nitions will consequently be formulated for partial streams, which include
complete streams as a special case. With the idea of time partiality we aim
at de�ning partial components which react to certain pre�xes and which are
followed up by the behaviors of a complete component.

2.1.2 Contractive Behaviors

Behaviors are simply functions on NMS. In contrast to this simplicity, we
cannot accept every function on PNMS as a partial behavior. It should react
partially but deterministically to any complete input, which means it takes a
de�nite pre�x of the input and outputs a stream of the same length.

Behaviors

De�nition 2.1 (Behaviors)

B := NMS! NMS

PB := ff 2 PNMS* PNMSj 8� 2 dom(f) : j�j = jf(�)j ^

8� 2 NMS : 91�
0 2 dom(f) : �0 v �g:

Remark: B � PB by B � ff 2 PBj dom(f) = NMSg
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Contractivity

Proper behaviors of a component also have to follow a rule imposed by time
ow: there has to be a delay between stimulus and reaction. Formally, this
means that an input pre�x of length n determines an output pre�x of length
n+1. Because of its equivalence to contractivity in the metric space of streams,
we call such functions contractive (see B.3,B.4).

De�nition 2.2 (Contractivity)

f 2 PB : ctrct(f) :, 8�1; �2 2 dom(f); n+ 1 < j�1j; j�2j :

�1 #n= �2 #n) f(�1) #n+1= f(�2) #n+1

Nonexpansiveness

A weaker form of correspondence with the direction of time ow is nonexpan-
sivity, which allows reaction within the same time unit, but not earlier. Again
the terminology stems from the metric view of the functions.

De�nition 2.3 (Nonexpansiveness)

f 2 PB : nexp(f) :, 8�1; �2 2 dom(f); n < j�1j; j�2j :

�1 #n= �2 #n) f(�1) #n= f(�2) #n

Concatenation of Behaviors

Now we become more concrete with our idea of stream pre�xes. Partial behav-
iors, i.e., partial functions de�ned on exactly one pre�x of every stream, can be
composed time sequentially, or in our terminology: concatenated:

De�nition 2.4 (Concatenation of Behaviors)

f; g 2 PB;� 2 dom(f) ^ � 2 dom(g)) � � � 2 dom(f � g) :

(f � g)(� � �) := f(�) � f(�)

The set of contractive functions is closed with respect to this operation. Con-
sider this and its wellde�nedness as a �rst justi�cation for our de�nition.

Theorem 2.1 (Concatenation preserves Contractivity)

f; g 2 PB : ctrct(f)^ ctrct(g)) ctrct(f � g)

Proof:

Assume f; g 2 PB, both contractive: ctrct(f) ^ ctrct(g).
Let n 2 IN; �1; �2 2 dom(f � g) and j�1j; j�2j > n+ 1 and �1 #n= �2 #n.
Since �1; �2 2 dom(f � g), �1 = �01 � �

00
1 and �2 = �02 � �

00
2 with �01; �

0
2 2 dom(f)

and �001 ; �
00
2 2 dom(g).
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1st case: �01 = �02 (, j�01j = j�02j � n)
m < n+ 1; c 2 N:

f � g(�1)(m)(c) =

8<
:
f(�01)(m)(c) if m < j�01j

g(�001)(m� j�01j)(c) if m � j�01j
=

=

8<
:
f(�02)(m)(c) if m < j�02j

g(�002)(m� j�02j)(c) if m � j�02j
= f � g(�2)(m)(c)

The only di�cult point here is, that g(�001)(m � j�02j)(c) = g(�002)(m � j�02j)(c)
for j�01j � m < n + 1. It results from �1 #n= �2 #n) �001 #n�j�01j= �002 #n�j�01j)
g(�001) #n�j�01j+1= g(�002) #n�j�01j+1.

2nd case: j�01j; j�
0
2j > n m < n+ 1 ()m < j�01j; j�

0
2j); c 2 N:

f � g(�1)(m)(c) = f(�01)(m)(c)
(ctrct(f))
= f(�02)(m)(c) = f � g(�2)(m)(c)

tu

2.2 Genericity

Now we move from de�ning the statics of behaviors to their dynamic constraints
which characterize the mobility aspect of our networks. Contractive behaviors
so far could interact on any channel. Their functionality allows them universal
channel access, because arbitrary access can be acquired by each component in
this model.

2.2.1 Genericity Filters

The constraints are described by �lter functions on the input and the output
of behaviors. The �lters delete all inactive channel contents and all names of
inactive channels in the output. Basic to this is the dynamically changing set
of active ports.
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? ? ?
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�
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c1 c2 . . .

�

ap?A(�)

Komponente (3 f)

? ? ?
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�
	? ? ? ? ? ?

f(�)

ap!NA (�)(f(�))

e e e

Active Ports

The active ports are a stream of port sets de�ned with respect to an initially
active set and an input stream. In each period the set is extended by all ports
whose name was received the unit before on any active input channel.

De�nition 2.5 (Active Ports: ap)

� 2 PNMS; A � !?N; n < j�j :

apA(�)(0) := A

apA(�)(n+ 1) := apA(�)(n) [
S

?c2apA(�)(n)

fp 2?!Nj p 2 �(n)(c)g

Filter Functions

The input of a function can now be �ltered with respect to an initially active
set and the input itself. The possible distinction between the message stream
de�ning the active ports and the �ltered one is omitted here.

De�nition 2.6 (Input Filter: ap?)

� 2 PNMS; A � !?N; c 2 N; n < j�j :

ap?A(�)(n)(c) :=

8<
:
�(n)(c) if ?c 2 apA(�)(n)

;̂ else

Output is �ltered in the same way, but with a separate stream which deter-
mines the input. Additionally, all inactive ports are deleted from the result; a
component should only confer access rights it already owns itself.
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De�nition 2.7 (Output Filter: ap!N)

�;  2 PNMS; A � !?N; c 2 N; n < j�j :

ap!NA (�)( )(n)(c) :=

8<
:
(apA(�)(n)[ D) c (n)(c) if !c 2 apA(�)(n)

;̂ else

Generic Behaviors

Now we can de�ne genericity as corespondence with the rules given above.
Genericity is established if the function behaves as if it were �ltered.

De�nition 2.8 (Genericity)

f 2 PB :

genericA(f) :, 8� 2 PNMS : � 2 dom(f), ap?A(�) 2 dom(f)^

8� 2 dom(f) : f(�) = f(ap?A(�)) = ap!NA (�)(f(�))

Set of Generic Contractive Behaviors

De�nition 2.9 (Generic Contractive Behaviors)

GCPBA := ff 2 PBj ctrct(f) ^ genericA(f)g

GCBA := ff 2 Bj ctrct(f) ^ genericA(f)g

2.2.2 Properties

Nonexpansiveness

It is easy to see that the active set develops delayed with respect to the input
stream and that, as a consequence, the �lter functions are nonexpansive in their
arguments.

Lemma 2.2 (ap is contractive)

A �?!N; �;  2 PNMS; m � j�j; j j :

� #m=  #m=) apA(�) #m+1= apA( ) #m+1

Proof:

apA(�)(n) is de�ned without refering to the values of � at time n or at any
time after (> n). So an inductive proof is straightforward.

tu

Theorem 2.3 (ap? is nonexpansive)

A �?!N; �;  2 PNMS; m � j�j; j j :

� #m= � #m=) ap?A(�) #m= ap?A( ) #m
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Proof:

ap?A(�)(n) is de�ned in terms of the contractive, and thereby nonexpansive, ap
applied on n and in terms of �(n).

tu

Theorem 2.4 (ap!N is nonexpansive)

A �?!N; �1;  1; �2;  2 2 PNMS; m � j�1j; j 1j; j�2j; j 2j :

�1 #m=  1 #m; �2 #m=  2 #m=) ap!NA (�1)(�2) #m= ap!NA ( 1)( 2) #m

Proof:

Trivial. Compare T.2.3.

Monotonicity

We state some hardly surprising but necessary facts about the monotonicity of
the de�ned functions and sets.

Lemma 2.5 (ap is monotonic)

A1; A2 � N;n1; n2 2 IN;�1; �2 2 PNMS :

A1 � A2 ^ n1 � n2 � j�1j+ 1; j�2j+ 1^ �1 � �2 )

) apA1
(�1)(n1) � apA2

(�2)(n2)

Proof:

Obvious for each premise separately. And with that:

apA1
(�1)(n1) � apA2

(�1)(n1) � apA2
(�2)(n1) � apA2

(�2)(n2)
tu

Lemma 2.6 (ap? is monotonic)

A1 � A2 �?!N; � 2 PNMS :

8c 2 N; n < j�j : ap?A1
(�)(n)(c) = ;̂ _ ap?A1

(�)(n)(c) = ap?A2
(�)(n)(c)

Lemma 2.7 (ap!N is monotonic)

A1 � A2 �?!N; �1; �2 2 PNMS; j�1j = j�2j; �1 � �2 :

8 2 PNMS : ap!NA1
(�1)( )�̂ap!NA2

(�2)( )

Due to this monotonicity, we will call a �lter based on a larger initial set or a
larger input stream less restrictive. As we will see in the next section, its e�ect
on any stream will be neglectable in combination with a more restrictive one.

Theorem 2.8 (generic is monotonic)

A1 � A2 �?!N; f 2 PB : genericA1
(f)) genericA2

(f)

Theorem 2.9 (GCPB is monotonic)

A1 � A2 �?!N : GCPBA1 � GCPBA2
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Idempotence

Here we prove what happens when we apply the �lters several times.

ap is self correcting, that means it does not need a correct input. It rather
behaves as if the input was corrected before.

Lemma 2.10

A2 � A1 �?!N :

8� 2 PB; n � j�j : apA2
(ap?A1

(�))(n) = apA2
(�)(n)

Proof:

We give a proof by induction over n:

n=0: (for j�j 6= 0)

apA2
(ap?A1

(�))(0) = A2 = apA2
(�)(0)

n+1: (for j�j > n+ 1)

apA2
(ap?A1

(�))(n+ 1) =

= apA2
(ap?A1

(�))(n)[
S

?c2apA2
(ap?

A1
(�))(n)

fp 2?!Nj p 2 ap?A1
(�)(n)(c)g =

(I.A.)
= apA2

(�)(n)[
S

?c2apA2
(�)(n)

fp 2?!Nj p 2 �(n)(c)^?c 2 apA1
(�)(n)g =

(T.2.5)
= apA2

(�)(n+ 1)

tu

If a stream is input �ltered twice, �rst less and then more restrictive, the �rst
�lter is superuous.

Theorem 2.11 (Multiple Input Filtering)

A2 � A1 �?!N :

8� 2 PNMS : ap?A2
(ap?A1

(�)) = ap?A2
(�)

Proof:

n < j�j; c 2 N :

ap?A2
(ap?A1

(�))(n)(c) =

=

8<
:
ap?A1

(�)(n)(c) if ?c 2 apA2
(ap?A1

(�))(n)

;̂ else
=

(T.2.10)
=

8<
:
�(n)(c) if ?c 2 apA1

(�)(n)\ apA2
(�)(n)

;̂ else
=

(T.2.5)
= ap?A2

(�)(n)(c)

tu

For output �ltering, a prior less restrictive input �lter is irrelevant.
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Theorem 2.12 (Output Filtering with respect to Filtered Input)

A2 � A1 �?!N :

8�;  2 PB : ap!NA2
(ap?A1

(�))( ) = ap!NA2
(�)( )

Proof:

n < j�j; j j; c2 N :

ap!NA2
(ap?A1

(�))( )(n)(c) =

=

8<
:
apA2

(ap?A1
(�))(n)[D c (n)(c) if !c 2 apA2

(ap?A1
(�))(n)

;̂ else
=

(T.2.5,2.10)
= ap!NA2

(�)( )(n)(c)
tu

Analogous to multiple input �ltering, a second less restrictive �ltering of the
output can be omitted.

Theorem 2.13 (Multiple Output Filtering)

A1 � A2 �?!N; �1; �2 2 PNMS; �1 � �2 :

8 2 PB : ap!NA2
(�2)(ap!NA1

(�1)( ))( ) = ap!NA1
(�1)( )

Proof:

n < j�j; j j; c2 N :

ap!NA2
(�2)(ap

!N
A1
(�1)( ))( )(n)(c) =

=

8<
:
apA2

(�2)(n) [ D cap!NA1
(�1)( )(n)(c) if !c 2 apA2

(�2)(n)

;̂ else
=

=

8>>><
>>>:
apA2

(�2)(n) [ D capA1
(�1)(n)[ D c (n)(c)

if !c 2 apA2
(�2)(n) \ apA1

(�1)(n)

;̂ else

=

(T.2.5)
=

8<
:
apA1

(�1)(n) [ D c (n)(c) if !c 2 apA1
(�1)(n)

;̂ else
=

= ap!NA1
(�1)( )

tu

Concatenation

As we saw in T.2.1, concatenation preserves contractivity. In this section we
prove that it also preserves genericity with a special regard to 'availability'.

Availability This term denotes the possibility that one partial behavior can
make some ports available to its follow up. These ports will not be part of the
behavior's initially active ports, but they will be active in case of a break o� of
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the input (and output). For every �nite stream in the behavior's domain the
active ports at the end of the stream will include the available ports. Intuitively
speaking, the behavior may not break o� as long as the ports which should be
available were not received.

Genericity Preservation We start with basic congruence rules about �lter-
ing with respect to pre�xes and su�xes. The pre�x/su�x of a �ltered stream
is the �ltered pre�x/su�x of the stream:

Lemma 2.14 (Pre�xes of ap?)

A �?!N; � 2 PNMS; m < j�j :

ap?A(�) #m = ap?A(� #m)

Proof:

� #m= (� #m) #m
(T.2.3)
) ap?A(�) #m= ap?A(� #m) #m

(jap?
A

(� #m)j = m)
= ap?A(� #m)

tu

Lemma 2.15 (Pre�xes of ap!N)

A �?!N; �;  2 PNMS; m < j�j; j j :

ap!NA (�) #m = ap!NA (� #m)

Proof:

� #m= (� #m) #m ^ #m= ( #m) #m )

(T.2.4)
) ap!NA (�)( ) #m= ap!NA (� #m)( #m) #m =

(jap!N
A

(� #m)( #m)j = m)
= ap!NA (� #m)( #m)

tu

Lemma 2.16 (Su�xes of ap)

A �?!N; � 2 PNMS; m < j�j :

apA(�) "
m = apapA(�)(m)(� "

m)

Proof:

Let m < j�j, we will perform an inductive proof over n in apA(�) "
m (n):

n=0: (0 < j�j �m)

apA(�) "
m (0) = apA(�)(m) = apapA(�)(m)(� "

m)(0)
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n+1: (0 < j�j �m)
apA(�) "

m (n+ 1) =

= apA(�)(m+ n+ 1) =

= apA(�)(m+ n) [
S

?c2apA(�)(m+n)
fp 2?!Nj p 2 �(m+ n)(c)g =

= apA(�) "
m (n)[

S
?c2apA(�)"

m(n)
fp 2?!Nj p 2 � "m (n)(c)g =

(I.A.)
= apapA(�)(m)(� "

m)(n) [
S

?c2apapA(�)(m)(�"
m)(n)

fp 2?!Nj p 2 � "m (n)(c)g =

= apapA(�)(m)(� "
m)(n+ 1)

tu

Lemma 2.17 (Su�xes of ap?)

A �?!N; � 2 PNMS; m < j�j :

ap?A(�) "
m = ap?apA(�)(m)(� "

m)

Proof:

n < j�j �m; c 2 N :

ap?A(�) "
m (n)(c) = ap?A(�)(m+ n)(c) =

=

8<
:
�(m+ n)(c) if ?c 2 apA(�)(m+ n)

;̂ else
=

=

8<
:
� "m (n)(c) if ?c 2 apA(�) "

m (n)

;̂ else
=

=

8<
:
� "m (n)(c) if ?c 2 apapA(�)(m)(� "

m)(n)

;̂ else
=

= ap?apA(�)(m)(� "
m)(n)(c)

tu

Lemma 2.18 (Su�xes of ap!N)

A �?!N; �;  2 PNMS; m < j�j; j j :

ap!NA (�)( ) "m = ap!NapA(�)(m)(� "
m)( "m)

Proof:

n < j�j �m; j j �m; c 2 N :

ap!NA (�)( ) "m (n)(c) = ap!NA (�)( )(m+ n)(c)
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=

8<
:
apA(�)(m+ n) [D c�(m+ n)(c) if !c 2 apA(�)(m+ n)

;̂ else
=

=

8<
:
apA(�) "

m (n) [D c� "m (n)(c) if !c 2 apA(�) "
m (n)

;̂ else
=

=

8<
:
apapA(�)(m)(� "

m)(n)[D c� "m (n)(c) if !c 2 apapA(�)(m)(� "
m)(n)

;̂ else
=

= ap!NapA(�)( )(m)(� "
m)( "m)(n)(c)

tu

Now availability comes into play: if a partial behavior makes the initial set of
its follow up available, the concatenation of both is generic.

Theorem 2.19 (Concatenation preserves Genericity)

f; g 2 PB; A;B �?!N :

genericA(f)^ genericB(g)^ 8� 2 dom(f) nNMS : B � apA(�)(j�j)

) genericA(f � g)

Proof:

Let �0 bet that pre�x of � which is in f 's domain: �0 v � ^ �0 2 dom(f).

1. Input Genericity

(f � g)(ap?A(�)) = (f � g)(ap?A(�) #j�0j �ap
?
A(�) "

j�0j) =

(L.2.14,2.17)
= (f � g)(ap?A(� #j�0j)| {z }

2dom(f)

� ap?apA(�)(j�0j)(� "
j�0j))| {z }

2dom(g)(�)

=

(D.2.4)
= f(ap?A(� #j�0j) � g(ap

?
apA(�)(j�0j)

(� "j�
0j)) =

(genericB(g))
= f(ap?A(� #j�0j) � g(ap

?
B(ap

?
apA(�)(j�

0j)(� "
j�0j))) =

(*)
= f(ap?A(� #j�0j) � g(ap

?
B(� "

j�0j)) =�
genericA(f);

genericB(g)

�
= f(� #j�0j) � g(� "j�0j) = (f � g)(�)

(*): Here we use that with B � apA(�)(j�
0j): ap?B(ap

?
apA(�)(j�

0j)(� "
j�0j))

(T.2.11)
=

ap?B(� "
j�0j), which is in dom(g) because � "j�

0j is.
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2. Output Genericity
ap!NA (�)((f � g)(�)) =

= ap!NA (�)((f � g)(�)) #j�0j � ap
!N
A (�)((f � g)(�)) "j�0j =

(L.2.15,2.18)
= ap!NA (� #j�0j)((f � g)(�) #j�0j) � ap!NapA(�0)(j�0j)(� "j�0j)(g(� "j�0j)) =�

genericA(f);

genericB(g)

�
= f(�0) � (ap!NapA(�0)(j�0j)(� "j�

0j)(ap
!N
B (� "j�0j)(g(� "j�0j))) =

(T.2.13)
= f(�0) � ap!NB (� "j�0j)(g(� "j�0j)) =

(genericB(g))
= f(�0) � g(�00) =

= (f � g)(�)
tu

2.3 Components

We will now develop the component concept step by step with its properties.
After contractivity and genericity, which were already introduced, we will de�ne
full abstractness for behavior sets and then our renaming concept as a prereq-
uisite to name abstractness and the equivalence of components.

Full abstractness ensures that our representation of nondeterministic compo-
nents via sets of functions is unambiguous.

Renaming serves several purposes by permutating the channel names a compo-
nent uses. If it can be applied on all initially nonactive names of a component
without altering it, we call that component name abstract.

Some of the channels a component accesses initially are private. To realize
them as kinds of local variables, we see all components which only di�er in the
names of their private channels as equivalent.

This results in the concept of components as fully abstract sets of contractive
and generic behaviors which are abstract regarding inactive names. The private
names of these components can be renamed without essential e�ects on the
resulting networks.

2.3.1 Full Abstractness

For convenience in the following proofs and de�nitions, both abstractness con-
ditions are introduced via closures. Each time, abstractness is ful�lled if the
set is closed, i.e., if the closure has no e�ect on the set.

Full abstractness is the well known property that the functions of a compo-
nent represent its input output relation in all possible contractive and generic
combinations.

To exemplify the problem, consider a simple example: A component which
nondeterministically relates two inputs with two outputs. It could be repre-
sented by two functions, both constant with the two di�erent outputs. At the
same time it could be represented by the two possible bijective functions from



24 CHAPTER 2. COMPONENTS

the two inputs to the two outputs. The fully abstract set, in this trivial case
the set of all functions, forms an unambiguous normal form for all components.

Fully Abstract Closure

De�nition 2.10 (Fully Abstract Closure)

F � PB : FACA(F ) :=

ff 2 GCPBAj 8� 2 dom(f) : 9f 0 2 F : � 2 dom(f 0) ^ f(�) = f 0(�)g

Remark: C � B : FACA(C) � B because 8f 2 FACA(C) : dom(f) � NMS.

Closure Properties

By de�nition, closure always has the following three properties:

Extensivity ensures that a set is always extended by a closure, never reduced.
In our case, no behaviors disappear.

Theorem 2.20 (Extensivity)

C � GCPBA : C � FACA(C)

Proof:

FACA(C) =

= ff 2 GCPBAj 8� 2 dom(f) : 9f 0 2 C : � 2 dom(f 0)^ f(�) = f 0(�)g �

� ff 2 GCPBAj 9f 0 2 C : 8� 2 dom(f) : � 2 dom(f 0)^ f(�) = f 0(�)g =

= C

tu

Theorem 2.21 (Monotonicity)

C1 � C2 : FACA(C1) � FACA(C2)

Proof:

Obvious.

Theorem 2.22 (Idempotence)

A1 � A2; C � GCPBA1 :

FACA2(FACA1(C)) = FACA2(C)

Proof:

'�' is implied by T.2.20 and 2.21.
'�':

FACA2(FACA1(C)) =
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= ff 2 GCPBA2 j 8� 2 dom(f) : 9f 0 2 GCPBA1 : 8�
0 2 dom(f 0) :

9f 00 2 C : �0 2 dom(f 00) ^ f 0(�0) = f 00(�0) ^ � 2 dom(f 0) ^ f(�) = f 0(�)g �

� ff 2 GCPBA2 j 8� 2 dom(f) : 9f 0 2 GCPBA1 :

9f 00 2 C : � 2 dom(f 0) ^ f 0(�) = f 00(�)^ � 2 dom(f 0)^ f(�) = f 0(�)g =

= ff 2 GCPBA2 j 8� 2 dom(f) : 9f 00 2 C : � 2 dom(f 00) ^ f(�) = f 00(�)g =

= FACA2(C)

tu

2.3.2 Renaming

A renaming is a permutation of channel names which can be applied to a com-
ponent. Normally, components depend on certain names by reacting to them
di�erently than to others or by sending them and no others. These namings
can be changed or even eliminated with renamings.

Renamings play a similar but not equal role as substitutions in the use of local
variables. As any such variable can be substituted by a unused one without
altering its meaning, we can rename certain channels for a component without
altering it essentially. But in contrast to substitution renamings have to be
bijective; we cannot unify two channels by giving them the same name.

De�nitions

A renaming function � is generally a bijective function on N, so its applicability
on channel names and on port names is evident:

� 2 N
inj.
�! N.

� can also be seen as a function on port names !?N : �(!n) := !�(n); �(?n) :=
?�(n)

Applying a renaming on a stream renames the single multisets of each time
unit and channel, and exchanging the contents of the channels according to
the permutation. A renamed behavior renames its input reversely, applies the
behavior on it, and renames the result.

De�nition 2.11 (Renaming)

� 2 PNMS; n < j�j; c 2 N :

�(�)(n)(c) := �(�(n)(��1(c)))

f 2 PB :

dom(�(f)) := �(dom(f)) : 8� 2 dom(�(f)) : �(f)(�) := �(f(��1))

These de�nitions are justi�ed by the following theorems about preservation of
important behavior properties.
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Contractivity

The renaming of a contractive behavior will still be contractive.

Theorem 2.23 (Renaming preserves Contractivity)

f 2 PB; � 2 N
inj.
�! N :

ctrct(f)) ctrct(�(f))

Proof:

Let � 2 N
inj.
�! N; f 2 PB;�1; �2 2 dom(f);n+ 1 < j�1j; j�2j:

�1 #n= �2 #n ) ��1(�1) #n= ��1(�2) #n)
(ctrct(f))
) f(��1(�1)) #n+1= f(��1(�2)) #n+1)

) �(f(��1(�1))) #n+1= �(f(��1(�2))) #n+1,

, �(f)(�1) #n+1= �(f)(�2) #n+1

tu

Genericity

The renaming of a generic function will be generic with respect to the renamed
initial set. This is central as a justi�cation of our de�nitions.

We start by showing the e�ect of the �lter functions on renamed streams.

Lemma 2.24 (ap of a Renamed Stream)

A � N; � 2 PNMS :

8n � j�j : apA(�)(n) = ��1(ap�(A)(�(�))(n))

Proof:

Proof by induction on n:

n=0: (j�j � 0)
��1(ap�(A)(�(�))(0)) = A = apA(�)(0)

n+1: (j�j � n+ 1)
��1(ap�(A)(�(�))(n+ 1)) =

= ��1(ap�(A)(�(�))(n))[ �
�1(

S
?c2ap�(A)(�(�))(n)

fp 2?!Nj p 2 �(�)(n)(c)g) =

(I.A.)
= apA(�)(n) [

S
?c2ap�(A)(�(�))(n)

f��1(p) 2?!Nj p 2 �(�(n)(��1(c)))g =

= apA(�)(n) [
S

?c2��1(ap�(A)(�(�))(n))
fp 2?!Nj p 2 �(n)(c)g =

(I.A.)
= apA(�)(n+ 1)

tu
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Lemma 2.25 (ap? of a Renamed Stream)

A � N; � 2 PNMS :

ap?A(�) = ��1(ap?
�(A)(�(�)))

Proof:

c 2 N; n < j�j :

��1(ap?�(A)(�(�)))(n)(c) =

= ��1(ap?
�(A)(�(�))(n)(�(c))) =

=

8<
:
��1(�(�(n)(�(��1(c))))) if �(?c) 2 ap�(A)(�(�))(n)

;̂ else
=

( L.2.24)
=

8<
:
�(n)(c) if ?c 2 apA(�)(n)

;̂ else
=

= ap?A(�)(n)(c)

Lemma 2.26 (ap!N of a Renamed Stream)

A � N; �;  2 PNMS :

ap!NA (�)( ) = ��1(ap!N
�(A)(�(�))(�( )))

Proof:

c 2 N; n < j�j :

��1(ap!N�(A)(�(�))(�( )))(n)(c) =

= ��1(ap!N
�(A)(�(�))(�( ))(n)(�(c))) =

=

8<
:
��1(ap�(A)(�(�))(n)[D c�( (n)(c)) if !�(c) 2 ap�(A)(�(�))(n)

;̂ else
=

( L.2.24)
= ap!NA (�)( )(n)(c)

tu

Theorem 2.27 (Renaming preserves Genericity)

A � N; f 2 PB : genericA(f)) generic�(A)(�(f))

Proof:

1. Input

�(f)(ap?�(A)(�)) = �(f(��1(ap?�(A)(�)))) =

(L.2.25)
= �(f(ap?A(�

�1(�)))) =
(genericA(f))

= �(f(��1(�))) =

= �(f)(�)
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2. Output

ap!N�(A)(�)(�(f)(�)) = ap!N�(A)(�)(�(f(�
�1(�))) =

(L2.26)
= �(ap!NA (��1(�))(f(��1(�)))) =

(genericA(f))
= �(f(��1(�))) =

= �(f)(�)

tu

Concatenation

Concatenation is compatible with renamings: the renaming of a concatenation
is the same as the concatenation of the renamed streams. With this it is easy
to show that also function concatenation is congruent.

Renaming congruence of this kind will be used very often to show the com-
patibility of operations with renaming. If an operation is congruent it can be
regarded as independent of concrete namings.

Lemma 2.28 (Concatenation of Streams is Renaming Congruent)

�; � 2 NMS : �(� � �) = �(�) � �(�)

Proof:

Let n 2 IN; c 2 N:

�(� � �)(n)(c) = �(� � �(n)(��1(c))) =

=

8<
:
�(�(n)(��1(c))) if n < j�(�)j

�(�(n� j�(�)j)(��1(c))) else
=

= (�(�) � �(�))(n)(c)
tu

Theorem 2.29 (Concatenation is Renaming Congruent)

f; g 2 PB : �(f � g) = �(f) � �(g)

Proof:

Let � 2 dom(f); � 2 dom(g): Then and only then �(� � �) 2 dom(�(f � g)).

�(f � g)(�(� � �)) = �((f � g)(� � �)) =
(L.2.28)
= �(f(��1(�(�)))) � �(g(��1(�(�))))

tu

Full Abstractness

Full abstractness is preserved by renaming with respect to the renamed initial
set. This is a consequence of the congruence of the closure.
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Theorem 2.30 (FAC is Renaming Congruent)

C � GCPBA; � 2 N
inj.
�! N :

�(FACA(C)) = FAC�(A)(�(C))

Proof:

�(FACA(C)) =

= f�(f) 2 GCPB�(A)j 8� 2 dom(f) : 9f 0 2 C : � 2 dom(f 0) ^ f(�) = f 0(�)g =

= ff 2 GCPB�(A)j 8� 2 dom(f) : 9f 0 2 C : � 2 dom(f 0)^ ��1(f)(�) = f 0(�)g =

= ff 2 GCPB�(A)j 8� 2 dom(f) : 9f 0 2 C : � 2 dom(f 0)^ f(�) = �(f 0)(�)g =

= ff 2 GCPB�(A)j 8� 2 dom(f) : 9f 0 2 �(C) : � 2 dom(f 0) ^ f(�) = f 0(�)g =

= FAC�(A)(�(C))

tu

Corollary 2.31 (Renaming preserves Full Abstractness)

C � GCPBA; � 2 N
inj.
�! N : FACA(C) = C ) FAC�(A)(�(C)) = �(C)

2.3.3 Name Abstractness

If we represent components by fully abstract sets of contractive and generic
functions, we also model an annoying and superuous feature. Components
could distinguish incoming new port names by their name, but they should
be independent of the concrete names of inactive, or better: unknown, names.
Certainly, they should identify incoming new names in some way, for example,
recognize if they are di�erent or read and write ports of the same channel.
Nevertheless, new channels should be anonymous, i.e., a new channel name is
as good as any other.

This ignorance of the concrete names of inactive channels, which we call name
abstractness, is realized through a closure. We demand a component to be
closed with respect to that closure.

Name Abstract Closure

De�nition 2.12 (Name Abstract Closure)

F � PB : NACA(F ) :=

ff 2 PBj 9� 2 N
inj.
�! N; f 0 2 F : � jA = id ^ f = �(f 0)g

Remark: C � B : NACA(C) � B

The e�ect of an application of this closure on a not already name abstract
component is to add all behaviors which are necessary to ful�ll name abstract-
ness.
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For example, consider a component which reacts with some output only to a
certain, new channel name c (which is not in its active set). For each channel
name c0 outside of the initial set, there is a renaming which maps c to c0 and
which maps the initial set identically. Each such renaming adds a new behavior
to the component set, resulting in a component which does not distinguish c

from any other inactive channel name.

Closure Properties

Theorem 2.32 (Extensivity)

C � PB : C � NACA(C)

Proof:

Obvious.Consider � = id.

Theorem 2.33 (Monotonicity)

C1 � C2 : NACA(C1) � NACA(C2)

Proof:

Obvious.

Theorem 2.34 (Idempotence)

C � PB :

NACA(NACA(C)) = NACA(C)

Proof:

NACA(NACA(C)) =

= ff 2 PBj 9� 2 N
inj.
�! N; f 0 2 PB : 9� 0 2 N

inj.
�! N; f 00 2 F :

� 0jA = id ^ f 0 = � 0(f 00) ^ � jA = id^ f = �(f 0)g =

= ff 2 PBj 9� 00 2 N
inj.
�! N; f 0 2 F : � 00jA = id^ f = � 00(f 0)g

We can see � 00 as � � � 0.
tu

Properties and Consequences

The following property is necessary for our closure; it has to result in correct
component functions.

Theorem 2.35 (NAC preserves Genericity and Contractivity)

C � GCPBA; A � A0 : NACA0(C) � GCPBA
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Proof:

Renaming generally preserves Contractivity.

Input Genericity:

�(f(��1(ap?�(A)(�))))
(L.2.25)
= �(f(ap?A(�

�1(�)))) =

(genericA(f))
= �(f(��1(�)))

Output Genericity:

ap!N�(A)(�)(�(f(�
�1(�))))

(L.2.26)
= �(ap!NA (��1(�))(f(��1(�)))) =

(genericA(f))
= �(f(��1(�)))

tu

The next theorem shows that renaming does not change anything about name
abstractness of a component, but it is also important for other proofs, like that
of T.2.38.

Theorem 2.36 (NAC is Renaming Congruent)

C � GCPBA; � 2 N
inj.
�! N :

�(NACA(C)) = NAC�(A)(�(C))

Proof:

�(NACA(C)) =

= f�(f) 2 PBj 9� 0 2 N
inj.
�! N; f 0 2 F : � 0jA = id^ f = � 0(f 0)g =

= ff 2 PBj 9� 0 2 N
inj.
�! N; f 0 2 F : � 0jA = id ^ ��1(f) = � 0(f 0)g =

= ff 2 PBj 9� 00 2 N
inj.
�! N; f 00 2 �(F ) : � 00j�(A) = id ^ f = � 00(f 00)g =

= NACA(�(C))

where � 00 can be seen as � � � 0 � ��1.
tu

Corollary 2.37 (Renaming preserves Name Abstractness)

C � GCPBA; � 2 N
inj.
�! N : NACA(C) = C ) NAC�(A)(�(C)) = �(C)

Based on the renaming congruence we can proof a very interesting property,
which shows the special importance of name abstractness for the role of renam-
ings. Two renamings that behave identical on the active ports are identical in
their application on the whole component. In other words, renamings can be
characterized by their e�ect on active ports. On name abstract components,
renamings are partial injective functions on the active channels. Now we are
closer to the idea of substitution, where the variables of the context also do not
matter. But still, injectivity is an unpleasent constraint on renamings which
will stay with us.
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Theorem 2.38 (Characterization of Renamings)

C � GCPBA; NACA(C) = C; �1; �2 2 N
inj.
�! N :

�1jA = �2jA ) �1(C) = �2(C)

Proof:

We de�ne for given renamings �1; �2 2 N
inj.
�! N with �1jA = �2jA: � := �2��

�1
1 .

�1jA = �2jA ) (�2jA) � (�1jA)
�1 = id

) �2jA � (�
�1
1 )j�1(A) = id

) � j�1(A) = id

Since C is name abstract and with that by C.2.37 also �1(C) is name abstract,
we can use � on �1(C) without e�ect: �(�1(C)) = �1(C). By � 's de�nition, this
guides us to: �1(C) = �(�1(C)) = �2(�

�1
1 (�1(C)) = �2(C).

tu

2.3.4 Components

Now we have all instruments to specify components. We demand contractivity
and genericity from each function. The set of functions has to be fully abstract
and name abstract.

A component is indexed with two initial sets: the set of active ports and
the set of private channels. The union of the active ports and the ports of
the private channels form the initially active port set we discussed above. A
private channel is only known to the component itself, it should never appear
in its environment. This will be ensured by the de�nitions of the operators,
which embed a component in an environment.

For our purposes so far, private channels are simply initially active ports which
always appear as pairs. But we will see the sense of privacy when de�ning the
equivalence relation.

There are two more formal conditions for components: First, for the unambi-
guity of our representation, we demand active ports and the ports of the private
channels to be disjunct. Second, the component is not partial, so it has to have
one output to each input at least. This is equivalent to the existence of at least
one behavior: the behavior set of a component has to be nonempty.

Set of Components
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De�nition 2.13 (Set of Components)

C � B; I �?!N; P � N :

CI;P 2 Comp :,

I\?!P = ; ^ (Disjointness)

C 6= ; ^ (Nonemptiness)

C � GCBI[?!P ^ (Genericity)

C = FACI[?!P (C) ^ (Full Abstractness)

C = NACI[?!P (C) (Name Abstractness)

Set of Partial Components

Partial behaviors can also form components. Additionally to active ports and
private channels, they also have an available set of ports, which are guaranteed
to be active whenever a behavior ends after a �nal input. This available set
also has to be disjunct to the ports of the private channels.

De�nition 2.14 (Set of Partial Components)

C � PB; I; A �?!N; P � N :

CI;P;A 2 PComp :,

I\?!P = A\?!P = ; ^ (Disjointness)

C 6= ; ^ (Nonemptiness)

C � GCPBI[?!P ^ (Genericity)

C = FACI[?!P (C) ^ (Full Abstractness)

C = NACI[?!P[A(C) ^ (Name Abstractness)

8f 2 C : 8� 2 dom(f) nNMS :

A � apI[?!P (�)(j�j) (Availability)

Remark: Comp �= fCI;P;A 2 PCompjA = ; ^ C � Bg

Basic Pre�xes We will give two examples for partial components. Taken
from the �-calculus, they could be seen as the interpretation of a sender and a
receiver pre�x (in the context of the synchronous operators).

De�nition 2.15 (Sender) x; y 2 N :

!x(y) := ff 2 GCPBf!x;!y;?ygj 8� 2 dom(f) : 9n < j�j :

(f(�)(n)(x) = [y] _ f(�)(n)(x) = ;̂) ^

8m 6= n;m < j�j : 8c 6= x : f(�)(m)(c) = ;̂gf!x;!y;?yg;;;;
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De�nition 2.16 (Receiver) x; y 2 N :

?x(y) := ff 2 GCPBf?xgj 8� 2 dom(f); n < j�j; c 2 N :

f(�)(n)(c) = ;̂ ^

((9n < j�j :?y; !y 2 �(n)(x))_ j�j =1g?x;;;f?y;!yg

Equivalence

Now we see a �rst use of the private set: it can be renamed without altering the
component essentially. Obviously it is formally altered, but we abstract from
those 'inessential' di�erences by identifying a component with its equivalence
class of components which result from a private renaming of the component.

With private renaming we denote any renaming � 2 N
inj.
�! N with � jP = id

for the private set P . Remember that � 's e�ect on the initially active ports
characterizes the renaming (T.2.38), which means for this case that the restric-
tion of the renaming on the private channels is all the necessary information to
connect a component with an equivalent one.

De�nition 2.17 (Equivalence)

C1I1;P1
2 CompI1[?!P1

; C2I2;P2
2 CompI2[?!P2

;

P1 \ P2 =?!P1 \ I2 =?!P2 \ I1 = ; :

C1I1;P1
� C2I2;P2

:, 9� 2 N
inj.
�! N; � jI = id : �(C1I1;P1

) = C2I2;P2

Now we have completely de�ned components and their equivalence structure,
but this is just half of our model. Of equal importance are the possiblilities of
combining networks via operators. We will study the interaction between the
de�ned components by discussing the methods of their combination.
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Operators

3.1 Genericity

Genericity is also a property of operators, it includes that the operator's result
has to be generic if its arguments are, but there is more to genericity than that.
The result of an operation has to be a proper component, as described by the
last chapter. Our main work in this chapter will be the proof of genericity for
di�erent operator de�nitions.

Any operator has to ful�ll two conditions to be considered generic: It has to
result in a component when applied on components, and it has to be a congruent
operation with respect to �:

8i 2 I : Ai � A0i )
M
i2I

Ai �
M
i2I

A0i

As stated before, we want to see components abstractly, independent of the
concrete names of the private channels. However, a certain component has to
represent its equivalence class in the following operations. We constrain this
choice on components with disjunct private sets.

The necessary properties for genericity are proofed in detail by showing the
following:

Disjointness of the result's initially active and private ports.

Nonemptiness of the result's behavior set.

Generictity of the result's behaviors.

Full Abstractness of the result's behavior set.

Renaming Congruence of the operation. This is commonly needed to prove
the following properties.

Name Abstractness of the result's behavior set.

Congruence of the operation to the equivalence relation `�'.

35
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3.2 Union

The union of a set of components forms the union of the possible input output
pairs of the components. For any input the union reacts like one of the argument
components, which are not interacting with each other.

We cannot simply form the union of the behavior sets because there can be
contractive, generic behaviors reacting like one component to one input and
like another to a di�erent one. As an example, take the union of di�erent
components which each map all their inputs constantly on di�erent outputs.
With regards for contractivity and genericity there possibly have to be non
constant functions in the result. These functions are added by the fully abstract
closure in the de�nition:

3.2.1 De�nition

De�nition 3.1 (Union of Components)

I 6= ;; 8i 2 I : CiIi;Pi 2 Comp; 8i; j 2 I; i 6= j : Pi \ Pj = Ii\?!Pj = ; :S
i2I

CiIi;Pi := (FACS
i2I

Ii[?!Pi
(
S
i2I

Ci))
S
i2I

Ii;
S
i2I

Pi

For I = ; we would need a set of behaviors as result which should be neutral
with respect to the union:

S
i2I CiIi;Pi =

S
i2I CiIi;Pi [

S
i2;CiIi;Pi .

There is no general solution because such a set would have to be subset of
every component. Nevertheless, there could be examples for special cases.

3.2.2 Disjointness

Because of the premise 8i; j 2 I; i 6= j : Ij\?!Pi = ; and with 8i 2 I : CiIi;Pi 2
Comp) Ii\?!Pi, disjointness is obviously guaranteed:

(
[
i2I

Ii)\ ?!(
[
i2I

Pi) =
[
i;j2I

Ii\?!Pi = ;

3.2.3 Nonemptiness

Consider:

8i 2 I : ; 6= Ci � GCBIi[?!Pi
(T.2.9)
) ; 6= Ci � GCBS

i2I

Ii[?!Pi
)

(T.2.20,2.21)
) ; 6= Ci � FACS

i2I

Ii[?!Pi
(Ci) � FACS

i2I

Ii[?!Pi
(
[
i2I

Ci)

3.2.4 Genericity

The fully abstract closure enforces genericity (see Def.2.10).
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3.2.5 Full Abstractness

Full abstractness is trivial by the form of the de�nition, the fully abstract closure
is idempotent:

FACS
i2I

Ii[?!Pi
(FACS

i2I

Ii[?!Pi
(
S
i2I

Ci))
(T.2.22)
= FACS

i2I

Ii[?!Pi
(
S
i2I
Ci)

3.2.6 Renaming Congruence

This property is not directly needed for genericity, but its essential for the
following two proofs. Name abstractness and congruence to the equivalence
relation is obvious after proving renaming congruence. Besides that, the de�ni-
tions of the operations (including renaming itself) are justi�ed as long as they
are in agreement with each other.

Theorem 3.1 (Union is Renaming Congruent)

� 2 N
inj.
�! N :

�(
[
i2I

CiIi ;Pi) =
[
i2I

�(Ci)�(Ii);�(Pi)

Proof:

�(
S
i2I

CiIi;Pi) = �((FACS
i2I

Ii[?!Pi
(
S
i2I

Ci))S
i2I

Ii;
S
i2I

Pi
)
(T.2.30)
=

= (FAC�(
S
i2I

Ii[?!Pi)
(�(
S
i2I

Ci)))�(
S
i2I

Ii);�(
S
i2I

Pi)
=

= (FACS
i2I

�(Ii)[�(?!Pi))
(
S
i2I

�(Ci)))S
i2I

�(Ii));
S
i2I

�(Pi))
=
S
i2I

�(CiIi;Pi)

tu

3.2.7 Name Abstractness

Assume � 2 N
inj.
�! N; � jS

i2I

Ii[?!Pi
= id, then � jIi[?!Pi = id for any i 2 I :

�(
S
i2I
CiIi;Pi) =

S
i2I

�(Ci)�(Ii);�(Pi)
(NACIi[?!Pi

(Ci) = Ci)
=

S
i2I

CiIi;Pi

This proves NACS
i2I

Ii[?!Pi
(
S
i2I

Ci) �
S
i2I

Ci. The opposite direction `�' is shown

by theorem 2.32.

3.2.8 Congruence

We assume: 8i 2 I : CiIi ;Pi � C0
iIi;P

0
i
, where

8i 2 I : �i 2 N
inj.
�! N ^ �ijIi = id ^ �i(CiIi;Pi) = C0

iIi;P
0
i

Since the union is applicable on the indexed components as on their indexed
images, we know that: 8i; j 2 I : i 6= j ) Pi \ Pj = ; ^ �i(Pi) \ �j(Pj) = ;
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We will have to �nd a � 2 N
inj.
�! N; � jS

i2I

Ii[?!Pi
= id which maps the union of

the indexed components on the union of their images:

�(
[
i2I

CiIi;Pi) =
[
i2I

C0
iIi;P

0
i

Assume the following for � : � 2 N
inj.
�! N ^ 8i 2 I : � jIi = id^ � jPi = �ijPi

The existence of such a � is guaranteed by the disjointness of the private sets
and by that of their images. Now we apply such a � on the union:
�(
S
i2I

CiIi;Pi) =
S
i2I

�(Ci)�(Ii);�(Pi) =
S
i2I

C0
iIi;P

0
i
)

S
i2I

CiIi;Pi �
S
i2I

C0
iIi;P

0
i

3.3 Hiding

Hiding locally binds some variable inside a network term. The e�ect is that the
appearances of the hidden name in the environment of the term cannot have
the same meaning, i.e., denote the same channel. Disjointness of the private
set of the resulting component and the initially active ports of the environment
enforce a renaming of the hidden name before applying any further combinators
on them.

Privacy of the component prohibits hiding an already private channel name. 1

As a consequence we also cannot hide any completely inactive name, because it
could be active in a privately renamed version of the component. As an e�ect
of this, the de�nition is relatively cumbersome by distinguishing the case of
hiding inactive names.

3.3.1 De�nition

De�nition 3.2 (Hiding)

CI;P 2 Comp; x 2 N n P :

�x : CI;P :=

8<
:
(FACI[?!P[f?x;!xg(C))Inf?x;!xg;P[fxg if x 2 ~I

CI;P else

We do not assume that ?x 2 I or !x 2 I before hiding it. Only for the case
!x 2 I and ?x 62 I the fully abstract closure in the de�nition above matters. In
that case, since x 62 P is assumed, the component should be fully abstract with
respect to actually ignored inputs on x.

We omit a proof of disjointness in this and many following cases, where it is
obvious from the de�niton.

1The subtle and rather technical reason lies in the congruence of hiding. The hiding of an
already private name would need to be equivalent to the same hiding applied on a privately
renamed component to which the name would be completely unknown. But, the resulting
private sets would be of di�erent cardinality and so could not be equivalent via a bijective
renaming function!
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3.3.2 Nonemptiness

In case x 2 ~I:

; 6= C � GCBI[?!P
(T.2.9)
� GCBI[?!P[f?x;!xg

(T.2.20)
=) C � FACI[?!P[f?x;!xg(C)

If x 62 ~I the resulting behavior set is C, which is nonempty by assumption.

3.3.3 Renaming Congruence

Theorem 3.2 (Hiding is Renaming Congruent)

� 2 N
inj.
�! N :

�(�x : CI;P ) = ��(x) : �(CI;P )

Proof:

�(�x : CI;P ) = �(FACI[?!P[f?x;!xg(C))�(Inf?x;!xg);�(P[fxg) =
(T.2.30)
= FAC�(I)[?!�(P )[f?�(x);!�(x)g(�(C))�(I)nf?�(x);!�(x)g;�(P )[f�(x)g =

= ��(x) : �(CI;P )

tu

3.3.4 Name Abstractness

� 2 N
inj.
�! N; � jI[?!P = id :

1st case: x 2 ~I () �(x) = x): �(�x : CI;P )
(T.3.2)
= �x : �(CI;P ) = �x : CI;P {

the last equality follows from the name abstractness of CI;P and from � jI[?!P =
id.

2nd case: x 62 ~I () �(x) 62 ~I): �(�x : CI;P )
(T.3.2)
= ��(x) : �(CI;P ) = CI;P =

�x : CI;P

3.3.5 Congruence

Again, the only interesting case is x 2 ~I , let us assume: �(CI;P ) = C0
I;P 0 with

� jI = id:

�(�x : CI;P )
(T.3.2)
= �x : �(CI;P ) = �x : C0

I;P 0.

This proves: �x : CI;P � �x : C0
I;P 0 .

3.4 Concatenation

We can concatenate partial components to form new components. The initially
active ports of the result does not include the ports which were made available
by the �rst operand.
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3.4.1 De�nition

De�nition 3.3 (Concatenation of Partial Components)

C1I1;P1;A1
; C2I2;P2;A2

2 PComp; P1 \ P2 = ;; (I1 [A1)\?!P2 = (I2 [A2)\?!P1 = ; :

C1I1;P1;A1
� C2I2;P2;A2

:= FACI1[(I2nA1)[?!(P1[P2)(

NACI1[(I2nA1)[?!(P1[P2)[A2
(

(C1 � C2))I1[(I2nA1);P1[P2;A2

Since the result is still a partial component, we have to exclude A2 from the
name abstract closure. In contrast to this, we can abstract away from the names
of A1 because in the concatenation these names lost there exemplary role for
C2.

3.4.2 Disjointness

(I1 [ (I2 nA1) [A2) \ (P1 [ P2) � (I1 [ I2 [A2) \ (P1 [ P2) =

= (I1 \ P2) [ (I1 \ P1) [ ((I2 [A2) \ (P2)) [ ((I2 [ A2)\ P1) = ;

3.4.3 Nonemptiness and Genericity

We will show that ; 6= C1 � C2 � GCPBI1[(I2nA1)[?!(P1[P2) using theorem 2.1
and 2.19, which state that concatenation of behaviors preserves contractivity
and genericity.

Assume f 2 C1; g 2 C2: Since f and g are contractive each, f �g is contractive
(see T. 2.1).

f 2 GCPBI1[?!P1

(T.2.8)
=) genericI1[(I2nA1)[?!(P1[P2)(f)

g 2 GCPBI2[?!P2 =) genericI2[?!P2
(g)

Availabiltity of C1I1;P1;A1
ensures that

8� 2 dom(f) nNMS : I2[?!P2 � (I2 nA1)[?!P2 [A1 � apA(�)(j�j)

Hence all premises of theorem 2.19 are ful�lled, we can conclude that
genericI1[(I2nA1)[?!(P1[P2)(f � g). Together with contractivity this sums up to
f � g 2 GCPBI1[(I2nA1)[?!(P1[P2).

According to theorem 2.32 and 2.20 the name abstract and the fully abstract
closure are extensive, which makes the nonempty, contractive, and generic C1 �
C2 also a subset of FACI1[(I2nA1)[?!(P1[P2)(NACI1[(I2nA1)[?!(P1[P2)[A2

(C1�C2)).
Its nonemptiness is proofed with that.

The result of a name abstract closure remains a subset of
GCPBI1[(I2nA1)[?!(P1[P2) according to theorem 2.35. Obviously the same
is valid for the fully abstract closure (cf. its de�nition 2.10), which proves the
genericity of concatenation.
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3.4.4 Full and Name Abstractness

Keep in mind that the name abstractness of the result is, because of availability,
de�ned with respect to the active set enlarged by the �nally available set A2.
A partial component can receive a certain channel name, although this name is
not initially active.

The following theorem shows that we applied the two closures in the right
order since both, full and name abstractness, are ensured:

Theorem 3.3 (Fully and Name Abstract Closure)

C � GCPBA; A � A0 :

1) NACA0(FACA(NACA0(C))) = FACA(NACA0(C)) ^

2) FACA(FACA(NACA0(C))) = FACA(NACA0(C))

Proof:

1)� jA0 = id)

�(FACA(NACA0(C))) = FACA(�(NACA0(C))) = FACA(NACA0(C))

2) NACA0(C) � GCPBA
(T.2.22)
)

FACA(FACA(NACA0(C))) = FACA(NACA0(C))
tu

For convenience and in compliance with the theorem we ab-
breviate I1 [ (I2 nA1)[?!(P1 [ P2) with A and its superset
I1 [ (I2 nA1)[?!(P1 [ P2) [ A2 with A

0.

As we saw in the last section, NACA0(C1 � C2) is a subset of GCPBA. This
makes theorem 3.3 applicable:

FACA(FACA(NACA0(C1 �C2)))
(T.3.3)
= FACA(NACA0(C1 � C2))

Now we apply theorem 3.3 to our special case of name abstractness:

NACA[A2(FACA(NACA[A2(C1 � C2)))
(T.3.3)
= FACA(NACA[A2(C1 � C2))

3.4.5 Availability

In this case, where the result is a partial component, availability (D.2.14) has
to be shown:

Assume that h 2 C1 � C2 with h = f � g; f 2 C1 and g 2 C2 and that
� 2 dom(h). There exist �1 2 dom(f) and �2 2 dom(g) such that � = �1 � �2.

Now according to lemma 2.16 (A stands for I1 [ (I2 nA1)[?!(P1 [ P2)) :
apA(�)(j�1j + j�2j) = apA(�) "j�1j (j�2j) = apapA(�1)(j�1j)(�2)(j�2j), which is,
by the availability, of C1 a superset of apI2[?!P2(�2)(j�2j) which includes A2

because of the availability of C2.

By this, each domain element with its value for each function in C1 � C2 cor-
responds to our availability demand. The applied name abstract closure adds
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functions with changed names, but it still respects the initial sets together with
A2. Theorem 2.24 makes it easy to see why A2 will still be available:

A2 � apA(�)(j�1j+ j�2j)
(� jA2

= id)
)

A2 � �(apA(�)(j�1j+ j�2j))
(T.2.24)
= ap�(A)(�(�))(j�1j+ j�2j))

The application of the fully abstract closure does not interfere with availability
because it is a property of domain elements and their values. FAC does not
add pairs to this input output relation, it just recombines them.

Thus, each function in FACA(NACA0(C1�C2)) makes the names in A2 available.

3.5 Merging, Copying and Splitting

One of the main design decisions we are confronted with lays in our treatment
of stream rami�cations. When several components interact with each other, we
have to handle multiple input and output streams for each component. Under
the constraint of a �xed functionality we have to explicitly model the transition
from several to one stream and reverse.

For the 'two on one' case we simply use the multi set union on each channel
and in each unit, which merges the streams without adding or dropping any
messages. There are alternative solutions like, for example, nondeterministically
choosing one multiset per channel and time unit and dropping the other. In fact
this example has some algebraic merits, depending on other properties of the
chosen design. Nevertheless we constrain our examination on the 'fair merge'
above 2

For the 'one on two' case we o�er two di�erent solutions which, in combination
with the fair merge, realize asynchronous and synchronous communication.

3.5.1 Asynchronous Communication

In the context of the distinction we are trying to make, asynchronous commu-
nication will be understood as an exclusive procedure of interaction.

After broadcasting its message, the sending component continues directly with-
out awaiting acknowledgements (this is the normal case). Every other compo-
nent with read access on the respective channel receives the message, i.e., it
may causally be inuenced in its further behavior by the message. As the
term 'broadcast suggests, there is neither a sole receiver nor, in consequence, a
standardized acknowledgement procedure.

Asynchronous interaction does not involve the possibility of a failure: Commu-
nication includes nothing more than the act of sending a message | a reaction
is always possible but contingent upon the concrete behaviors of the partner
components.

2In the case of list representation instead of multisets there are more alternatives which we
have to consider. Especially with regard to the algebraic problems arising.
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3.5.2 Realization

We model this process by networks based on a 'copy split'. In rami�cations
where one stream is divided into two we simply 'copy' the stream by using it as
input for di�erent functions. The subterm which denotes the stream appears
several times within one term.

As an example consider the asynchronous parallel composition (Def.3.9):

f(�) = f1(�) ] f2(�))

The input stream � is simply used twice, each time as argument for a di�erent
function.

3.5.3 Synchronous Communication

In a synchronous network, messages are never duplicated. A message has one
sender and one receiver with the necessary channel access. Other components
which read the channel besides the receiver will not be inuenced by the mes-
sage.

Synchronizity in another respect, time synchronizity, can easily be introduced
through a protocol which demands a correct acknowledgment transmission for
each message.

The described message synchronizity (one message { one sender { one receiver)
is realized by an explicit stream splitting function which will neither add nor
drop any message. It will nondeterministically distribute messages on both
output streams. If a message is put on a channel which cannot be received by
the processing component, it is lost. Synchronous communication may fail.

3.5.4 Realization

Because there are many possibilities to split a stream, the distributing function
is realized as a set of functions on streams.

The following two properties are needed to ease later proofs. They do not
constrain networks in any way because the functions are used pointwise in
de�ning the networks. For each input there will have to be a splitting function
{ not just one function for every input.

Pointwise de�ned functions are functions that work on each channel's and each
time unit's content of the input independent of all other channels and time units.
Its result on one channel and unit can be predicted from the input on exactly
this channel and unit.

De�nition 3.4 (Pointwise De�ned Functions: PWD)

n;m 2 IN n f0g; f 2 NMSn �! NMSm :

PWD(f) :, 8�1; : : : ; �n;  1; : : : ;  n; m 2 IN; c 2 N :

(8i � n : �i(m)(c) =  i(m)(c)))

f(�1; : : : ; �n)(m)(c) = f( 1; : : : ;  n)(m)(c)
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A pointwise de�ned function can be seen as a bundle of functions on multisets,
indexed by channel names and time units:

PWD(f) : 9(fn;c)n2IN;c2N :

8n 2 IN; c 2 N : 8� 2 NMS : f(�)(n)(c) = fn;c(�(n)(c))

Filter Congruence is the more interesting constraint for splits. It connects the
behavior of any split on any given input with its behavior on the respective
�ltered inputs. Again, this constraint does not ban any argument value pairs,
it only limits the possible combinations within one function.

De�nition 3.5 (Filter Congruent Functions: FC)

n;m 2 IN n f0g; f 2 NMSn �! NMSm :

FC(f) :,

8�1; : : : ; �n 2 NMS; F �M : F cf(�1; : : : ; �n) = f(F c�1; : : : ; F c�n)

Notation We will write fn for �n � f , i.e the nth projection which can be
applied on the tuple result of a function f . For splits s that means: s(�) =
(s1(�); s2(�)).

De�nition 3.6 (Splits)

Splits := fs 2 NMS �! NMS� NMSjPWD(f) ^ FC(f) ^

8� 2 NMS; n 2 IN; c 2 N : �(n)(c) = f1(�)(n)(c)] f2(�)(n)(c)g

Theorem 3.4 (Splits are nonexpansive)

s 2 Splits; �; �0 2 NMS; n 2 IN :

� #n= �0 #n =) s1(�) #n= s1(�0) #n ^s
2(�) #n= s2(�0) #n

Proof:

Obvious because splits are pointwise de�ned.
tu

Theorem 3.5 (Splits is name abstract)

� 2 N
inj.
�! N :

8s 2 Splits : 9s0 2 Splits : 8� 2 NMS :

s01(�) = �(s1(��1(�))^ s02(�) = �(s2(��1(�))

Remark: �(si(�)) = si
0
(�(�)))

��1(si
0
(�)) = ��1(si

0
(�(��1(�)))) = si

0
(��1(�))

Proof:

Let � 2 N
inj.
�! N; s 2 Splits;�1; �2 2 NMS;n 2 IN; c 2 N; i 2 f1; 2g:

1) Pointwise De�nedness
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Assume �1(n)(c) = �2(n)(c)):

) ��1(�1)(n)(�
�1(c)) = ��1(�2)(n)(�

�1(c))) )
(PWD(si))
) si(��1(�1))(n)(�

�1(c)) = si(��1(�2))(n)(�
�1(c)) )

) �(si(��1(�1)))(n)(c) = �(si(��1(�2)))(n)(c)

2) Filter Congruence

F c�(si(��1(�))) =

= �(��1(F ) csi(��1(�))) =
(FC(si))
= �(si(��1(F ) c��1(�))) =

= �(si(��1(F c�)))

3) Merging of Lists

��1(�)(n)(��1(c)) 2 LM(s1(��1(�))(n)(��1(c)); s1(��1(�))(n)(��1(c))) )

�(��1(�)(n)(��1(c))) 2 �(LM(s1(��1(�))(n)(��1(c)); s1(��1(�))(n)(��1(c))) )

�(n)(c) 2 LM(�(s1(��1(�)))(n)(c)); �(s1(��1(�)))(n)(c))))
tu

3.5.5 Properties

We show two properties of merges and splits, which illustrate their congruence
relation to output �lters. Strong use of these theorems will be made later to
prove genericity of operations using splits and merges.

Theorem 3.6 (ap!N is congruent to merges)

�; �; � 2 NMS; A � N :

ap!NA (�)(� ] �) = ap!NA (�)(�) ] ap!NA (�)(�)

Proof:

Let n 2 IN; c 2 N:

ap!NA (�)(� ] �)(n)(c) =

=

8<
:
apA(�)(n) c(� ] �)(n)(c) if !c 2 apA(�)(n)

� else
=

(FC(m))
=

8<
:
(apA(�)(n) c�) ] (apA(�)(n) c�)(n)(c) if !c 2 apA(�)(n)

� else
=

= (ap!NA (�)(�) ] ap!NA (�)(�))(n)(c)
tu

Theorem 3.7 (ap!N is congruent to splits)

s 2 Splits; i 2 f1; 2g;�;  2 NMS;A � N :
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ap!NA (�)(si( )) = si(ap!NA (�)(psi))

Proof:

Let n 2 IN; c 2 N:

ap!NA (�)(si( ))(n)(c) =

=

8<
:
apA(�)(n) cs

i( )(n)(c) if !c 2 apA(�)(n)

� else
=

(FC(s))
=

8<
:
si(apA(�)(n) c )(n)(c) if !c 2 apA(�)(n)

� else
=

(PWD(s))
= si(ap!NA (�)( ))(n)(c)

3.6 Asynchronous Feedback

With our components' behaviors being contractive, we have exactly one solution
for recursive equations. This means that a behavior can be applied on its own
output, or seen as a parameterized �xed point equation, it can be applied to
any input which nonexpansively depends on the output. Consider that the
composition of a nonexpansive and a contractive function is contractive.

The asynchronous feedback applied on a component merges the output of the
component with its input. For any input, the output will be the �xed point
of a behavior of the component. The initial interface of a component remains
the same, especially the component will still be able to communicate with its
environment on feedback channels.

��
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3.6.1 De�nition

De�nition 3.7 (Asynchronous Feedback)

CI;P 2 Comp :

�(CI;P ) :=
�
f 2 GCBI[?!P j 8� : 9g 2 C : f(�) =  ;  = f 0(� ]  )

	
I;P

3.6.2 Nonemptiness

We will show that all functions that are actually de�ned by one g 2 C for all
inputs � 2 NMS are contractive and generic. Since C is nonempty, this implies
that the asynchronous feedback of C is also nonempty.
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The lemmas below will serve to prove the asynchronous and the more compli-
cated synchronous case. Therefore they might seem exaggeratedly general for
the easy asynchronous case.

The �rst lemma will show that for the active ports stream the feedback stream
does not matter because it accords to the active ports constraint itself.

Lemma 3.8

�;  ;  0 2 NMS;  0 �  ; A1 � A2 � N :

 = ap!NA1
(� ]  0)( ) ) apA2

(� ]  0) = apA2
(�)

Proof:

We assume  = ap!NA1
(� ]  0)( ) and prove inductively.

n=0:

apA2
(� ]  0)(0) = A2 = apA2

(�)(0)

n+1:

apA2
(� ]  0)(n+ 1) =

= apA2
(� ]  0)(n) [

S
?c2apA2

(�] 0)(n)
fp 2!?Nj p 2 �(n)(c)_ p 2  0(n)(c)g =

Now we use that  0 � ap!NA1
(� ]  0)( ) = apA1

(� ]  0)(n) c : : : which means
that the ports which stem from  0 do not add anything new.

= apA2
(� ]  0)(n) [

S
?c2apA2

(�] 0)(n)
fp 2!?Nj p 2 �(n)(c)g =

(I.A.)
= apA2

(�)(n)[
S

?c2apA2
(�)(n)

fp 2!?Nj p 2 �(n)(c)g =

= apA2
(�)(n+ 1)

tu

As a consequence of Lemma 3.8 the output �lter can be determined without
reference to the feedback stream.

Lemma 3.9

�;  ;  0 2 NMS; 0 �  ; A1 � A2 � N :

 = ap!NA1
(� ]  0)( ) ) ap!NA2

(� ]  0)( ) = ap!NA2
(�)( )

Proof:

n 2 IN; c 2 N :

ap!NA2
(� ]  0)( )(n)(c) =

(L.3.8)
=

8<
:
apA2

(�)(n) c (n)(c) if !c 2 apA2
(�)(n)

� else
=

= ap!NA2
(�)( )(n)(c)
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For determining the active ports of a feedbacked component, �ltering the input
beforehands less restrictively is superuous.

Lemma 3.10

�;  ;  0 2 NMS;  0 �  ; A1; A2 � A3 � N :

 = ap!NA2
(ap?A3

(�) ]  0)( ) ) apA1
(ap?A3

(�) ]  0) = apA1
(� ]  0)

Proof:

Inductive proof.

n=0

apA1
(ap?A3

(�) ]  0)(0) = A1 = apA1
(� ]  0)(0)

n+1:

apA1
(ap?A3

(�)]  0)(n+ 1) = apA1
(ap?A3

(�) ]  0)(n)[S
?c2apA1

(ap?
A3

(�)] 0)(n)

fp 2!?Nj (p 2 �(n)(c)^?c 2 apA3
(�)(n))_ p 2  0(n)(c)g

Let us have a closer look on apA3
(�)(n):

apA3
(�)(n)

(T.2.10)
= apA3

(ap?A3
(�))(n) =

(L.3.8)
= apA3

(ap?A3
(�)]  0)(n) � apA1

(ap?A3
(�)]  0)(n)

This means the condition ?c 2 apA3
(�)(n) is ful�lled for any set of the union,

and can thus be dropped.

apA1
(ap?A3

(�) ]  0)(n) [
[

?c2apA1
(ap?

A3
(�)] 0)(n)

fp 2!?Nj p 2 �(n)(c)_ p 2  0(n)(c)g =

(I.A.)
= apA1

(� ]  0)(n) [
[

?c2apA1
(�] 0)(n)

fp 2!?Nj p 2 � ]  0g

tu

As a consequence, �ltering the input of a feedbacked component less restric-
tively has no e�ect on its output �ltering.

Lemma 3.11

�;  ;  0; ! 2 NMS;  0 �  ; A1; A2 � A3 � N :

 = ap!NA2
(ap?A3

(�) ]  0)( ) ) ap!NA1
(ap?A3

(�) ]  0)(!) = ap!NA1
(� ]  0)(!)
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Proof:

Let n 2 IN; c 2 N:

ap!NA1
(ap?A3

(�)]  0)(!)(n)(c) =

=

8<
:
apA1

(ap?A3
(�) ]  0)(n) c!(n)(c) if !c 2 apA1

(ap?A3
(�)]  0)(n)

� else
=

(L.3.10)
=

8<
:
apA1

(�]  0)(n) c!(n)(c) if !c 2 apA1
(� ]  0)(n)

� else
=

= ap!NA1
(� ]  0)(!)(n)(c)

The analogue of the last lemma for input �ltering:

Lemma 3.12

 2 NMS; A1; A2 � A3 � N :

 = ap!NA1
(ap?A3

(�) ]  0)( ) ) ap?A1
(ap?A3

(�) ]  0) = ap?A1
(� ]  0)

Proof:

Let n 2 IN; c 2 N:

ap?A1
(ap?A3

(�)]  0)(n)(c) =

(PWD(m))
=

8>>><
>>>:
(� ]  0)(n)(c) if ?c 2 apA1

(ap?A3
(�) ]  0)(n) \ apA3

(�)(n)

 0(n)(c) if ?c 2 apA1
(ap?A3

(�) ]  0)(n)^?c 62 apA3
(�)(n)

� else

=

(L3.10,3.8)
=

8<
:
(� ]  0)(n)(c) if ?c 2 apA1

(� ]  0)(n)

� else
=

= ap?A1
(� ]  0)

We used apA1
(ap?A3

(�) ]  0)(n) � apA3
(�) which can be shown:

 = ap!NA1
(ap?A3

(�)]  0)( ) )
(L.3.11)
)  = ap!NA1

(� ]  0)( ) )

(L.3.10,3.8)
)

8<
:
apA1

(ap?A3
(�) ]  0) = apA1

(� ]  0)

apA1
(� ]  0) = apA1(�)

9=
; )

(T.2.5)
) apA1

(ap?A3
(�)]  0) � apA3

(�)
tu

Theorem 3.13 (Asynchronous Feedbacks are nonempty)

f 0 2 GCBA; f 2 B; m 2 Merges :

8� 2 NMS : f(�) =  where  = f 0(� ]  ) ) f 2 GCBA
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Proof:

According to Bannach's �xed point theorem (T.B.4), f is wellde�ned as a
parameterized �xed point: f := �h where h( ; �) = f 0(� ]  ).

The resulting function is also contractive, since h is contractive (see T.B.5).

For genericity we have to prove that f(ap?A(�)) = f(�) and that
ap!NA (�)(f(�)) = f(�):

f(ap?A(�)) =  with  = f 0(ap?A(�) ]  )

(genericA(f 0))
=)

8<
:
 = ap!NA (ap?A(�)]  )( )

 = f 0(ap?A(ap
?
A(�) ]  ))

9=
; (L.3.12)

=)

 = f 0(ap?A(� ]  ))
(genericA(f 0))

= f 0(� ]  )

We showed that the �xed point of  = f 0(ap?A(�) ]  ) is the same as of
 = f 0(�]  ). This implies that f(ap?A(�)) = f(�).

ap!NA (�)(f(�)) = ap!NA (�)( ) where  = f 0(�]  )
(genericA(f 0))

)  = ap!NA (� ]  )( )
(L.3.9)
) ap!NA (� ]  )( ) = ap!NA (�)( )

Which proves that ap!NA (�)(f(�)) = ap!NA (� ]  )( ) = f(�).

3.6.3 Genericity and Full Abstractness

Here and for the remaining operators, the genericity, contractivity, and
the full abstractness of the result are clearly guaranteed by the form
of the de�nition. The elements of the result are functions out of the
respective GCB set, and they are pointwise de�ned, which ensures abstract-
ness. We will show this for the general case: a de�nition by a predicate P :

FACA(ff
0 2 GCBAj 8�

0 2 NMS : P (�0; f 0(�0))g)

= ff 2 GCPBAj 8� 2 PNMS : 9f 0 2 GCBA : 8�0 : P (�0; f(�0))^ f(�) = f 0(�)g

� ff 2 GCPBAj 8� 2 PNMS : P (�; f(�))^ � 2 NMSg

'�' is clear from extensivity of the FAC closure (see T. 2.20).

In cases like this, we will omit the proof of genericity and fully abstractnes due
to its triviality.

3.6.4 Renaming Congruence

Assume f 2 �(�(CI;P )) which is equivalent to ��1(f) 2 �(CI;P ). This means
that for each � 2 NMS there exist f 0� 2 C and so that ��1(f(�(�))) =  with
 = f 0�(� ]  ).

We will now show that f is also element of �(�(CI;P )).

Let g 2 �(�(CI;P )) be de�ned by 8� 2 NMS : g(�) =  ;  = ��1(f 0�(�(�] ))),
this equals, due to the congruence of renaming with respect to the multi union:
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��1(f 0�(�(�) ] �( ))). Now we substitute ��1( 0) for  and ��1(�0) for �:

8�0 2 NMS : �(g(��1(�0))) =  0;  0 = f 0�(�
0 ]  0).

This proves that each function of �(�(CI;P )) has an eqvivalent in �(�(CI;P )).

Now assume f 2 �(�(CI;P )), which means there exist f 0� 2 C for every � 2
NMS, so that:

8� 2 NMS : f(�) =  ;  = �(f 0�(�
�1(� ]  )))

By substituting  0 for ��1( ) and �0 for ��1(�) like above we get:
��1(f(�(�0))) =  0 with  0 = f 0�(�

0 ]  0)

This means ��1(f) 2 �(CI;P ) or more explicitly: f 2 �(�(CI;P )).

With this we have proofed that �(�(CI;P )) = �(�(CI;P )): The asynchronous
feedback is renaming congruent.

3.6.5 Name Abstractness

Since CI;P 2 Comp it is name abstract: NACI[?!P (C) = C

Assume � 2 N
inj.
�! N and � jI[?!P = idjI[?!P :

�(�(CI;P ))
(� is renaming congruent)

= �(�(CI;P ))
(C is name abstract)

= �(CI;P )

3.6.6 Congruence

Assume CI;P � C0
I;P 0 via � : CI;P = �(C0

I;P 0). Then also �(CI;P ) � �(C0
I;P 0) via

� : �(�(C0
I;P 0)) = �(�(C0

I;P 0)) = �(CI;P ).

3.7 Synchronous Feedback

The only, but important di�erence to the asynchronous feedback lays in the
used split function. Every message which the feedbacked component outputs
will either be output of the result or be input of the component. This choice
will be made by the used split function, which determines the distribution for
any output stream. But we will allow di�erent split functions for every output
stream which has to be splitted. By this, we will not be dependent on the �lter
congruence or the pointwise de�nedness of the split. These properties of splits
only matter in our proofs of nonemptiness.

��
��

��
��mC- - - -

6
�

?�  s1( )

s2( )

s
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3.7.1 De�nition

De�nition 3.8 (Synchronous Feedback)

Comp :

��(CI;P ) := ff 2 GCBI[?!P j 8� : 9g 2 C; s 2 Splits :

f(�) = s2( );  = f 0(�] s1( ))gI;P

3.7.2 Nonemptiness

Because we formulated the lemmas in the last section quite abstractly, they can
also be used to prove the synchronous case.

Theorem 3.14 (Synchronous Feedbacks are nonempty)

f 0 2 GCBA; f 2 B; s 2 Splits :

8� 2 NMS : f(�) = s2( ) where  = f 0(� ] s1( )) ) f 2 GCBA

Proof:

Compare proof of theorem 3.13.

Input Genericity

f(ap?A(�)) = s2( ) with  = f 0(ap?A(�) ] s
1( ))

(genericA(f 0))
=)

8<
:
 = ap!NA (ap?A(�)] s

1( ))( )

 = f 0(ap?A(ap
?
A(�) ] s

1( )))

9=
; (L.3.12)

=)

 = f 0(ap?A(� ] s
1( )))

(genericA(f 0))
= f 0(� ] s1( ))

Output Genericity

ap!NA (�)(f(�)) = ap!NA (�)(s2(f 0(� ] s1( )))) =
(T.3.7)
= s2(ap!NA (�)(f 0(� ] s1( )))) =

(L.3.9)
= s2(ap!NA (� ] s1( ))(f 0(� ] s1( )))) =

(genericA(f 0))
= s2(f 0(� ] s1( ))) = f(�)

tu

3.7.3 Renaming Congruence

Let f 2 �(��(CI;P )) be de�ned for each � 2 NMS by s� 2 Splits; f 0 2 C :

f(�) = �(s2�( ));  = f�(�
�1(�)] s1�( ))

Let s0� be the splits for which: �(si�( )) = si�(�( )); (i 2 f1; 2g):

f(�) = s0
2
�(�( ));  = f�(�

�1(� ] s01� (�( ))))
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By substituting  0 for �( ), we get:

f(�) = s02� ( 
0);  0 = �(f�(�

�1(� ] s01� ( 
0))))

That means f is element of ��(�(CI;P )).

��(�(CI;P )) � �(��(CI;P )) can be prove the reverse way. Compare proof of
renaming congruence for the asynchronous feedback.

3.7.4 Name Abstractness

�(��(CI;P ))
(�� is renaming congruent)

= ��(�(CI;P ))
(C is name abstract)

= ��(CI;P )

3.7.5 Congruence

CI;P = �(C0
I;P 0) ) �(��(C0

I;P 0)) = ��(�(C0
I;P 0)) = ��(CI;P )

For further operators we will omit the proofs of name abstractness and con-
gruence as long as they follow clearly from renaming congruence.

3.8 Asynchronous Parallel Composition

We use this composition, our easiest, for two components which receive a shared
input and whose output is merged for the environment. But they do not interact
in any way, that is why this combinator is fairly uncomplicated. Together with
feedback it can be seen as a prestudy to the mutual feedback composition.

In the asynchronous case, the component reacts with a merging of the results
of the operands' behaviors applied to the unchanged input.

f1 f2

nh

m

) q

)q

?

?

�

f1(�)] f2(�)

3.8.1 De�nition

De�nition 3.9 (Asynchronous Parallel Composition)

C1I1;P1
; C2I2;P2

2 Comp; P1 \ P2 = ;; I1\?!P2 = I2\?!P1 = ; :

C1I1;P1
kC2I2 ;P2

:= ff 2 GCBI1[I2[!?P1[!?P2j

8� 2 NMS : 9f1 2 C1; f2 2 C2; m 2 Merges :

f(�) = f1(�) ] f2(�))gI1[I2;P1[P2
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3.8.2 Nonemptiness

Theorem 3.15 (Asynchronous Parallel Compositions are nonempty)

f1 2 GCBA1 ; f2 2 GCBA2 ; f 2 B; m 2 Merges :

8� 2 NMS : f(�) = f1(�) ] f2(�) ) f 2 GCBA1[A2

Proof:

Input Genericity:

f(ap?A1[A2
(�)) =

= f1(ap
?
A1[A2

(�))] f2(ap
?
A1[A2

(�)) =

(genericAi
(fi))

= f1(ap
?
A1
(ap?A1[A2

(�)))] f2(ap?A1
(ap?A1[A2

(�))) =
(T.2.11)
= f1(ap

?
A1
(�)) ] f2(ap

?
A1
(�)) =

(genericAi
(fi))

= f1(�) ] f2(�) = f(�)

Output Genericity:

ap!NA1[A2
(�)(f(�)) =

= ap!NA1[A2
(�)(f1(�) ] f2(�)) =

(genericAi
(fi))

= ap!NA1[A2
(�)(ap!NA1

(�)(f1(�))] ap!NA2
(�)(f2(�))) =

(T.3.6)
= ap!NA1[A2

(�)(ap!NA1
(�)(f1(�)))] ap!NA2[A2

(�)(ap!NA2
(�)(f2(�))) =

(T.2.13)
= ap!NA1

(�)(f1(�))] ap!NA2
(�)(f2(�)) =

(genericAi
(fi))

= f1(�) ] f2(�) = f(�)
tu

3.8.3 Renaming Congruence

Assume f 2 �(C1I1;P1
kC2I2;P2

):

8� 2 NMS : f(�) = �(f�1(�
�1(�))] f�2(�

�1(�))) =

= �(f�1(�
�1(�)))] �(f�2(�

�1(�))) =

= �(f�1)(�)] �(f�2)(�)

That means f 2 �(C1I1;P1
)k�(C2I2;P2

).

By this �(C1I1;P1kC2I2;P2) = �(C1I1;P1)k�(C2I2;P2) is proven.

Name abstractness and congruence follow straightforwardly from this.

3.9 Synchronous Parallel Composition

In the synchronous case we use a fair split to distribute the incoming messages
between the two components.
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f1 f2

nh

m

) q

)q

?

?

�

f1(s
1(�)) ] f2(s

2(�))

s

3.9.1 De�nition

De�nition 3.10 (Synchronous Parallel Composition)

C1I1;P1
; C2I2;P2

2 Comp; P1 \ P2 = ;; I1\?!P2 = I2\?!P1 = ; :

C1I1;P1
�kC2I2 ;P2

:= ff 2 GCBI1[I2[!?P1[!?P2j

8� 2 NMS : 9f1 2 C1; f2 2 C2; m 2 Merges; s 2 Splits :

f(�) = f1(s
1(�))] f2(s

2(�))gI1[I2;P1[P2

3.9.2 Nonemptiness

We start by proving that �ltering the input of a split is irrelevant to the set of
active ports after the split.

Lemma 3.16

A2 � A1 � N; i 2 f1; 2g :

apA2
(si(ap?A1

(�))) = apA2
(si(�))

Proof:

Inductive proof on n:

n=0:

apA2
(si(ap?A1

(�)))(0) = A2 = apA2
(si(�))(0)

n+1:

apA2
(si(ap?A1

(�)))(n+ 1) =
(I.A.)
= apA2

(si(�))(n)[
S

?c2apA2
(si(�))(n)

fp 2?!Nj p 2 si(ap?A1
(�))(n)(c)g =

(PWD(s))
= apA2

(si(�))(n)[S
?c2apA2

(si(�))(n)

fp 2?!Nj p 2 si(�)(n)(c)^?c 2 apA1
(si(�))(n)g =

(A2 � A1)
= apA2

(si(�))(n+ 1)
tu
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As a consequence of the last lemma, input �lters after the split dominate less
restrictive input �lters before the split.

Lemma 3.17

A2 � A1 � N; i 2 f1; 2g :

ap?A2
(si(ap?A1

(�))) = ap?A2
(si(�))

Proof:

n 2 IN; c 2 N :

ap?A2
(si(ap?A1

(�)))(n)(c) =

(I.A.)
=

8<
:
si(ap?A1

(�))(n)(c) if ?c 2 apA2
(si(ap?A1

(�)))(n)

� else

(L.3.16)
=

8<
:
si(�)(n)(c) if ?c 2 apA2

(si(�))(n)\ apA1
(�))(n)

� else
(A2 � A1; s

i(�) � �)
= ap?A2

(si(�))(n)

tu

Theorem 3.18 (Synchronous Parallel Compositions are nonempty)

f1 2 GCBA1 ; f2 2 GCBA2 ; f 2 B; m 2 Merges :

8� 2 NMS : f(�) = f1(s
1(�))] f2(s

2(�)) ) f 2 GCBA1[A2

Proof:

Input Genericity:

f(ap?A1[A2
(�)) =

= f1(s1(ap?A1[A2
(�)))] f2(s2(ap?A1[A2

(�))) =

(genericAi
(fi))

= f1(ap?A1
(s1(ap?A1[A2

(�))))] f2(ap?A2
(s2(ap?A1[A2

(�)))) =
(L.3.17)
= f1(ap?A1

(s1(�))) ] f2(ap?A2
(s2(�))) =

(genericAi
(fi))

= f1(s1(�))] f2(s2(�)) = f(�)
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Output Genericity:

ap!NA1[A2
(�)(f(�)) =

= ap!NA1[A2
(�)(f1(s

1(�))] f2(s2(�))) =

(genericAi
(fi))

= ap!NA1[A2
(�)(ap!NA1

(s1(�))(f1(s
1(�)))]

ap!NA2
(s2(�))(f2(s

2(�)))) =
(T.3.6)
= ap!NA1[A2

(�)(ap!NA1
(s1(�))(f1(s

1(�))))]

ap!NA2[A2
(�)(ap!NA2

(s2(�))(f2(s
2(�)))) =

(T.2.13)
= ap!NA1

(s1(�))(f1(s
1(�)))] ap!NA2

(s2(�))(f2(s
2(�))) =

(genericAi
(fi))

= f1(s
1(�))] f2(s2(�)) = f(�)

tu

3.9.3 Renaming Congruence

Assume f 2 �(C1I1;P1
�kC2I2;P2

):

8� 2 NMS : f(�) = �(f�1(s
1
�(�

�1(�))))] f�2(s
2
�(�

�1(�)))) =

= �(f�1(�
�1(s0�

1(�))))] �(f�2(�
�1(s0�

2(�)))) =

= �(f�1)(s
0
�
1(�))] �(f�2)(s

0
�
1(�))

That means f 2 �(C1I1;P1
)k�(C2I2;P2

).

We took s0� as that split which full�lls �(si�(�)) = s0�
i(�(�)) for each � 2 NMS

(for existence refer to T.3.5). And also, seen reversely, such a s� exists for every
s0�.

3.10 Asychronous Composition

We now come to the most important operator: composition with mutual feed-
back, also simply called: composition of components. It is important because
it realizes a quite natural idea of network construction: If we have two compo-
nents, then each communicates with the shared environment and they commu-
nicate with each other.

Seen from the stream processing view, there will be a stream from the outside,
distributed to the two components, and the same reversely. So far this is parallel
composition. But there will also be a stream from one component to the other
and one back, which we call feedback streams.

The feedback problem can be solved as we did in the sections about the feed-
back operators, only that our equation is much more complicated now. But
still the equation is, as a composition of nonexpansive and contractive func-
tions, contractive and thereby uniquely solvable.

Although our notation will seem to propose two equations, the problem can
be reduced to one by expanding the de�nition of one of the �s in that of the
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other.

f1

�
��̀ �

��

�
��̀

�
��

f2

�
��`

�
��`

?

?

z

9
3

?

?

9

z
k

?

i

i

i

�

�1�2

�1 �2

�1 ] �2

�1 ] ��2 ] �

3.10.1 De�nition

De�nition 3.11 (Asynchronous Composition)

C1I1;P1 ; C2I2 ;P2 2 Comp; P1 \ P2 = ;; I1\?!P2 = I2\?!P1 = ; :

C1I1;P1

 C2I2;P2

:= ff 2 GCBI1[I2[!?P1[!?P2 j

8� 2 NMS : 9f1 2 C1; f2 2 C2 :

f(�) = �1 ] �2 where �1 = f1(�2 ] �) ^
�2 = f2(�1 ] �) gI1[I2;P1[P2

3.10.2 Nonemptiness

This proof needs a lot of preparatory work. Again, we often try to be very
general in our lemmas, so that we can use them for the synchronous as th
asynchronous case.

The �rst lemma shows that feedback channels hold no essential information
determining new active channels. The output of a generic function cannot hold
more access rights than a superstream of its input.

Lemma 3.19

A1; A2; A3 � N;�1; �2; �3; �1; �
0
1; �2; �

0
2 2 NMS :

A1; A2 � A3;�1; �2 � �3; �
0
1 � �1; �

0
2 � �2 :

�1 = ap!NA1
(�02 ] �1)(�1) ^ �2 = ap!NA2

(�01 ] �2)(�2) )

apA3
(�02 ] �1) � apA3

(�3)

apA3
(�01 ] �2) � apA3

(�3)

Proof:

Inductive Proof on n:
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n=0:

apA3
(�02 ] �1)(0) = A3 = apA3

(�3)(0)

apA3
(�01 ] �2)(0) = A3 = apA3

(�3)(0)

n+1:

apA3
(�02 ] �1)(n+ 1) �

(I.A.)
� apA3

(�3)(n)[
S

?c2apA3
(�3)(n)

fp 2?!Nj p 2 �1(n)(c)_ p 2 �
0
2(n)(c)g �

� apA3
(�3)(n)[

S
?c2apA3

(�3)(n)
fp 2?!Nj p 2 �1(n)(c)^ p 2 apA2

(�01 ] �2)(n) c : : :g �

(I.A.)
� apA3

(�3)(n)[
S

?c2apA3
(�3)(n)

fp 2?!Nj p 2 �1(n)(c)^ p 2 apA3
(�3)(n) c : : :g �

� apA3
(�3)(n+ 1)

The proof for apA3
(�01 ] �2)(n+ 1) � apA3

(�3)(n+ 1) is symmetric: Only the
indexes have to be exchanged in the proof above.

tu

A less restrictive input �lter does not matter for our composition applied to
components which are more restrictive themselves.

Lemma 3.20

A1; A2; A3 � N;�; �1; �
0
1; �2; �

0
2 2 NMS :

A1; A2 � A3; �
0
1 � �1; �

0
2 � �2 :

�1 = ap!NA1
(�02 ] ap?A3

(�))(�1) ^ �2 = ap!NA2
(�01 ] ap?A3

(�))(�2) )

apA1
(�02 ] ap?A3

(�)) = apA1
(�02 ] �)

apA2
(�01 ] ap?A3

(�)) = apA2
(�01 ] �)

Proof:

Inductive Proof on n:

n=0:

apA1
(�02 ] ap?A3

(�))(0) = A1 = apA1
(�02 ] �)(0)

apA2
(�01 ] ap?A3

(�))(0) = A2 = apA2
(�01 ] �)(0)

n+1:

apA1
(�02 ] ap?A3

(�))(n+ 1) =

= apA1
(�02 ] ap?A3

(�))(n)[S
?c2apA1

(�02]ap
?
A3

(�))(n)

fp 2?!Nj p 2 �02)(n)(c)_
(p 2 �(n)(c)^?c 2 apA3

(�)(n))g
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We can drop the ?c 2 apA3
(�)(n) condition because of:

apA1
(�02 ] ap?A3

(�)) � apA3
(�02 ] ap?A3

(�))
(L.3.19)
� apA3

(ap?A3
(�))

(L.2.10)
= apA3

(�)

With that and the inductive assumption, the above equals: apA1
(�02]�)(n+1)

The proof for apA2
(�01 ] ap?A3

(�))(n+ 1) = apA2
(�01 ] �)(n+ 1) is similar, just

the indexes have to be exchanged.
tu

The content of the feedback channels is independent of a less restrictive �lter
on the input.

Corollary 3.21

A1; A2; A3 � N;�; �1; �
0
1; �2; �

0
2 :

A1; A2 � A3; �
0
1 � �1; �

0
2 � �2 :

�1 = ap!NA1
(�02 ] ap?A3

(�))(�1) ^ �2 = ap!NA2
(�01 ] ap?A3

(�))(�2) )

�1 = ap!NA1
(�02 ] �)(�1) ^ �2 = ap!NA2

(�01 ] �)(�2)

Proof:

From lemma 3.20 we know that apA1
(�02 ] ap?A3

(�1)) = apA1
(�02 ] �1) which

establishes the identical e�ect of the output �lters on �1. The same argument
with di�erent indexes works for �2.

tu

Finally we can see the sense of our preparations.

Theorem 3.22 (Asynchronous Compositions are nonempty)

f1 2 GCBA1 ; f2 2 GCBA2 ; f 2 B :

8� 2 NMS : f(�) = �1 ] �2
where �1 = f1(�2 ] �) ^

�2 = f2(�1 ] �)

) f 2 GCBA1[A2

Proof:

Input Genericity:

f(ap?A1[A2
(�)) =

= f1(�2 ] ap?A1[A2
(�))] (�1 ] ap?A1[A2

(�)) =

(genericA1
(f1))

= f1(ap
?
A1
(�2 ] ap?A1[A2

(�)))] : : :

We will only consider the left side of the outer multi union. The right side can
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be transformed the same, just with renamed indexes. Let n 2 IN; c 2 N:

ap?A1
(�2 ] ap?A1[A2

(�))(n)(c) =

=

8>>><
>>>:
(�2 ] �)(n)(c) if ?c 2 apA1

(�2 ] ap?A1[A2
(�))(n)\ apA1[A2

(�)(n)

�2(n)(c) if ?c 2 apA1
(�2 ] ap?A1[A2

(�))(n) n apA1[A2
(�)(n)

� else

=

(L.3.19,3.20)
=

8<
:
(�2 ] �)(n)(c) if ?c 2 apA1

(�2 ] �)(n)

� else
=

= ap?A1
(�2 ] �)

We can eliminate the remaining �lter as easy as we introduced it, since a generic
function is applied to it.

Lemmas 3.19 and 3.20 were used in the proof to show that: apA1
(�2 ]

ap?A1[A2
(�))(n) =

= apA1
(�2 ] �)(n) and that this is a subset of apA1[A2

(�)(n).

Output Genericity:

Again we only consider one of the two symmetric sides of the outer union. The
other one will simply be omited in our presentation of the proof.

ap!NA1[A2
(�)(f(�)) =

= ap!NA1[A2
(�)(ap!NA1

(�2 ] �)(�1)] : : :) =
(T.3.6)
= ap!NA1[A2

(�)(ap!NA1
(�2 ] �)(�1))] : : :

Let n 2 IN; c 2 N:

ap!NA1[A2
(�)(ap!NA1

(�2 ] �)(�1)(n)(c) =

=

8>>><
>>>:
apA1[A2

(�) capA1
(�2 ] �) c�1(n)(c)

if !c 2 apA1[A2
(�)\ apA1

(�2 ] �)

� else

=

(L.3.19)
=

8<
:
apA1

(�2 ] �) c�1(n)(c) if !c 2 apA1
(�2 ] �)

� else
=

= ap!NA1
(�2 ] �)(�1)(n)(c)

tu

3.10.3 Renaming Congruence

We will show that if and only if �(f) 2 C1I1 ;P1

 C2I2;P2

then f 2 �(C1I1;P1
)


�(C2I2;P2
).

� 2 NMS :

�(f(��1(�))) = �(�1 ] �2)

= �(�1) ] �(�2) ;
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�(�1) = �(f1(�
�1(�)] �2)) = �(f1(�

�1(� ] �(�2))))

�(�2) = �(f2(�
�1(�)] �1)) = �(f2(�

�1(� ] �(�1))))

3.11 Synchronous Composition

There are three positions where synchronicity makes a di�erence: the distri-
bution of inputs to the components and the two splits between feedback and
output. Therefore we need to choose three di�erent split functions, but again:
we allow di�erent splits for each input stream, that means pointwise de�ned-
ness and �lter congruence do not matter for the actually de�ned results. There
sense lies in the nonemptiness proofs.

f1

�
��̀ �

��

�
��̀

�
��

f2

�
��`

�
��`

?

?

z

9 3

?

?

9

z
k

?

i

i

i

�

s12(�1)s13(�2)

s1

s2 s3

s12(�1)] s
2
3(�2)

�2�1

3.11.1 De�nition

De�nition 3.12 (Synchronous Composition)

C1I1;P1
; C2I2 ;P2

2 Comp; P1 \ P2 = ;; I1\?!P2 = I2\?!P1 = ; :

C1I1;P1
�
C2I2;P2

:=

ff 2 GCBI1[I2[!?P1[!?P2 j

8� 2 NMS : 9f1 2 C1; f2 2 C2; s1; s2; s3 2 Splits :

f(�) = s12(�1) ] s
2
3(�2) where �1 = f1(s13(�2) ] s

1
1(�)) ^

�2 = f2(s
2
2(�1)] s

2
1(�)) gI1[I2 ;P1[P2

3.11.2 Nonemptiness

Additionally to the lemmas established before the asynchronous case, we need
a speci�c version of L.3.20. The input �lter before the split is unnecessary.

Lemma 3.23

A1; A2; A3 � N;�; �1; �
0
1; �2; �

0
2 2 NMS; s 2 Splits :

A1; A2 � A3; �01 � �1; �02 � �2 :
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�1 = ap!NA1
(�02 ] s

1(ap?A3
(�)))(�1) ^ �2 = ap!NA2

(�01 ] s
2(ap?A3

(�)))(�2) )

apA1
(�02 ] s

1(ap?A3
(�))) = apA1

(�02 ] s
1(�))

apA2
(�01 ] s

2(ap?A3
(�))) = apA2

(�01 ] s
2(�))

Proof:

Inductive Proof on n:

n=0:

apA1
(�02 ] s

1(ap?A3
(�)))(0) = A1 = apA1

(�02 ] s
1(�))(0)

apA2
(�01 ] s

2(ap?A3
(�)))(0) = A2 = apA2

(�01 ] s
2(�))(0)

n+1:

apA1
(�02 ] s

1(ap?A3
(�)))(n+ 1) =

= apA1
(�02 ] s

1(ap?A3
(�)))(n)[S

?c2apA1
(�02]s

1(ap?
A3

(�)))(n)

fp 2?!Nj p 2 �02(n)(c)_

(p 2 s1(�)(n)(c)^?c 2 apA3
(�)(n))g

We can drop the ?c 2 apA3
(�)(n) condition because of:

apA1
(�02 ] s

1(ap?A3
(�)))(n)

(L.3.19)
� apA3

(�)(n)

With that and the inductive assumption, the above equals: apA1
(�02]s

1(�))(n+
1)

The proof for apA2
(�01]s

2(ap?A3
(�))(n+1) = apA2

(�01]s
2(�))(n+1) is similar,

just the indexes have to be exchanged.
tu

Theorem 3.24 (Synchronous Compositions are nonempty)

f1 2 GCBA1 ; f2 2 GCBA2 ; f 2 B; s1; s2; s3 2 Splits :

8� 2 NMS : f(�) = s12(�1) ] s
2
3(�2)

where �1 = f1(s
1
3(�2) ] s

1
1(�)) ^

�2 = f2(s22(�1) ] s
2
1(�))

) f 2 GCBA1[A2

Proof:

Input Genericity:

f(ap?A1[A2
(�)) =

= s12(f1(s
1
3(�2)] s

1
1(ap

?
A1[A2

(�))))] : : : =

(genericA1
(f1))

= s12(f1(ap
?
A1
(s13(�2) ] s

1
1(ap

?
A1[A2

(�)))))] : : :
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We will only consider the left side of the outer merge. The right side is the
same with changed indexes. Let n 2 IN; c 2 N:

ap?A1
(s13(�2) ] s

1
1(ap

?
A1[A2

(�)))(n)(c) =

=

8>>>>>>>>>><
>>>>>>>>>>:

s13(�2) ] s
1
1(�)(n)(c)

if ?c 2 apA1
(s13(�2) ] s

1
1(ap

?
A1[A2

(�)))(n)\ apA1[A2
(�)(n)

s13(�2)(n)(c)

if ?c 2 apA1
(s13(�2) ] s

1
1(ap

?
A1[A2

(�))))(n) n apA1[A2
(�)(n)

� else

=

(L.3.19,3.23)
=

8<
:
(s13(�2) ] s

1
1(�))(n)(c) if ?c 2 apA1

(s13(�2) ] s
1
1(�))(n)

� else
=

= ap?A1
(s13(�2) ] s

1
1(�))

We can eliminate the remaining �lter as easy as we introduced it, since a generic
function is applied to it.

Lemmas 3.19 and 3.23 were used in the proof to show that: apA1
(s13(�2) ]

s11(ap
?
A1[A2

(�))(n) = apA1
(s13(�2) ] s11(�))(n) and that this is a subset of

apA1[A2
(�)(n).

Output Genericity:

Again we only consider one of the two symmetric sides of the outer merge.
The other one will simply be omited in our presentation of the proof.

ap!NA1[A2
(�)(f(�)) =

= ap!NA1[A2
(�)(s12(ap

!N
A1
(s13(�2)] �)(�1))] : : :)) =

(T.3.6,3.7)
= s12(ap

!N
A1[A2

(�)(ap!NA1
(s13(�2)] s

1
1(�))(�1)) ] : : :

Let n 2 IN; c 2 N:

ap!NA1[A2
(�)(ap!NA1

(s13(�2) ] s
1
1(�))(�1))(n)(c) =

=

8>>><
>>>:
apA1[A2

(�) capA1
(s13(�2) ] s

1
1(�)) c�1(n)(c)

if !c 2 apA1[A2
(�) \ apA1

(s13(�2)] s
1
1(�))

� else

=

(L.3.19)
=

8<
:
apA1

(s13(�2) ] s
1
1(�)) c�1(n)(c) if !c 2 apA1

(s13(�2) ] s
1
1(�))

� else
=

= ap!NA1
(s13(�2) ] s

1
1(�))(�1)(n)(c)

tu

3.11.3 Renaming Congruence

We will show that if and only if �(f) 2 C1I1;P1
�
C2I2;P2

then f 2
�(C1I1;P1

)�
�(C2I2;P2
).
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As usual, for all splits s let s0 be the 'renamed split', such that: �(si(�)) =
s0i(�(�)); �(� ]  ) = �(�) ] �( ). Or, reading the proof backwards, s is the
renamed split to s0 with respect to ��1.

� 2 NMS:

�(f(��1(�))) = �(s12(�1) ] s
2
3(�2))

= s0
1
2(�(�1))] s

02
3(�(�2)) ;

�(�1) = �(f1(s
1
1(�

�1(�))] s13(�2))) = �(f1(�
�1(s0

1
1(�) ] s

01
3(�(�2)))))

�(�2) = �(f2(s
2
1(�

�1(�))] s22(�2))) = �(f2(�
�1(s0

2
1(�) ] s

02
2(�(�1)))))
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Appendix A

Basic De�nitions

In this section we gathered all de�nitions which are not central to the presented
theories, but have to be object of a necessary agreement.

A.1 General

A.1.1 Partial Functions

A * B denotes the set of partial functions from A to B.

f 2 A * B : dom(f) denotes the domain of f .

f 2 A * B : codom(f) denotes the codomain of f (its image).

Remark: x 62 dom(f) : f(x) is unde�ned and should not inuence the value
of any expression in that case.

A.1.2 Natural Numbers

IN denotes the set of natural numbers including zero.
IN1 := IN [ f1g
where 8n 2 IN : n <1 and 1 + n = 1� n = 1 +1 = 1 is assumed.

A.2 Multisets

We can enrich the concept of sets with an explicit representation of quantities.
A set is a mappping from the respective objects to a boolean set: 2M , each
object is either present or not. A multiset maps each object onto its quantity:
INM . We denote the set of multisets with M+.

We have to de�ne some of the usual set operations in their application on
multisets (e.g. �̂) and in their application on mixed arguments (e.g. � applied
on a set and a multiset).
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A.2.1 The Empty Set: ;̂

The empty set, as usual, contains no element. That means its quantity in every
element is zero: x 2M : ;̂(x) := 0.

A.2.2 Elements

Certainly, a element is in a set if its quantity is not zero:

A 2M+; x 2M : x 2 A :, A(x) 0

A.2.3 The Submultiset Relation: �̂

We demand every element of the subset to be in the superset in a bigger quan-
tity:

A;B 2M+ : A�̂B :, 8x : A(x) � B(x)

A.2.4 The Multiset Union: ]

This union, in contrast to its classical counterpart, also takes quantities into
account:

A;B 2M+ : 8x 2M : (A ]B)(x) := A(x) +B(x)

A.2.5 The Subset Relation: �

Sometimes we want to discuss subset relation without taking regards of quan-
tities:

A;B 2M+ [M� : A � B :, 8x : x 2 A) x 2 B

A.2.6 Filters: c

A set can be used as a �lter on multisets: Each multiset element which is not
also in the set is thereby removed:

A 2M�; B 2M+ : 8x 2M : (A cB)(x) :=

8<
:
B(x) if x 2 A

0 else

A.3 Multisets, Lists and Streams

Our view of lists is based on that of streams as functions from IN to the respecive
set. We consider lists as functions from subsets of IN to the set to obtain a
uniform notation for streams and lists.
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A.3.1 Lists

S� :=
S

n2IN
f0; : : : ; n� 1g ! S

where ; ! S = f�g and � is treated as the nowhere de�ned function.

A.3.2 Streams

S1 := IN! S are the streams (in�nite lists) over S.

A.3.3 Lists and Streams

Let N be a set of names:
(N ! S)� is the set of named Lists.
(N ! S)1 is the set of named Streams.

A.3.4 Operations on Lists and Streams

Length

s 2 S� [ S1 :

jsj :=

8<
:
n if s 2 f0; : : : ; n� 1g ! S

1 if s 2 IN! S

Appending

For lists or streams with head h and tail t we will, as usual, write h:t. More
precisely: A list is either empty: � or if l is a list and e is an element, then h:l
is also a list.

Pre�xes

s 2 S� [ S1; n � jsj :

js #n j = n ^ 8m � n : s #n (m) = s(m) especially: s #0= �; jsj = 1 : s # 1 = s

Su�xes

s 2 S� [ S1; n � jsj :

js "n j = jsj � n ^ 8m � jsj � n : s "n (m) = s(m+ n) especially: s "0= s; jsj = 1 : s " 1 = �
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Concatenation

s1; s2 2 S� [ S1; n < js1j+ js2j :

(s1 � s2)(n) :=

8<
:
s1(n) ifn < js1j

s2(n� js1j) ifn � js1j

Pre�x Relation

s1; s2 2 S� [ S1 :

s1 v s2 :, 9s 2 S� [ S1 : s1 � s = s2

A.3.5 Functions on Streams of Named Multisets

Multiset Union

s1; s2 2 (N ! S+) :

x 2 S : (s1 ] s2)(x) := s1(x)] s2(x)

s1; s2 2 (N ! S+)� [ (N ! S+)1; x 2 S; n < js1j = js2j :

(s1 ] s2)(n)(x) := s1(n)(x)] s2(n)(x)

Filters

The multiset �lter can be canonically extended on streams of multisets:

F � S; s 2 (N ! S+)[ (N ! S1); n 2 N :

(F cs)(n) := F c(s(n))

F � S; s 2 (S+)� [ (S�)1; n � jsj :

(F cs)(n) := F c(s(n))

Set Functions

s1; s2 2 (N ! S+) :

s1 � s2 :, 8n 2 N : s1(n) � s2(n)

s1; s2 2 (N ! S+)� [ (N ! S+)1; js1j = js2j :

s1 � s2 :, 8n � js1j : s1(n) � s2(n)

A.3.6 Functions on Lists and Streams of Lists

Filters

F � S; h:t 2 S� :

F c� := �
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F ch:t :=

8<
:
F ct if h 2 F

h: ct if h 62 F

F � S; s 2 (N ! S�) [ (N ! S1); n 2 N :

(F cs)(n) := F c(s(n))

F � S; s 2 (S�)� [ (S�)1; n � jsj :

(F cs)(n) := F c(s(n))

Set Functions

h:t; l1; l2 2 S
�; x 2 S :

x 62 �

x 2 h:t :, x = h _ x 2 t

l1 � l2 :, 8x 2 l1 : x 2 l2

s1; s2 2 (N ! S�); js1j = js2j :

s1 � s2 :, 8n 2 N : s1(n) � s2(n)

s1; s2 2 (N ! S�)� [ (N ! S�)1; js1j = js2j :

s1 � s2 :, 8n � js1j : s1(n) � s2(n)
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Appendix B

Metric Space Basics

B.1 Metric Spaces

This section was, because of its generality, simply taken from [GS96].

The fundamental concept in metric spaces is the concept of distance.

De�nition B.1 Metric Spaces
A metric space is a pair (D; d) consisting of a nonempty set D and a mapping
d 2 D�D ! R, called a metric or distance, which has the following properties:

(1) 8x; y 2 D : d(x; y) = 0 , x = y

(2) 8x; y 2 D : d(x; y) = d(y; x)

(3) 8x; y; z 2 D : d(x; y) � d(x; z) + d(z; y)

A very simple example of a metric is the discrete metric.

De�nition B.2 The discrete metric
The discrete metric (D; d) over a set D is de�ned as follows:

d(x; y) =

8<
:
0 if x = y

1 if x 6= y

B.2 Convergence

Measuring the distance between the elements of a sequence (xi)i2IN in D we
obtain the familiar de�nitions for convergence and limits.

De�nition B.3 Convergence and limits
Let (D; d) be a metric space and let (xi)i2IN be a sequence in D.

(1) We say that (xi)i2IN is a Cauchy sequence whenever we have:

8� > 0 : 9N 2 IN : 8n;m > N : d(xn; xm) < �.
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(2) We say that (xi)i2IN converges to x 2 D denoted by x = limn!1xi and
call x the limit of (xi)i2IN whenever we have:

8� > 0 : 9N 2 IN : 8n > N : d(xn; x) < �.

(3) The metric space (D; d) is called complete whenever each Cauchy sequence
converges to an element of D.

Theorem B.1
The discrete metric is complete.

Proof:

Each Cauchy sequence is constant from a given N .

B.3 Contractive Functions

A very important class of functions over metric spaces is the class of Lipschitz
functions .

De�nition B.4 Lipschitz functions
Let (D1; d1) and (D2; d2) be metric spaces and let f 2 D1 ! D2 be a function.
We call f Lipschitz function with constant c if there is a constant c � 0 such
that the following condition is satis�ed:

d(f(x); f(y))� c � d(x; y)

For a function f with arity n the above condition generalizes to:

d(f(x1; : : : ; xn); f(y1; : : : ; yn)) � c �maxfd(xi; yi) j i 2 [1::n]g

If c = 1 we call f non-expansive. If c < 1 we call f contractive.

Theorem B.2

The composition of two Lipschitz functions f 2 D1 ! D2 and g 2 D2 ! D3 is
a Lipschitz function with constant c1 � c2.

Proof:

d(g(f(x1)); g(f(x2)) � c2 � d(f(x1); f(x2)) � c2 � c1 � d(x1; x2)

Corollary B.3
The composition of a contractive and a non-expansive function is contractive.
The composition of two non-expansive functions is non-expansive. Identity is
non-expansive. tu

The main tool for handling recursion in metric spaces is the Banach's �xed
point theorem. It guarantees the existence of a unique �xed point for every
contractive function.

Theorem B.4 Banach's �xed point theorem
. Let (D; d) be a complete metric space and f 2 D ! D a contractive
function. Then there exists an x 2 D, such that the following holds:
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(1) x = f(x) (x is a �xed point of f)

(2) 8y 2 D : y = f(y)) y = x (x is unique)

(3) 8z 2 D : x = limn!1f
n(z) where

f0(z) = z

fn+1(z) = f(fn(z))

Proof:

See [Eng77] or [Sut75].

Usually we want to use a parameterized version of this theorem.

De�nition B.5 Parameterized �xed point
Let f 2 D �D1 � : : :�Dn ! D be a function of non-empty complete metric
spaces that is contractive in its �rst argument. We de�ne the parameterized
�xed point function �f as follows:

(�f) 2 D1 � : : :�Dn ! D

(�f)(y1; : : : ; yn) = x

where x is the unique element of D such that x = f(x; y1; : : : ; yn) as guaranteed
by Banach's �xed point theorem.

Theorem B.5

If f is contractive (non-expansive) so is �f .

Proof:

See for example [MPS86] pages 114{115.

B.4 The Metric of Streams

De�nition B.6 The metric of streams
The metric of streams (E1; d) is de�ned as follows:

d(s; t) = inff2�j j s #j= t #jg

This metric is also known as the Baire metric [Eng77].

Theorem B.6

The metric space of streams (E1; d) is complete.

Proof:

See for example [Eng77].
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Appendix C

Proposal for a Network

Semantic for �{Terms

C.1 Preparatory De�nitions

C.1.1 Basic Partial Components

To simplify the de�nition of our interpretation, we do some peparatory by
de�ning basic partial components, on which our interpretation of sender receiver
pre�xes will be based.

Basic Channel Sender This components sends exactly one channel name,
i.e., the two port names, on a certain channel. The time interval in which it
sends is not determined, it can also be silent forever.

x; y 2 N :

!cx(y) := ff 2 GCPBf!x;!y;?ygj 8� 2 dom(f) : 9n < j�j :

(f(�)(n)(x) = f!y; ?yg _ f(�)(n)(x) = ;̂)^

8m 6= n;m < j�j : 8c 6= x : f(�)(m)(c) = ;̂gf!x;!y;?yg;;;;

Basic Message Sender Same as before, only that now a proper message is
sent.

x 2 N; y 2 M :

!x(y) := ff 2 GCPBf!xgj 8� 2 dom(f) : 9n < j�j :

(f(�)(n)(x) = fyg _ f(�)(n)(x) = ;̂) ^

8m 6= n;m < j�j : 8c 6= x : f(�)(m)(c) = ;̂gf!xg;;;;

Basic Channel Receiver This receiver waits until at least one time the
speci�ed channel name was received on the speci�ed channel.
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x; y 2 N :

?cx(y) := ff 2 GCPBf?xgj 8� 2 dom(f); n < j�j; c 2 N :

f(�)(n)(c) = ;̂ ^

((9n < j�j :?y; !y 2 �(n)(x))_ j�j =1g?x;;;f?y;!yg

Basic Message Receiver Same as before, just for proper messages.

x 2 N; y 2 M :

?x(y) := ff 2 GCPBf?xgj 8� 2 dom(f); n < j�j; c 2 N :

f(�)(n)(c) = ;̂ ^

((9n < j�j :?y; !y 2 �(n)(x))_ j�j =1g?x;;;;

C.1.2 Acknowledgements

A receiving component will have to acknowledge the 'channel name' (two port
names) it receives. Only when the sender received the corresponding acknowl-
edgement on the right channel, it will continue.

As acknowledgements we de�ne a subset of M, consisting of one acknowledge-
ment signal for each channel name. Therefore we use the constructor ack:
ack(N) � M.

C.2 Interpretation for the �-Terms

We will write [[:]] for our interpreting function. [[:]] should be de�ned on all
�-terms and result in generic components. [[:]] should also have many more
properties, but we do not yet have any proofs of adequacy properties.

For the following � operators, confer to [Mil91], [MPW92a], and [MPW92b].

C.2.1 Sender Pre�x

[[xy:t]] := !cx(y):?x(ack(y)) � �([[t]])

where � ensures disjointness of the respective initial sets.

C.2.2 Receiver Pre�x

[[x(y):t]] := ?cx(y):!x(ack(y))� �([[t]])

where � ensures disjointness of the respective initial sets.
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C.2.3 Sum

[[
X
i2I

ti]] :=

8<
:
U
i2I �i([[ti]]) for I 6= ;

fNBg for I = ;

where 8n 2 IN; c 2 N : NB(�)(n)(c) := �

and the �i ensure disjointness.

C.2.4 Parallel Composition

[[t1 j t2]] := [[t1]] �
�([[t2]])

where � ensures disjointness.

C.2.5 Hiding

[[(�x)t]] := �x : �([[t]])

where � ensures that x is not in the private set of [[t]].

C.2.6 Bang

We have to ful�ll the equation !P = P j!P .

[[!P ]] :=
]
n2IN

[[�n;i(P ) j : : : j �n;n(P )| {z }
n times

]]

where the �i;j ensure disjointness.
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