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We explore the execution of queries with client-site user-defined functions (UDFs). Many UDFs can
only be executed at the client site, for reasons of scalability, security, confidentiality, or availability of
resources. How should a query with client-site UDFs be executed? We demonstrate that the standard
execution technique for server-site UDFs performs poorly. Instead, we adapt well-known distributed
database algorithms and apply them to client-site UDFs. The resulting query execution techniques are
implemented in the Cornell Predator database system, and we present performance results to
demonstrate their effectiveness.

We also reconsider the question of query optimization in the context of client-site UDFs. The known
techniques for expensive UDFs are inadequate because they do not take the location of the UDF into
account. We present an extension of traditional ’System-R’ optimizers that suitably optimize  queries
with client-site operations.
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Optimization techniques have been studied thoroughly for object-relational SQL queries with expensive
user-defined functions (UDFs). The assumptions made in these studies are that (a) the cost of each
UDF invocation is known a priori, and invariant, (b) the UDF itself is a blackbox characterized by a
single cost value (which may be broken into CPU and I/O costs). In some systems, the cost may be
specified as a function of the sizes of the function arguments. These assumptions implicitly expect that
the user is extending the server with a new function. However, experience with object-relational
databases shows that extending the database server is difficult even for experienced programmers,
and impossible for large numbers of non-expert users. In large-scale environments like the WWW,
users need to incorporate client-site UDFs into SQL queries run at a server. Consider the following
motivating example:

A DBMS offers stock market data to its clients over the WWW. The users connect to the
database to analyze the performance of companies and to extract the necessary information
about prospective candidates for their investments. Sophisticated investors will have their own
local collections of data and analysis algorithms that must be integrated into the process of
choosing and retrieving the desired information.

Take the following example query:

SELECT S.Name, S.Report
FROM   StockQuotes S
WHERE  S.Change / S.Close > 0.2 AND ClientAnalysis(S.Quotes) > 500

)LJXUH����8VH�RI�D�&OLHQW�6LWH�8')

The investor requests names and financial reports of companies that accord to his criteria. The first
predicate, filtering companies on a 20%+ uptick, can be expressed with simple SQL predicates and will
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be executed on the server. However, the second predicate involves a UDF that has to be executed on
the client site for a variety of reasons.

In this and many other examples, it becomes clear why client-site UDFs need to be supported:

a) The investor’s analysis UDFs are a valued asset that is ideally not revealed.

b) The UDFs may use data that resides exclusively on the client. These data might only be available
in a client-specific representation, or it might represent confidential information.

c) The UDFs may not be trusted by the server. In earlier work [GMHE98], we showed that the server
can trust UDFs written in Java to a certain extent, and we are developing further security
mechanisms [CSM98]. However, the security demands of the server constrain the UDFs. Further,
many UDFs are not written in Java, and if these are allowed to run at the server, they could
compromise its security.

d) The UDFs may be resource intensive and it may be inappropriate to burden the server with their
execution.

e) In the context of such expensive operations, there is a serious scalability concern, since resource
intensive UDFs of a multitude of users would together degrade the server performance.

In our research, the UDFs and their client-site execution environment were implemented in Java.
However, there are many other architectural frameworks and distributed implementation models, like
CORBA, DCOM, or JavaBeans, which we could have chosen instead, and to which the research
results apply. For the rest of this paper, we will assume that the network connecting the clients with the
server forms the bottleneck of client-site UDF execution. This applies for example to clients connected
over the Internet, or over an asymmetric connection, where only the downlink has high bandwidth while
the uplink will form the bottleneck.

1.1 Summary of Contributions

We believe that client-site UDFs are central to scalable object-relational applications. Existing query
processing techniques for expensive UDFs are not appropriate for client-site UDFs. Indeed, the use of
traditional approaches leads to slow and inefficient execution. This can be explained by three key
observations:

a) Client-site UDF execution time can involve network latency. , the latency needs to be hidden
through the appropriate use of concurrency.

b) Client-site UDF performance can depend on the optimized usage of network bandwidth.
Specifically, the asymmetry between client uplink and downlinks needs to factor into query
evaluation decisions. It may be possible to trade off bandwidth on the uplink for bandwidth on the
downlink.

c) The optimal placement of client-site UDF operators in the query plan is different from the
placement of expensive server-site UDFs.

The primary contribution of the paper is the development of techniques to process and optimize queries
with client-site UDFs. These techniques blend object-relational query processing with the distributed
database algorithms. Specifically, our research makes the following contributions:

1. We develop efficient execution algorithms for client-site UDFs, and describe their implementation.

2. We explore the tradeoffs between algorithms due to asymmetric network connections, and
propose options that save bandwidth on the client’s uplink at the cost of increased traffic on the
downlink.

3. We present performance results of the prototype implementation in the Cornell Predator database
system.

4. We present a simple cost model that allows us to determine the optimal choice of the execution
algorithms and their parameters

5. We develop query optimization techniques for complex queries with client-site UDFs. The
techniques are extensions of  a traditional System-R style optimizer.



�

Our conclusion is that a database system needs to recognize the special characteristics of client-site
UDFs and apply appropriate query evaluation and optimization strategies to such queries.

1.2 Related Work

To summarize, our work on queries with client-site UDFs builds on existing work on expensive UDF
execution and distributed query processing. The main issues are: (a) how should the UDFs be
executed, (b) how should query plans be optimized?

Client-site UDFs are expensive; they cannot simply be treated like built-in, cheap predicates. The
existing research on the optimization of queries with expensive server-site functions is closely related.
The execution of UDFs is considered straightforward; they are executed one at a time, with caching
used to eliminate duplicate invocations. The process of efficient duplicate elimination by caching has
been examined in [HN97]. Predicate Migration[HS93,Hel95] determines the optimal interleaving of join
operators and expensive predicates on a linear join tree by using the concept of a rank-order on the
expensive predicates. Its per-tuple cost and selectivity determine the rank of any operation. The
concept was originally developed in the context of join order optimization [IK84, KBZ86, SI92]. The
Optimization Algorithm with Rank Ordering [CS97] uses rank order to efficiently integrate predicate
placement into a System-R style optimization algorithm. UDF optimization based on rank ordering
assumes that the cost of UDF operators is only determined by the selectivity of the preceding
operators.  We show in Section 5 that rank order does not apply well to client-site operations. Our
optimization algorithm does not rely on it. Another approach models UDF application as a relational join
[CGK89, CS93] and uses join optimization techniques. Our approach to optimization takes this route.

There is a wealth of research on distributed join processing algorithms[SA80,S+79,ML86] that our work
draws upon. The distribution of query processing between client and server has also been proposed
independently of client-site UDFs in [FJK96], as a hybrid between data and query shipping. Joins with
external data sources, specifically text sources, have been studied in [CDY95]. To avoid the per-tuple
invocation overhead of accessing the text source, a semi-join strategy is proposed: Multiple requests
are batched in a single conjunctive query and the set of results is joined internally. Earlier work on
integration of foreign functions [CS93] proposes the use of semantic information by the optimizer. Our
work is complementary in that semantic information can be used in PREDATOR to transform UDF
expressions[S98]. We consider the execution of queries after such transformations have been applied.

To summarize, our work is incremental in that it builds upon existing work in this area. However, the
novel aspects of the work are

(a) we identify client-side UDFs as an important problem and adapt existing approaches to fit the new
problem domain,

(b) while earlier work modeled UDFs as joins for the purpose of optimization, we go further by using
join algorithms for the purposes of execution too,

(c) we identify and exploit important tradeoffs related to network asymmetry that lead to interesting
optimization choices.

� &OLHQW�6LWH�8')�([HFXWLRQ

In this section we explore different execution techniques for a single client-site UDF applied to all the
tuples of a relation. For now, we ignore the issue of query optimization and operator placement. In the
first subsection, we expose the poor performance of a naive approach that treats client-site UDFs like
expensive sever-site UDFs. The next subsection models UDFs as joins, leading to the development of
evaluation algorithms based on distributed joins. We use the example query in Example 1.

In our terminology, the input relation consists of the columns that are arguments to the UDF -- the
argument columns (4XRWH) -- and the non-argument columns (5HSRUW�1DPH). The input relation has
two different kinds of duplicates: those which are identical in all columns, called tuple duplicates, and
those only identical in the argument columns, called argument duplicates. Simple predicates that rely
on the values in the result columns, but can be executed on the client, for example
&OLHQW$QDO\VLV�6�4XRWHV�!���, are called pushable predicates. Similarly, projections that can
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be applied immediately after the UDF are called pushable projections, as in our example the projection
on Report and 1DPH.

2.1 Traditional UDF Execution

Current object-relational databases support server-site UDFs. It is tempting to treat a client-site UDF as
a server-site UDF that happens to make an expensive remote function call to the client. If
&OLHQW$QDO\VLV were a server-site UDF, the established approach is to treat it as a black-box
extension. The evaluation pseudo-code for the classical ’iterator-model’ query processor is shown
below.

:KLOH��,QSXW�DYDLODEOH���
��5HFRUG�� �,QSXW�JHW5HFRUG��
��5HVXOW�� �8')��JHW$UJXPHQWV��5HFRUG����
��RXWSXW�SXW5HFRUG��DGG&ROXPQ��5HFRUG��5HVXOW��

The encapsulation of the client communication within a black-box UDF makes some optimizations
impossible. On each call to &OLHQW$QDO\VLV� the full latency of network communication with the
client is incurred. This is because most iterator-model execution engines do not apply one operator of
the query plan pipeline to multiple tuples concurrently. (We show the timeline of execution in Figure 2a).

                                              (a)                                                                  (b)

)LJXUH����7LPHOLQH�RI�1RQFRQFXUUHQW�DQG�&RQFXUUHQW�([HFXWLRQ

The key observation here is, that even if the client might not process multiple tuples concurrently, the
network is capable of accepting further messages while others are already being transferred. This
means that we can keep a number of messages concurrently in the pipeline formed by downlink, client
UDF-processing, and uplink. We refer to this number as the pipeline concurrency factor. Figure 2(b)
shows the timeline for a concurrency factor of 5.

Another problem of the traditional approach is the ignorance of network bandwidth. But it is possible to
vary the bandwidth usage using different execution techniques. Consider the UDF in Figure 1: It seems
straightforward to simply send the quotes and wait for the results. Then the selection that depends on
the results can be applied on the server site. Depending on the networking environment the
performance might be far from optimal. For example, assume that the client’s uplink turns out to be the
bottleneck, as is the case with modern communication channels like ADSL, cable modems, and
wireless networks. We might accept additional traffic on the downlink if we could in exchange reduce
the demand on the uplink. We will explore different execution strategies that allow these kinds of
tradeoffs.

2.2 UDF Execution as a Join

It is possible to model UDF application on a table as a join operation: The user defined function in
Figure 1 can be seen as a virtual table with the following schema:

ClientAnalysis(< PriceQuoteArgument :: TimeSeries , Rating :: Integer >)

The PriceQuoteArgument column forms a key, and the only access path is an “indexed” access on
the key value. Indexed access in this manner incurs costs independent of the size of the table. UDF
execution as a join with such a UDF table  would work analogously to an equi-join with a relation
indexed on the join columns.  The pseudo code for the join of a relation with the UDF is shown below:

Server:

Client:
Downlink Uplink

       UDF
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for each tuple t1 from outer relation
  retrieve tuple t2 with matching argument columns from virtual UDF table
  join t1 with t2 on argument columns
  output result

Since UDF application is modeled as a join, client-site UDF application is modeled as a multi-site join.
We now examine distributed join algorithms as they apply to this context.

2.3 Distributed Join Processing

There are three standard distributed algorithms[SA80,ML86] to join the outer relation R and the inner F,
residing on sites S(erver) and C(lient):

• Join at S : Send F to S and join it there with R. (Not feasible for UDFs since there is no file-scan
access to F)

• Join at C : Send R to C and join it there with F.

• Semi-Join : Send a projection on the join columns of R to C, which returns all matching tuples of F
to S, where they are joined with R.

Identifying S with the server and C with the client, we get two variants for client-site UDF application
from the last two options. We will briefly introduce each one now, and go into more detail in the later
part of this section.

2.3.1 Semi-Join
Semi-joins are a natural ’set-oriented’ extension of the traditional ’tuple-at-a-time’ UDF execution
strategy. Consider the pseudo code below:
For each batch of tuples in R:
  Step 0: eliminate duplicates (server)
  Step 1: send a set of unique S.x values to the client (downlink)
  Step 2: evaluate UDF(S.x) on all S.x values (client)
  Step 3: send results back to the server (uplink)
  Step 4: ’join’ each result with the corresponding tuples (server)

Note that steps 0 through 4 may be executed concurrently because they use different resources
(except 0 and 4). If the set sent in step 1 consists of only one argument tuple, then this is the ’tuple-at-a-
time’ approach described in the previous section. If the entire relation R is treated as the ’batch’, we
have a classical semi-join. The details of the different steps vary depending on the execution strategy. It
is convenient to model this conceptually by Figure 3 below, where the different steps are identified as
components of a pipeline, with the potential for pipeline concurrency.

For server-site UDFs it is considered acceptable if the execution mechanism blocks for each UDF call
until the UDF returns the result. However, for client-site UDFs a large part of the over-all execution time
for one tuple consists of network latencies -- steps 1 and 3 above. Instead, we can ship several tuples
on the downlink at the same time, while another tuple is processed by the UDF, and other results are
being sent back over the uplink. Concurrency between the server, the client, and the network can hide
the latencies. To obtain this goal we will architecturally separate the sender of the UDF’s arguments
from the receiver of its results, and have them and the client work concurrently. These components
form a pipeline, whose architecture is shown in Figure 3.

)LJXUH����6HPL�-RLQ�$UFKLWHFWXUH

Sender Receiver

Client
Client

Server
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The joining of the UDF results with the processed relation depends in its complexity on the
correspondence between the tuple streams coming to the receiver from the client and from the sender.
Since the sender eliminates duplicates, the receiver has to do an actual join between the two streams.
Any join technique (for example, hash-join) is applicable at the receiver. If the sender sorts and groups
its input on the argument column before sending it to the client, then the receiver has to perform a
merge-join.  We will assume this in the rest of the paper.

2.3.2 Join at the Client

)LJXUH����&OLHQW�6LWH�-RLQ�$UFKLWHFWXUH

Join at the client-site is possible by sending the entire stream of tuples from the outer relation to the
client site. The UDF is applied to the arguments from each tuple, and the UDF result is added to the
tuple and shipped back to the receiver. The sender and receiver of the tuple streams on the server do
not need to coordinate, since the entire tuples (with duplicates) flow through the client. (as shown in
Figure 4.). Note that this does not mean that the client makes duplicate UDF invocations, since the
server may sort the stream of tuples on the argument attributes.

An advantage of this strategy is that pushable selections and projections can be moved to the client
site. This reduces the bandwidth used on the client-server uplink. On the other hand we have to send
back the full records minus applicable projections, and not just results, as for the semi-join. Compared
to the semi-join, more data is also sent on the downlink. Further, on both downlink and uplink, the
semijoin method eliminates argument duplicates, whereas the client-site join performs no duplicate
elimination.  The difference between semi-join and client-site join is visualized in Figure 5. The left side
shows what is being sent by each join method, the right side shows what is being returned. The
horizontals correspond to the transferred columns while the verticals correspond to rows. We will
quantify and experimentally evaluate these tradeoffs in the next section.

)LJXUH����7UDGHRIIV�EHWZHHQ�&OLHQW�6LWH�DQG�6HPL�-RLQ

� ,PSOHPHQWDWLRQ

We have implemented relational operators that execute client-site UDFs in the Cornell PREDATOR
ORDBMS. All server components were implemented in C++ and all client-site components are written
in Java. Three different execution strategies were implemented:

UDF Execution Client

Server

UDF

Duplicates

Duplicates
Duplicates

CSJ

SJ

   SJ
CSJ

Non-ArgumentsArguments

Duplicates
Duplicates

Duplicates
Non-ArgumentsArguments Results

CSJ SJ

   SJ

CSJ

'RZQOLQN� 8SOLQN�
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a) Naive tuple –at-a-time execution

b) Semi-join

c) Client-site join

We first describe the implementation of the algorithms, and then compare their performance. Our goals
for the performance evaluation are:

• Demonstrate the problems of the naive evaluation strategy.

• Show the tradeoffs between semi-join and client-site join evaluation of the UDF.

3.1 Join Implementation

3.1.1 Semi-Join
This relational operator implements the semi-join of a server-site table with the non-materialized UDF
table on the client site. In our architecture (see Figure 3), the server side consists of three components:
the sender, the receiver, and the buffer with which both communicate records. The sender gets the
input records from the child operators and, after sending off the argument columns, enqueues them on
the buffer. The receiver dequeues the records from the buffer and then attempts to receive the
corresponding results from the client. Sender and receiver are implemented as threads, running
concurrently. The buffer as a shared data structure is needed to keep the full records, while only the
arguments are sent to the client. Also, records whose argument columns form duplicates of earlier
records have to be joined with cached results at the receiver.

3.1.2 Concurrency
The size of the buffer that holds records that are 'between' sender and receiver, corresponds to the
pipeline concurrency factor: The number of tuples that are transferred and processed on the client
concurrently. A concurrency factor of 1 corresponds to tuple-at-a -time evaluation.

How large should the concurrency factor be? Analytically, we would expect that the number of records
between sender and receiver should equal the number of records that can be processed by the
pipeline sender - client - receiver in the time that it takes for one tuple to pass this pipeline. Let B be the
minimum of the bandwidths of the downlink, the client UDF processor, and the uplink. One of these
forms a bottleneck of the pipeline and thus limits the overall bandwidth. Let T be the time that it takes
for one argument to travel to the client, for the result to be computed, and to be returned to the server.
This is the time for which a record stays in the buffer, after its argument columns have been sent off
until its result is received. The number of records that can be processed in this time is simply B * T,
which is the necessary size for the buffer.

3.1.3 Client-Site Join
The client-site join uses a variation of this architecture: The sender dispatches the whole records to the
client, which sends back the records with the additional argument column. We have the same
components as above, but without the buffer between sender and receiver. The client-site join does not
require any synchronization between both components, in contrast to the semi-join, where the buffer is
used to synchronize sender and receiver.

3.2 Cost Model

We show in the performance evaluation section that the network latency problems of tuple-at-a-time
UDF execution can be solved through concurrency (either semi-join or client-site join). Consequently,
we focus in our cost-model on these two smarter algorithms. Both algorithms incur nearly identical
costs at the client and on the server. We assume that neither client nor server is the pipeline bottleneck,
and propose a simple cost model based on network bandwidth. We do recognize that this is a
simplification and that a mixture of server, client and network costs may be more appropriate in certain
environments (as was shown for distributed databases[ML86]). We also ignore the possibly significant
cost of server-site duplicate elimination because the issues are well understood [HN97] and not
necessarily central in the Web/Internet large-scale environment that we address.
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3.2.1 Cost Model for Semi-Join and Client-Site Join
We now analyze and empirically evaluate the involved tradeoffs with respect to the factors that were
visualized in Figure 5. To quantify the amount of data sent across the network, we define the following
parameters:

• A : Size of the argument columns / total size of the input records

• D : Number of different argument tuples / cardinality of the input relation

• S : Selectivity of the pushable predicates

• P : Size of projected output record / size of output record before pushable projections are applied
(i.e. the column selectivity of the projections)

• I : Size of one input record

• R : Size of one UDF result

• N : Asymmetricity of the network: (bandwidth of the downlink / bandwidth of the uplink.)

On a per- tuple basis, a semi-join will send the (duplicate free) argument columns:

D * ( A * I )  (semi-join, bytes transferred on downlink, per tuple average)
The client will return the results without applying any selections or projections:

N * D * R  (semi-join, bytes transferred on uplink, per tuple average)
The client-site join will send the full input records, without eliminating duplicates:

I (client-site join, bytes transferred on downlink, per tuple average)
The client will return the received records, together with the UDF results, after applying pushable
projections and selections:

N * ( I + R ) * P * S  (client-site join, bytes transferred on uplink, per tuple average)
The bandwidth cost incurred at the bottleneck link is the maximum of the costs incurred at each link. N,
the network asymmetricity weighs these costs in the direct comparison. The link with maximum cost will
be the link whose used bandwidth is closer to its capacity and who will thus determine the turnaround
for the join execution.

3.2.2 Duplicate elimination
The proportion of duplicates present in the input relation influences down- and uplink cost identically.
For the semi-join, it reduces the necessary bandwidth because duplicate arguments and the
corresponding duplicate results are never transferred. The client-site join cannot exploit the presence of
argument duplicates because it transfers the whole record, including the columns on which such
duplicates might differ.

Duplicate elimination on the client site could be used with both join methods to reduce the processing
time on the client. If sorting is used, the duplicate elimination could be prepared on the server site, but
again, without affecting the necessary network bandwidth.

� 3HUIRUPDQFH�0HDVXUHPHQWV

We present the results of four experiments: We demonstrate the problems of the naive approach by
measuring the influence of the pipeline concurrency factor. The next two experiments show the
tradeoffs between semi-join and client-site join on a symmetric and an asymmetric network. Finally we
show these tradeoffs in their dependence on the size of the returned results for different selectivities.

Our results show that client-site joins are superior to semi-joins for a significant part of the space of
UDF applications. Exploiting the tradeoffs between both join methods, especially in the context of
asymmetric networks, allows essential performance improvements.

All of our experiments were executed with the server running on a 300Mhz Pentium PC with 130
Mbytes of memory. The client ran as a Java program on a 150Mhz Pentium with 80 Mbytes of
memory, connected over a 28.8KBit phone connection. The asymmetric network was modeled on a
10Mbit Ethernet connection by returning N times as many bytes as actually stated.
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4.1 Concurrency

We evaluated the effect of the concurrency factor on performance for the following simple query:

SELECT UDF(R.DataObject) FROM Relation R

5HODWLRQ is a table of 100 'DWD2EMHFWs, each of the same size. 8') is a simple function that
returned another object of the same size. Figure 6 gives the overall execution time of the query in
seconds, plotted against the concurrency factor (size of the buffer) on the x-axis, for object sizes 100,
500, and 1000 bytes.
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Our analysis suggested that the optimal concurrency factor is bandwidth times latency: The number of
tuples that can be processed concurrently, while one tuple travels through the whole pipeline. Following
our assumption, the network is the bottleneck and its bandwidth limits the overall throughput. In this
graph, we can observe that the optimal level for 1000 bytes is reached at 5 and for 500 bytes at 10:
This would correspond to 5000 bytes as the product of bandwidth and latency. Presumably, for 100
byte object, the optimal concurrency level would be 50.

The presented data were determined with a nonthreaded implementation of the presented architecture:
This facilitates the simple manipulation of the concurrency factor. All further experiments ran on an
implementation that simply uses different threads for sender and receiver.

4.2 Client-Site Join and Semi-Join  on a Symmetric Network

Our analysis suggests that the uplink bandwidth required by the client-site join is linear in the selectivity
while the downlink bandwidth is independent of the selectivity. For the total execution time, this means
that as long as the downlink is the bottleneck, selectivity will have no effect, but when the uplink
becomes the bottleneck, the execution time will increase linearly with selectivity. The semi-join is not
affected by a change in selectivity.

We measured the overall execution time for the query in Figure 7. 5HODWLRQ has 100 rows, each
consisting of two data objects, together of size 1000 bytes. A was fixed at 50%: The $UJXPHQW and the
NonArgument object were each 500 bytes. P, the projection factor is adjusted to the result size, such
that: P*(I+R) = I*(1-A)+R, meaning that no arguments have to be returned by the client-site join, only
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the non-argument columns and the results. 8')� takes an object from the $UJXPHQW column and
returns true or false, while 8')� takes the same object and returns a result of known size.

SELECT R.Argument, R.NonArgument, UDF2(R.Argument)
FROM   Relation R
WHERE  UDF1(R.Argument)

)LJXUH����0HDVXUHG�4XHU\

In Figure 8, we plot the overall execution time of the client-site join relative to that of the semi-join
against the selectivity of 8')� on the x-axis. Thus, the line at y = 1.0 represents the execution time of
the semi-join. We varied the selectivity from 0 to 1.0 and plot curves for result sizes 100, 1000, 2000,
and 5000 bytes.  The execution time of a semi-join is independent of the selectivity because semi-joins
do not apply predicates early on the client. Thus all client-site join execution time values of one curve
are given relative to the same constant. In this, as in all other experiments, we set D=1.
We will first discuss the shape of each curve, meaning the slope of the different linear parts, and then
its height. It can be observed that for each result size the curve runs flat up to a certain point and from
then on rises linearly. For the flat part of the curve the downlink is the bottleneck of the client-site join’s
execution. Only from a certain selectivity on will its uplink form the bottleneck and thus determine the
shape of the curve. For result size 1000 bytes, this point is at selectivity 0.6, when the returned data
volume (S * (P*(I+R)) =  0.6 * 1500) approaches the received data volume (I = 1000). The larger the
result size, the earlier this point will be reached because the ratio of received to returned data changes
in favor of the latter. The received data are independent of the selectivities: As long as the the downlink
dominates, the curve is constant. The increasing, right part of the curves is part of a linear function
going through the origin of the graphs: At zero selectivity the uplink would incur no cost. Its cost is linear
in the amount of data sent on it, which is linear in the selectivity of the predicate.
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The height of the curve is influenced by the relative execution time of the semi-join. With larger result
sizes the flat part of the curve on the left side of the graph will run deeper, because of the relatively
higher costs of the up-link dominated semi-join, compared to the downlink dominated client-site join.
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For example, the curve for 2000 goes flat at 0.5 (1000 bytes on s.j.downlink / 2000 bytes on
c.s.j.uplink).

4.3 Client-Site Join and Semi-Join  on an Asymmetric Network

In this experiment, we explored the same tradeoffs as above in a changed setting: The network is
asymmetric with the downlink bandwidth being hundred times as much as that of the uplink ( N=100 ).
This choice was motivated by assuming a 10Mbit cable connection as a downlink that is multiplexed
among a group of cable customers. With a 28.8Kbit uplink this would result in N = 350 for exclusive
cable access and, as a rough estimate, N = 100 after multiplexing the 10Mbit cable.

The same query as above is executed (Figure 7). The argument columns consist of 4000 bytes and the
non-argument columns of 1000 ( A=80% ), and again, only the non-argument columns and the results
are returned after the pushable projections (P*(I+R) = I*(1-A)+R ). The selectivity is varied along the x-
axis from 0 to 1 and we give curves for result sizes 500, 1000, and 5000 bytes. The relative execution
time of the client-site join with respect to the semi-join is given in Figure 9.
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As our cost model predicts, the bandwidth of the uplink depends linearly on the selectivity. The flat part
of the curves in the last graph is absent because the downlink never forms a bottleneck. Our model
predicts a selectivity of less than: I/(N*P*(R+I)) = 0.0083 to make the downlink the bottleneck of the
lowest curve (result size 5000 bytes).
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4.4 Influence of the Result Size

Finally, we fixed the selectivity S and varied the result size R along the x-axis from 0 to 2000 bytes.
Four different curves are shown, for selectivities 25%, 50%, 75%, and 100%. The argument size was
100 bytes, the overall input size 500 bytes. Again, only non-arguments and results are returned and, as
in the second experiment, the network is symmetric. The resulting execution times of the client-site join
relative to those of the semi-join are given in Figure 10.
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It can be seen that the client-site join will only be cheaper if the pushable predicates are selective
enough to reduce the uplink stream sufficiently and if the results are large enough to realize the gain in
comparison to the records that have to be shipped on the downlink. The steep initial decline of the
curve represents the change from a downlink bottleneck to an uplink bottleneck. While the former is
disadvantageous for the client-site join, the latter emphasizes the role of pushed down predicates and
projections. The crossing points of the curves with the 1.0 line satisfies, as expected, that the client-site
join’s returned data times the selectivity are equal to the semi-join’s returned data. The curve for
selectivity one will never cross that line. The curves’ slope decreases because the size difference
between the client-site joins and the semi-joins returns becomes less significant as results are getting
larger. The curves assymptotically approach the horizontal lines that correspond to their selectivity.

� 4XHU\�2SWLPL]DWLRQ

We showed that existing UDF execution algorithms are inadequate for client-site UDF queries. Now we
show that existing query optimization techniques are also inadequate. There are two reasons for this:

(a) Multiple client-site operations can exhibit interactions that affect their cost. Even for plans with a
single client-site UDF these interactions are relevant, because the result operator of every plan,
which ships the results to the client, can be modeled like a client-site “printing” UDF.

(b) The cost of the client-site join is sensitive to the number of duplicates in its input stream.

The existing approaches rely on the concept of a rank order: Every operation has a rank, defined as its
cost per tuple divided over one minus its selectivity. Unless otherwise constrained, expensive
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operations appear in the plan ordered by ascending rank. The validity of a rank-order optimization
algorithms is based on two assumptions that are violated by client-site UDFs:

a) The per-tuple execution cost of an operation is known a priori, independent of its position in the
query plan.

b) The total execution cost of an operation is its per-tuple cost times the size of the input after
duplicate removal. UDFs can be pulled up over a join, without suffering additional invocations on
duplicates in the argument columns.

Neither assumption is valid for network- intensive client-site UDFs. The cost of a client-site operation is
strongly dependent on its location next to other such operations with which it can be combined. And
client-site joins as well as combinations of semi-joins are dependent on the number of duplicates.

We propose an extension of the standard System-R optimization algorithm for such queries. As a
running example, we will use the query in Figure 11. A client tries to find cases in which his analysis
results in the same rating than that of a broker. 5DWLQJV contains the ratings of many companies’
stocks by several brokers.

SELECT S.Name, E.BrokerName
FROM   StockQuotes S, Estimations E
WHERE  S.Name = E.CompanyName AND
       ClientAnalysis(S.Quotes) = E.Rating

)LJXUH�����([DPSOH�4XHU\���3ODFHPHQW�RI�&OLHQW�6LWH�8')�&OLHQW$QDO\VLV

5.1 UDF Interactions

It is important to observe that the execution costs of a client-site UDF depend on the operations
executed before and after it. If a client-site operation’s input is produced by another client-site operation,
the intermediate result does not have to be shipped back to the server. If such operations share
arguments, they can be executed on the client as a group and the arguments are shipped only once.
For example, a client-site UDF that is executed immediately before the result operator can be executed
together with it, without ever shipping back its results. We will first discuss the case of client-site joins,
then that of semi-joins.

)LJXUH������3RVVLEOH�3ODQV�IRU�WKH�4XHU\�LQ�)LJXUH���

5.1.1 Client-Site Join Interactions
Consider our example from Figure 11 with the possible query plans shown in )LJXUH���. There are
only two possible orderings of the operators, one executing the client-site function before the join, one
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after. In the latter case there are three different options. We describe all four options in more detail and
give possible motivations:

a) UDF before the join: This avoids duplicates that the join might generate. The result of the UDF can
also be used during the join, for example, to use an index on 5DWLQJ.

b) UDF after the join: The number of tuples and/or the number of distinct argument tuples in the
relation might be reduced by the join.

c) UDF and pushable operations after join: If the UDF uses the client-site-join algorithm, the selection
can be pushed down to the client site, reducing the size of the result stream. Further, projections
may also be pushed to the client. In this example, only 1DPH and %URNHU1DPH of the selected
records are returned to the server.

d) UDF combined with result delivery: For many queries, the results need to be delivered to the client
(this is not true for INSERT INTO queries). Since there is no other server-site operation between
the UDF and the final result operator, the UDF with the pushable operations can be executed in
combination with the final operator. This avoids the costs of returning any results from the client
and also of shipping the final results.

It can be seen that the locations of UDFs in the query plan (a vs. b) determines the available options for
communication cost optimizations: The cost of a UDF application is dependent on the operators before
and after it! These locations and the locations of pushable predicates need special consideration during
plan optimization. Similar observations can be made about semi-joins, which we consider in the
following section.

5.1.2 Semi-Join Interactions
Semi-joins differ from client-site joins in their interactions: Neither the final result operator, nor pushable
selections or projections are relevant for grouping. There are three motivations for grouping semi-joins:

• The result of one client-site UDF is input to another. This avoids sending the results back on the
uplink and transferring them, with the other arguments of the second UDF, on the downlink. The
superset of the arguments is sent to the first and only duplicates on this superset are eliminated.

• The arguments of one function are a subset of the arguments of another. This saves the costs of
sending the subset twice, but implies transferring all duplicates that are not duplicates in all of  the
superset’s columns.

• The argument sets of two functions intersect. In this case it is not generally true that we save
communication costs when sending the superset instead of the two subsets. Especially, when
considering the duplicates sent on each subset because they are not duplicates on the whole
superset.

As an example consider the query in Figure 11 with an additional expression in the select clause:
9RODWLOLW\�6�4XRWHV�� 6�)XWXUH3ULFHV�. The client requests an estimation of the price
volatility for the company stocks selected in the query, as computed by the client-site UDF. Some query
plans of interest are shown in Figure 13.

The first two options are extensions of Figure 12(a),  while the last two are extensions of Figure 12 b)
and (c):

a) 9RODWLOLW\ is pushed down to the location of &OLHQW$QDO\VLV, so that both can be executed
together: The columns 4XRWHV and )XWXUHV are shipped once for both UDFs. This saves
shipping 4XRWHV twice, but it does not allow the elimination of all duplicates in this column.
Identical quotes that are paired with different )XWXUHV objects, have to be shipped several times.
In this plan, &OLHQW$QDO\VLV does not benefit from the join’s selectivity, 9RODWLOLW\ waives
both the join’s and the selection’s selectivities.

b) &OLHQW$QDO\VLV is executed before the join, for example, because its result is used for index
access to (VWLPDWHV. 9RODWLOLW\ is executed after the last selection, to benefit from combined
selectivity. It is not joined with the result operator as a client-site join because then its arguments
would have to be sent with duplicates.

c) If &OLHQW$QDO\VLV is moved after the join, it can be executed together with 9RODWLOLW\. Both
benefit from the join’s selectivity, while the duplicates generated by the join in both needed input
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columns can be eliminated. Again, the input of &OLHQW$QDO\VLV input might involve some
duplicates.

d) To avoid all duplicates on 4XRWHV, &OLHQW$QDO\VLV is executed separately, with the selection
pushed down. 9RODWLOLW\ is also not merged with the result operator, to avoid duplicates in its
input columns.

D� E� F� G�
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5.2 Optimization Algorithm

We will start by presenting the basics of System-R style optimization, then we discuss the standard
extensions for expensive server-site UDFs, before we finally present our algorithm.

5.2.1 System-R Optimizer
System R[SAC+79] uses a bottom-up strategy to optimize a query involving the join of N relations1.
Assume that there are join predicates between every pair of relations (this is not very realistic but one
can always assume the existence of a trivially true predicate). Three basic observations influence the
algorithm:

• Joins are commutative

• Joins are associative

• The result of a join does not depend on the algorithm used to compute it. Consequently, dynamic
programming techniques may be applied.

Initially, the algorithm determines the cheapest plans that access each of the individual relations. In the
next step, the algorithm examines all possible joins of two relations and finds the cheapest evaluation
plan for each pair. In the next step, it finds the cheapest evaluation plans for each three-relation join.
With each step, the sizes of the constructed plans grow until finally, we have the cheapest plan for a
join of N relations. At each step, the results from the previous steps are utilized.

This last principle is not totally justified, because the physical properties of the result of a join can affect
the cost of some subsequent joins (thereby violating the dynamic programming assumptions that allow
expensive plans to be pruned). The System R optimizer deals with this by maintaining the cheapest
plan for every possibly useful interesting property, thereby growing the search space. These properties
were called “interesting orders”, since at the time, sort ordering was the primary property of interest.

The System-R optimizer also applies some heuristics that further limit the plans considered:
                                                          
1 A description of the algorithm, relevant to expensive UDF placement, can be found in [CS97].
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• Only binary join algorithms are considered. Consequently, a three-relation join evaluation plan
involves the combination (i.e. join)  of a two-relation join result and a stored relation.

• In order to find the best plans for K-relation join, the only combinations examined use (K-1)-relation
joins and stored relations. Other possible combinations (e.g. K-2 and 2) are not considered. The
resulting query plans that look like ‘ ‘ left-deep’’ trees.

• While the intermediate results of a join can act as inputs for another join, they cannot appear as the
inner relation of a nested-loops join algorithm.

• Selections and projections are always applied as early as possible, assuming that such operations
are cheap.

The optimization algorithm with rank ordering, proposed in [CH97] uses the concept of physical
properties to integrate rank-ordered application of expensive operations into this optimization algorithm.
The idea is to tag each plan with the set of operations that are not yet applied in the plan. A plan that
already applied an expensive UDF should not be pruned because of another, cheaper plan that yet has
to apply it. The former can turn out to be optimal because of the early application of the operation, or
the latter may be optimal because of the late application. The optimizer cannot decide this and keeps
both plans. When there are many expensive UDFs in the query, ranks are used to reduce the number
of possibly optimal interesting properties and thus the complexity of the algorithm.

5.2.2 Client-Site Join Optimization
We will first explain our proposed algorithm in terms of client-site joins and introduce analogous
techniques for semi-joins later. In this discussion we will only talk about client-site operations, joins,
pushable predicates and projections. Our strategy is to treat client-site UDFs in the same way as join
operators. This approach has been followed before [LDL] in the case of expensive UDFs, but for client-
site operations we also have to consider physical location of the operation (like [FJK96][SA80]).

Our running example will be the construction of the optimal plan for the query in Figure 11, as executed
by our optimization algorithm (shown in Figure 15). The steps of the algorithm, iterations of the
outermost loop, are shown as horizontal layers in Figure 14.

)LJXUH�����&OLHQW�6LWH�-RLQ�2SWLPL]DWLRQ�RI�WKH�4XHU\�LQ�)LJXUH���

We introduce a new bi-valued physical property, a plan’s site, indicating the location of its results: In a
server-site plan (cornered boxes), the last applied operation is executed on the server. In a client-site
plan (round boxes), the last applied operation is a client-site UDF. As an example for a client-site plan,
take the plan that applies &OLHQW$QDO\VLV on relation 6, resulting in a relation residing on the client.
Joining 6 with ( forms a server-site plan because the result of the join resides on the server.

When applying the next operation to a plan, we have to determine the communication costs with
respect to the plan’s site. A real join applied on a client-site plan requires that the records are shipped
from the client to the server, while a client-site function applied on a server-site plan requires the
opposite. Take the application of the final result operator to the right plan in step 3: It will not incur any
additional communication costs because the relation already resides on the client. Operations have to
move the records to the site where they are needed and leave their results on the site of their
execution.
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To take the final site of a subplan as a physical property implies that only subplans that end on the
same site will be compared and pruned if suboptimal. To be more precise, only subplans that joined the
same set of relations, that applied the same set of client-site operations, and that end up with their
result on the same site will be compared and pruned. In Figure 14, pruning happens after steps 2 and
4: in the latter case all plans have the same physical properties after the final operator moved their
results to the client.

A client-site UDF is executed by a join with a given inner table -- the virtual UDF table. To unify our
handling of virtual and real joins we will see joins as operations with a given inner table. Every relation
in the query introduces such a join operator: In our example we have to consider three operations: The
join with 6, the join with (, and the client-site join with &OLHQW$QDO\VLV. Thus real joins are applied in
the same way as UDF joins. The application of a join to a yet empty plan simply results in the base
relation of the join. The algorithm for the set of real and virtual joins J1 to Jm is given in Figure 15.

FOR i:=1 TO m DO
{ FOR ALL J ⊆ {J1,...,Jm} s.t. |J|=i DO
  { BestPlan := dummy plan of infinite cost
    FOR ALL j, J’ s.t.: |J’| = i AND
                        {j} ∪ J’ =  J DO
    { P := BestApplication(OptPlan[J’], j)
      IF cost(P) < cost(BestPlan)
      THEN BestPlan := P
    }
  OptPlan[S] := BestPlan
  }
}
RETURN( OptPlan[{O1,...,Om}] )

)LJXUH������&OLHQW�6LWH�8')�2SWLPL]DWLRQ�$OJRULWKP

5.2.3 Semi-Join Optimization
For the semi-join UDF algorithm, a small modification is necessary. We need to capture the fact that the
results of plans after a semi-join are distributed between client and server. To do so, we introduce
locations for each column of the intermediate results as physical properties. As an example consider
again the plans for the query of Figure 11, extended with 9RODWLOLW\�6�4XRWHV�
6�)XWXUH3ULFHV� in the select clause. We show part of the optimization process in Figure 16,
omitting all plans that do not start with the join of 6 and (.

The initial plan, 6⊗(, can be extended by applying either &OLHQW$QDO\VLV or 9RODWLOLW\. Each
client-site UDF can deliver its result column and its argument columns on the client site, available for
any further operation. If 9RODWLOLW\ is applied first, &OLHQW$QDO\VLV can follow without shipping its
arguments because its arguments are already on the client.

The application of 9RODWLOLW\ after &OLHQW$QDO\VLV� on the left side of the tree, cannot use the
4XRWHV column on the client: Duplicates were eliminated on it that were originally paired with different
)XWXUH3ULFHV values. Everything has to be shipped back to the server before the adequate columns
can be transferred. Similarly, server-site operations, like the selection, always ship everything back to
the server before their execution.

The described plan generation happens with the algorithm given in the previous section. All described
modifications are an extension of the set of relevant physical properties and new variations for the
described execution operators:  Any client-site UDF can be applied as a semi-join that is executed
duplicate-free, as a semi-join that accepts duplicates to avoid shipping, and as a client-site join. The
latter has to return client-site results of semi-joins to the server before it can ship the full records to the
client. This is also true for the final result operator.



��

S,E,Vol,CA,Sel
∅

S,E,CA,Sel,Vol
Quotes,
FuturePrices,
Vol.Result

S,E,CA,Vol,Sel
∅

S,E,CA,Vol
Quotes,
FuturePrices,
Vol.Result

S,E,CA,Sel
∅

S,E,Vol,CA

Quotes,
FuturePrices,
Vol.Result,
CA.Result

S,E,CA
Quotes,
CA.Result

S,E
∅

S,E,Vol
Quotes,
FuturePrices,
Vol.Result

Step 1

Step 2

Step 3

Step 4

)LJXUH������6HPL�-RLQ�2SWLPL]DWLRQ�IRU�WKH�4XHU\�LQ�)LJXUH���

5.2.4 Features of the Optimization Algorithm
The key characteristics of this algorithm are:

• The number of joins in the plan is 2(#joins+#c.s.udfs), that is, the algorithm is exponential in the number of
real joins plus the number of client site UDFs.

• Simple, pushable selections and projections are not modeled as operations, although they are,
where possible, pushed to the client.

• For query nodes that apply client-site UDFs, an additional physical property is introduced: The
distributed location of the optimized subplan’s result relation: The subset of its columns that resides
on the client. If none, server-site operations incur no communication cost -- if all, client-site joins
don’t have to transfer data. For a certain set of columns that is a superset of an UDF’s arguments,
there is a choice of using the columns on the client, including possible duplicates, or of returning
them and shipping only the arguments, duplicate-free.

• Grouping of client-site operations, motivated by shared arguments or by result dependencies, is
integrated in a uniform way, using the location property.

� &RQFOXVLRQV

Client-site query extensions (UDFs) will play an increasingly important role in extensible database
systems due to scalability, confidentiality, and security issues. We demonstrate that existing UDF
evaluation and optimization algorithms are inappropriate for client-side UDFs. We present more
efficient evaluation algorithms, and we study their performance tradeoffs through implementation in the
Cornell PREDATOR database system. We also present a query optimization algorithm that handles
the client-site UDFs appropriately and finds an efficient query plan.
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