
1

Query Processing with Heterogeneous Resources
(Technical Report)

Tobias Mayr
Cornell University
4104 Upson Hall
Ithaca, NY 14853

mayr@cs.cornell.edu

Philippe Bonnet
Cornell University
4122 Upson Hall
Ithaca, NY 14853

bonnet@cs.cornell.edu

Johannes Gehrke
Cornell University
4108 Upson Hall
Ithaca, NY 14853

johannes@cs.cornell.edu

Praveen Seshadri
1

Cornell University
4130 Upson Hall
Ithaca, NY 14853

praveen@cs.cornell.edu

ABSTRACT

1In emerging systems, CPUs and memory are
integrated into active disks, controllers, and network
interconnects. Query processing on these new
multiprocessor systems must consider the
heterogeneity of resources among the components.
This leads to the more general problem of how to deal
with performance heterogeneity in parallel database
systems.

We study database query processing techniques that
increase the leverage of heterogeneous resources. We
show that the traditional algorithms used in shared-
nothing parallel databases fail to utilize non-uniform
resources. Uniform resource usage across non-
uniform components leads to resource bottlenecks.

We describe a class of new execution techniques that
balance the usage of system resources using non-
uniform intra-operator parallelism. We show that
these techniques improve performance on
heterogeneous architectures by allowing trade-offs
between the various resources. Traditional techniques
are subsumed as a special case for symmetric
architectures.

We show a formal model that maps out the new
execution space of alternative processing techniques.
A simplified cost model allows analytic performance
evaluation of the alternative techniques. The
proposed new execution paradigm is an extension of
the classical dataflow paradigm.

1 Introduction
This section motivates and explains the problems that
arise for database query processing in environments
with active components. We describe the
technological trends that motivate this paper and how
these new technologies should be modeled from the

1 Praveen Seshadri is currently on leave from Cornell University

and employed at Microsoft Corporation.

viewpoint of database query processing. We point out
the problem of traditional processing techniques and
describe our contribution to the solution.

1.1 Motivations
The performance demands on database systems grow
with increasing data volumes and processing
workloads. The standard approach to building
scalable database systems uses off-the-shelf
computing components, attached to a fast
interconnect, with “shared-nothing” parallel query
processing techniques [DG92,D+90,B+90,S86]. But
the hardware architectures underlying this approach
are changing: Due to continued cost and size
reduction of CPUs and memory, processing power is
becoming a cheap commodity available on every
system component, like disk drives, storage
controllers and network interconnects. The emerging
class of system architectures consisting of such
“active” components, which each contribute their
processing power, holds great promise for highly
scalable systems [G+97,G+98,KPH98,RGF98,
AUS98,UAS98,HM98].

As an environment for query processing, such
architectures differ from traditional parallel
architectures in the heterogeneity of the involved
resources. Processing is not confined to the servers –
it can happen on all active components of the system,
e.g., disks, storage controllers and clients. The
utilized platforms vary widely in terms of processing
power, disk I/O rate, and communication bandwidth.

The next subsection shows how to model systems
with active components from the viewpoint of
relational database query processing.

1.2 Modeling the New Environments
Our goal is to find an abstract model for the new
architectures that reflects all aspects that are relevant
for query processing. This will allow us to recognize
the shortcomings of traditional parallel processing
techniques in these new environments.

2

Because of our focus on the heterogeneity of
resources across different components, each
individual resource will be modeled with its specific
bandwidth. Each site consists of several such
resources, and all sites are connected by a shared
interconnect, which also corresponds to a resource.
Figure 1 shows this structure. In this example, a site
consists of the resources processor, disk and
networking. The networking bandwidth corresponds
to the site’s specific bandwidth limitations for inter-
site communication, while the interconnect represents
the bandwidth limitations on the accumulated
communication between all sites.

6KDUHG�,QWHUFRQQHFW

�6LWHV
Network

&38

'LVN

Network

&38

'LVN

Network

&38

'LVN

Network

&38

'LVN

Figure 1: Resource Model

This bandwidth-centric model can represent a broad
class of real-life systems. As examples, consider
shared-nothing parallel systems, systems with active
disks and systems with network attached storage.
Figure 2 shows instantiations for these systems in our
resource model.

What distinguishes the new architectures that we
want to discuss from classical ones? Our concern is
that the resources are not uniform across the sites of
the system: Uniformity means that the different
resources are present in the same proportion on each
site. Figure 2a) shows an example with uniform
resources. Figure 2b) and 2c) are examples for non-
uniform resources: In both cases the server has
relatively more processing power, while other sites
are stronger in either their networking or the disk
bandwidth.

With uniform resources, different sites can be fully
characterized by simply giving their relative capacity
– they are not distinguished by the proportion in
which their resources are available. But the new
architectures that we consider here do not allow this
abstraction, the model has to represent each resource
individually. The next section visualizes the problems
of traditional techniques in this new model.

,&� 1� &� '�
6HUYHU���

1� &� '�
6HUYHU���

1� &� '�
6HUYHU���

1� &� '�
6HUYHU���

6KDUHG�,QWHUFRQQHFW�
(a) A shared-nothing cluster consists of symmetric processing units each
with disks and network access. A high bandwidth interconnect serves as a
connection between the components.

,&� 1� &� '�
6HUYHU��

1� &� '�
$FW�'LVN���

1� &� '�
$FW�'LVN���

1� &� '�
/HJDF\�'��

6KDUHG�,QWHUFRQQHFW�

,&� 1� &� '�
6HUYHU��

1� &� '�
&OXVWHU���

1� &� '�
&OXVWHU���

1� &� '�
1�$�'LVN�

6KDUHG�,QWHUFRQQHFW�

1� &� '�

(b) This active disk system has two active disks, each with a moderately
powerful processing units. An older legacy disk, with little processing
power, is also integrated.

(c) This system consists of a server, two clusters of disks with processing
power on their controllers, and an active disk that is directly attached to the
network.

Figure 2: Example Architectures

1.3 Problems of Existing Techniques
In the traditional approach, the primary way to
distribute workload across the sites of a parallel
system is the use of intra-operator parallelism
[D+86]. A relational operation is executed identically
on different subsets of the data that are located on the
different sites. The sizes of the different subsets are
balanced so that the overall execution time is
minimized. Figure 3 shows such a balanced
execution. No site and no single resource is
dominating the execution time as a bottleneck.

3

1� &� '� 1� &� '� 1� &� '� 1� &� '�1� &� '�,&�
6HUYHU���� 6HUYHU��� 6HUYHU��� 6HUYHU���

��

([HFXWLRQ�7LPH�

Figure 3: Classical Parallel Execution on the System
of Figure 2a)

The existing techniques assume that the resources are
distributed uniformly across the sites2. This can be
seen from the uniform resource usage of these
techniques: On each site the same operation is
executed, using each site’s individual resources in the
same proportion.

But for non-uniform resources, balancing the local
amounts of data on the sites does not prevent
individual resources from being overutilized –
forming a bottleneck, while others are underutilized.

Figure 4 shows an example: While the resource usage
of the operation is near optimal for the server, it leads
to unbalanced use of the resources on the other
components – even after adjusting the workloads to
have balanced execution times across the sites..

,&� 1� &� '� 1� &� '� 1� &� '� 1� &� '�1� &� '�
6HUYHU� &OXVWHU��� &OXVWHU��� $FWLYH�'LVN�

��

([HFXWLRQ�7LPH�

Figure 4: Traditional Execution on the System of
Figure 2b)

The problem is that we can only vary the workload
per site, not per resource. To leverage the
heterogeneous resources it would be necessary to
adapt for each site not only the workload size, but
also the processing of that workload. The resource
usage will be adapted to each site’s specific resource
availability only after adapting the processing
techniques for each site. This paper presents an
execution paradigm that allows such adaptivity.

2 Gamma [D+90] introduced diskless sites as a special case, but

did not treat non-uniformity in general.

1.4 Contribution
Based on the realization that the existing processing
techniques fail to leverage heterogeneous resources,
we propose an extension to the classical data-flow
paradigm. Our extension allows the adaptation of the
workload processing to each site’s specific resource
situation. We present techniques that introduce
tradeoffs between the individual resources in the
extended data-flow paradigm. These techniques
demonstrate but do not exhaust the possibilities of the
proposed extension to the paradigm.

Our contribution is based on a formal execution
model for pipelined operator execution. The goal of
this model is to fully reflect the inherent flexibility of
the data-flow paradigm, thus allowing adaptation of
the execution to heterogeneous resource situations.
The benefits of the model are the description of the
execution space and the costing of this space. The
execution space is the set of all possible ways in
which to execute a given pipeline of operators on a
given architecture. It shows all possibilities to adapt
the resource usage of execution to the given resource
availability of the system. The costing of these
possibilities allows us to analyze the expected
performance benefits.

Our techniques focus on intra-operator parallelism
for two reasons:

1. The benefits of pipeline and independent
parallelism are very limited compared to intra-
operator parallelism. The degree of parallelism
achieved is limited by the length of the pipeline
and the number of independently parallel
subplans.

2. For heterogeneous resources, the adaptation of
intra-operator parallelism appears to be the main
challenge, while the other forms of parallelism
adapt easier3.

Our contribution is the first step towards parallel
database systems that leverage the heterogeneous
resources available on active system components. We
confined ourselves to the adaptation of operator
execution, and left independent and pipeline
parallelism for future work. Facing the complex
execution space that we propose, resource-adaptive

3 Work has been done on the effects of inter-query parallelism
[C+88,RM95]

4

query optimization will be challenging. We focused
in this work exclusively on the exploration of the
execution space, which in our view forms the
necessary base for future work on optimization.

2 The Traditional Approach
This section explains the problems that non-uniform
resources pose to traditional intra-operator
parallelism. The traditional approach attempts to
process data uniformly, applying the same algorithms
to the data on different sites in parallel
[D+90,C+88,DG90,GD93]. For heterogeneous
resources, this results in bottlenecks: Certain
resources are overloaded and slow down overall
execution, while other resources are idle. The
solution to this problem is presented in Section 2,
where we describe how the idle resources can be used
to relieve the overloaded ones.

Subsection 2.1 establishes a basic understanding of
the traditional data flow paradigm for intra-operator
parallelism. Subsection 2.2 shows this paradigm’s
limited adaptivity to the underlying resource
situation, and points out the resulting bottleneck
problem.

2.1 Data Flow
In the classical data flow approach [DG90,DG92],
parallelism is achieved by executing the same
operation in parallel on multiple sites. On each site,
only the locally present data, called the site’s
partition, is processed.

Some operations, like joins or aggregates, cannot be
correctly executed on arbitrary subsets of the data. An
equality join, for example, has to process all tuples
that are equal on the join column together. Data that
could possibly be combined by an operation have to
be collocated in the same partition, that is, on the
same site.

For this reason, the partitions usually have to be
changed between two such operations. In addition,
the number and the sizes of the partitions might need
readjustment [C+88,MD93,MD97,RM95]. This
process of changing partitions is called
repartitioning. It involves data streams between each
pair of involved sites: Every site splits its existing
partition according to the new partitioning, and sends
each fragment to its new location. Every site receives
such fragments from all other sites and merges them
to form its new partition.

6LWH�
;:

<:

=:

����������π�������������σ�����

����������π�������������σ�����

����������π�������������σ�����

����������π�������������σ�����

����������π�������������σ�����

����������π�������������σ�����

��� ���
���

����������π�������������σ�����

���������π�������������σ�����

����������π�������������σ�����

���

Figure 5: The Classical Data Flow Paradigm

Figure 5 shows this data flow for a pipeline of three
operations, with two interleaved repartitionings. The
operations are SPJ operators, each consisting of a
join, a selection, and a projection. It is assumed that
the data are initially distributed so that tuples that
might be joined in the first operation are collocated
on one site. The two repartitionings will establish
adequate distributions for the other two joins.

Besides the collocation of related tuples,
repartitionings allow the adjustment of the data
volumes that are processed by each site. This is called
workload balancing. The size of the partitions is
optimal if the overall execution time is minimized4.
This is the case if all sites need the same amount of
time to process their workload. If certain sites would
need more time than others, execution time could be
reduced by distributing some of their workload
among the idle sites. For example, Figure 4 shows the
result of balancing the workload across the sites of
the architecture in Figure 2b). Because of the better
resources of the server, workload has been moved
from the other sites to the server to achieve equal
execution times on all sites and thus to minimize
overall execution time.

To determine the execution time of a site with respect
to the given operation, only the resource that is
utilized most matters. In our bandwidth-centric view,
this bottleneck resource dominates the execution time
and its bandwidth becomes the effective bandwidth of
the site. Every site processes its workload with its
effective bandwidth. The next subsection explains in
how far this limits performance.

4 We ignore the issues of overheads for full declustering [C+88]

as well as the effects of inter-query parallelism
[C+88,RM95,MD93].

5

2.2 The Limitations of Workload Balancing
For non-uniform resources, traditional techniques will
optimize utilization only insofar as no site will be
underutilized entirely. Its bottleneck resource will
always be utilized for the full execution time. Figure
4 shows how all sites are busy for the same time,
because each site’s bottleneck resources are utilized
for that time. But other resources will be
underutilized.

In general, why would some resources of a site be
underutilized, while others are fully utilized? In the
traditional approach, the same algorithms are
executed on each site, leading to the same resource
usage on all sites. However, the resources available in
environments with active components will be highly
non-uniform – they are part of fundamentally
different hardware components, like disks, controllers
and interconnects. Adjustment of the partition size
only leads to proportionally higher or lower usage of
all resources on a site. The problem is that the
proportion of available resources is different for each
site. Thus, the mentioned local bottlenecks are
inevitable.

In the non-uniform case, our focus has to be on the
underutilization of single resources not on that of
whole sites. In Figure 4, the resource usage of the
executed operation matches the available bandwidth
of the resources only for the server. Every of its
resource is fully utilized during the execution time.
On the active disk sites, most of the resources are
underutilized because these sites are simply very
different from the server. The available and unused
bandwidth of these resources should be leveraged to
relieve the bottleneck resources and thus reduce the
overall execution time.

To achieve this, different processing needs to happen
on sites with different resources. Sites that have
strong CPUs, like servers, should do CPU intensive
tasks, while sites with relatively more disk bandwidth
should be used mainly on this resource. The classical
approach is based on the idea that the same operation
is executed on all sites5. As we have seen, workload
adaptation does only avoid underutilized sites, not
underutilized resources.

5 The simple adaptation of choosing different implementations for

the same operation on different sites is limited by the fact that
the operation mostly dictates the resource usage.

On clusters of identical components, for which the
classical approach was developed, the traditional
approach can succeed in fully utilizing every
available resource. But in active environments the
available resources are a byproduct of a variety of
necessary hardware components and thus are
inevitably heterogeneous. New techniques are needed
to leverage these newly available resources for
scalable, faster query processing.

3 New Processing Techniques
Our goal is to use the available bandwidth on
underutilized resources to reduce the usage on the
bottleneck resources. We achieve this goal by
migrating the processing of certain tasks between
sites. These tasks have a specific resource usage,
which is removed from one site and applied to
another. In contrast to workload balancing, where
data is migrated, the migration of processing itself
leads to a change in the usage of the individual
resources on the involved sites. Workload balancing
only attacks the problem of site bottlenecks, while our
techniques can resolve local bottlenecks on each site.

We can migrate processing by realizing the full
flexibility inherent in the data flow paradigm. The
paradigm must be extended to maximize its
flexibility, which allows adaptive query processing on
heterogeneous resources. For that, we identify all
scopes at which processing of subsets of the data is
possible during the data flow and allow different
choices of processing for each of these scopes.

Subsection 3.1 describes our new execution
framework as an extension of the classical data flow
paradigm. Subsection 3.2 describes a collection of
techniques that realize some of the tradeoffs possible
in the new framework. Section 4 develops the
contents of this section to a formal framework.

3.1 New Execution Framework
Consider the data flow scheme shown in Figure 6: It
shows all opportunities to execute algorithms on the
data. We speak of the execution scope of an
algorithm, consisting of the place and the timing of
the execution, and the set of processed data. We use
the partitions and data streams between sites as
available data sets. Places are the sites of the system
and possible timings are the stages of the pipeline,
subdivided into five different phases that we now
introduce into the data flow paradigm.

6

Say we have n sites, then for each stage of the
pipeline and for each site the execution scopes are:

1) On the n fragments of the partition incoming on
the data streams from the n sites. We call this the
incoming phase.

2) During the merging of these fragments into one
partition. We call this the merging phase.

3) On the whole partition on the site. We call this
the merged phase.

4) During the splitting of the partition into the
fragments outgoing during the following
repartitioning. We call this the splitting phase.

5) On the n fragments of the partition outgoing on
the data streams to the n sites. We call this the
outgoing phase.

Figure 5 shows the five phases of each stage and the
execution scopes within each phase. Each ellipses in
the figure corresponds to an independent execution
scope. Bold ellipses correspond to the execution
scopes that are part of the original data flow
paradigm. They form a subset of the scopes in the
extended paradigm.

Per pipeline stage, there are 2n2+3n independent
opportunities to apply algorithms to parts of the data.
In contrast, the traditional data flow paradigm applied
algorithms identically on all sites during the merged
phase, only varying the amounts of data on each site.

Our motivation was to migrate processing between
sites to vary the usage of individual resources. The
extended paradigm allows, roughly, the following
options:

• Operations can be executed differently on the
data streams between sites during repartitionings.

• Splitting partitions into data streams and merging
them can happen differently on different sites.

• Operations can be executed differently on the
partitions on different sites.

The first two options allow us to migrate parts of an
operation’s execution from site to site, while the last
one allows a limited adaptation of the execution for a
specific site.

The next subsection shows concretely how the
flexibility of the extended paradigm can be used to
leverage non-uniform resources.

3.2 Non-Uniform Execution Techniques
The problem that we are trying to resolve is that
certain resources form the bottleneck of execution,
while others are underutilized and partially idle. This
problem is caused by the fact that the same operation
has to be executed on sites with very different
resource availability. Our proposed solutions fall into
three different categories:

• Migration of processing: We migrate algorithms
that use certain resources from sites that
overutilize these resources to sites that
underutilize them.

• Additional processing: We introduce additional
processing, like compression, which trades off
some resources against others.

• Alternative processing: We use alternative
implementations of the same operations in
different resource environments.

6LWH�
;:

<:

=:

Data Streams: Partitioning: Processing: Merging: Data Streams: Partitioning: Processing: Merging:

+3�
����������π�������������σ�����

����������π�������������σ�����∪ +3�
����������π�������������σ�����∪��� ��� ���

��� ��� ��� ���
���

Processing:

+3�
����������π�������������σ�����

����������π�������������σ�����∪ +3�
����������π�������������σ�����∪��� ��� ���

��� ��� ��� ���
���

+3�
����������π�������������σ�����

����������π�������������σ�����∪ +3�
����������π�������������σ�����∪��� ��� ���

��� ��� ��� ���
������ ������

������ ��� ��� ���

Figure 6: The Extended Dataflow Paradigm

7

We present techniques from all three areas, while our
focus is on the first one, which allows the greatest
improvements over the traditional approach6.

The formal model presented in Section 4 will allow
us to map out the complete execution space, showing
all possible ways to apply given operations to data on
a given architecture. The techniques presented in this
section point out important parts of the execution
space, but are by no means exhausting.

3.2.1 Migrating Operations
Considering the operations in Figure 6, we realize
that only the joins have to be executed on each
partition as a whole. Selections and projections can
also be correctly executed on each of the fragments of
the partitions that are sent out to other sites. They are
not bound to any particular partitioning of the data
and can be applied separately to the subsets of the
partition on the outgoing data streams.

We migrate operations along the data streams by
applying them on the sending site for some streams
and on the receiving site for others. Figure 7
illustrates this for a simple case, where selections and
projections are migrated away from one of the sites.
When the streams are merged on the receiver sites,
the operations must have been applied to all of them.

6LWH�
;:

<:

=:

+3�
��� ∪��� ��� ���

���

+3� ∪��� ��� ���
���

+3� ∪��� ��� ���
������ ������

���

σ��������π�

����������

σ��������π�����������
σ��������π�����������
σ��������π�

����������

σ��������π�
����������

σ��������π�

����������

σ��������π�

����������

σ��������π�
����������

σ��������π�

���

���

Figure 7: Migrating Operations

For each pair of sites, this technique gives us the
decision if, on the data exchanged during the
following repartitioning, the operation should be
applied on the first or on the second site. This will be

6 The presented techniques will attempt to use underutilized

resources as much as possible to reduce the usage on other
resources. In the larger context of pipelined, independent and
multi-query parallelism, there will be a tradeoff between the
amount of underutilized resources used and the amount of
utilized resources freed.

of benefit if the resources used by the operation are
overutilized by exactly one of the two sites.

3.2.2 Migrating Join Preparation
Only selections and projections can freely be moved
between the sites during repartitioning. Joins have to
happen on the full partition between repartitionings.
The reason is that joins have to be executed on each
partition as a whole. Executed separately on
fragments of the partition, not all possibly
combinable tupels would be combined.

Nevertheless, the fragments on incoming data streams
can be prepared on their source sites. For example,
for a sort-merge join, the incoming fragments could
already be sorted and would simply be merged when
the partition is constructed. Only sites that have
available resources would sort before sending off
their partitions, while others would leave the sorting
to the receiver.

This technique allows migrating part of the join from
one site to another despite of the mentioned
constraints. Its applicability strongly depends on the
available join algorithms. Preferably, these algorithms
should be structured to allow preprocessing on parts
of the data. Also, in many cases, the merging of
incoming data streams has to be aware of the
preprocessing. Streams that were not preprocessed on
other sites, have to be preprocessed immediately
before the merge.

3.2.3 Migrating Repartitioning Preparation
The last two subsections discussed how to migrate
selections, projections, and parts of the join. The
other major work done between repartitionings is the
splitting of the partition into fragments for the
outgoing data streams. This splitting prepares the next
join, by partitioning the local subset of the data with
respect to the new join column.

The splitting itself can be prepared by tagging all data
with its future partitions. Splitting would then simply
dispatch the data according to the tag. We can migrate
tagging across incoming data streams to some of the
sending sites.

3.2.4 Selective Compression
This technique trades off processing bandwidth on a
pair of sites against the network bandwidth between
the sites. The three techniques presented earlier
migrated work that consumed resources local to the

8

execution site. If they affected the network load at all,
they increased it.

Since the resources are distributed non-uniformly, not
all sites have the same processing bandwidth
available for data compression. Compression and
decompression can be applied on the partition
fragments sent to other sites during repartitioning.
Thus the decision about compression can be made on
a site to site base, utilizing only the underutilized
resources to relieve the network.

3.2.5 Alternative Algorithms
Our initial observation, that uniform processing over
non-uniform resources leads to bottlenecks, can guide
us to two complementary solutions:

• On different sites, do different parts of the query
processing: Concentrate parts of the execution
where the needed resources are available. This
has been done in the first three subsections.

• On different sites, do the query processing in
different ways: Pick an implementation of the
required operation whose resource usage matches
availability. This is the topic of this subsection.

There are usually many different implementations for
a given operation that has to be processed in parallel
on multiple sites. Implementations can be chosen for
each site independently, as long as the partitioning of
the workload before the operation and the
repartitioning of the results work independent of the
particular implementation.

This technique finds its limitation in the variety of
resource usage of different implementations of the
same operation. Presumably, the operation will
determine the usage to a large degree. This is why we
expect the migration techniques, presented in
Sections 3.2.1, 3.2.2, and 3.2.3, to be more powerful.

4 Formal Execution Model
This section formalizes the extension to the data flow
paradigm, resulting in a definition of the new
execution space and, based on it, a cost model.

The execution space is the set of all possible ways in
which given relational operations can be processed by
a given system. The execution space of our extended
data flow paradigm will be a superset of that of the
traditional one. Our claim is that for non-uniform
architectures there are executions that are elements of
the extended but not of the traditional space and that

have better performance than any of the traditional
executions. The reason for this is that they allow
improved leverage of otherwise underutilized
resources and thus reduced execution time.

Based on the execution space, we will model the cost
of every execution in terms of overall execution time.
This model allows us to compare different executions
in terms of their expected performance. Also, such a
cost model is the base for the design of optimization
algorithms that search for optimal solutions within the
execution space.

4.1 System Architecture
We want to model all features of the execution
environment that we deem relevant for our execution
space and cost model. The chosen abstraction should
not hide any execution alternatives and it should
reasonably reflect all execution constraints as costs.
Accordingly, every involved component will be
modeled as a full-fledged site allowing data
processing in any form. Each site is modeled by
individual bandwidths for a generic set of resources,
which allows us to constrain data processing through
the specific bandwidth settings of a site. The specific
requirements of active environments and the
corresponding contributions of our techniques are
only reflected in models that have multiple resources
with independent bandwidth7 on each site.

To establish the components of an architecture,
similar to the examples in Figure 2, we define a set of
sites, of resources per site, and of shared resources.

Let each of the following be a given set of identifiers:

• Sites = {x,y,z,…} (Components of the
architecture)

• SiteResTypes = { p, d, n,…} (Resources present
on each component, e.g., processor, disk, network
access)

• SharedResTypes = {ic, …} (Resources shared
among all components, e.g., the interconnect)

Sites is the set of all components or sites of the
architecture. Each site has individual instances of the
resource types in SiteResTypes. Additionally, all sites

7 Independent bandwidth means that the proportion between the

bandwidths on each site are not necessarily constant across all
sites.

9

share a single instance of each resource type in
SharedResTypes.

Based on these given sets we define the following
naming conventions:

• ResTypes = SiteResTypes∪ SharedResTypes

• SiteRes = {rx : r∈ SiteResTypes, x∈ Sites }

(Set of resource instances present on the
components)

• SharedRes = SharedResTypes
(Set of shared resource instances, one per type)

• Res = SiteRes ∪ SharedRes
(Set of all resource instances)

• ResType : Res → ResTypes
For rx∈ SiteRes : ResType(rx)= r

For r ∈ SharedRes : ResType(r)= r
(Type of a resource)

• ResSite : SiteRes → Sites
For rx∈ SiteRes : ResSite(rx)= x

(Site on which a resource is located)

• For r ∈ SiteResTypes: R = {rx, ry, rz,…}
(Set of all instances of a site resource)

• ResOfSite : Sites → 2 SiteRes
For x ∈ Sites: ResOfSite(x) = {rx’∈ Res : x = x’}

(Set of all resource instances on a site)

This gives us the set of resource instances as the
shared resources together with the combinations of
given sites with given site resource names. In Figure
2, the set of sites consists of the four clusters of
columns on the right, while the columns in the
clusters correspond to the site resources. The single
column on the left is the only shared resource.

We will assign a bandwidth to every one of these
resources, expressing the amount of data processed
per time unit8. Let the following be a given mapping
from resources to their bandwidths:

• BW: Res → [0;∞ [

Bandwidth expresses the amount of data that can be
processed during a given time period, relative to the
processing algorithms resource usage. Usage will be
defined in Section 4.3.

8 The units in which data volumes and time are measured are

unimportant for the development of the model. Only the ratios
between the involved bandwidths are relevant to determine the
relative performance of different processing strategies.

For example, BW(px)=2*BW(py) implies that the same

algorithm executed on the same amount of data would
utilize the processor resource on site x twice as long as on
site y. If the resource usage is RU(a,p) (see Section 4.3),
then the execution time would be RU(a,p)/ BW(px) on

site x. The value of BW for a resource corresponds to the
height of the corresponding column in resource graphs like
Figure 2.

Resources are not exclusively used by algorithms. Shipping
data between sites during repartitionings will utilize some
of the resources. For this reason we identify local and
shared resources that are utilized whenever data is sent or
received by a site. While the shared resources are always
used, the local resources are only used for communications
of their specific site.

Let the following be given sets:

• SharedComResTypes ⊆ SharedResTypes
(Shared resource types that incur cost for
communication)

• LocalComResTypes ⊆ LocalResTypes
(Local resource types that incur cost for
communication)

• ComRes = {r∈ Res:
 ResType(r)∈ SharedComResTypes ∨
 ResType(r)∈ LocalComResTypes }
(Resource instances that incur cost for communication)

Section 4.6 will detail how communications and the
execution of algorithms will affect the execution cost. As
example, let d amount of data be sent by site x, with n and
ic being a local and a shared resource. Then d/BW(nx) is

incurred on resource nx and d/BW(ic) on resource ic.

Some caveats are in place, regarding the simplicity of
the presented abstractions. Our model focuses
completely on data throughput and does not reflect
any latency. The solutions that we propose for the
problems of traditional techniques are based on
leverage of idle bandwidth. We simplified the
presentation by focusing on this performance
component.

It could be argued that our resource model is to
simplistic in that a resource is either used only by one
site or shared by all sites. More complex models
could allow resources shared by a subset of the
components, like a local interconnect. Again,
simplicity of the presentation motivated our choice.

Algorithms are executed on a site at a specific time
on a specific subset of the local data. The next section
refines our model to express this scope of execution.

10

4.2 Execution Scopes
Figure 5 shows the possible scopes of execution for
an algorithm on the defined architecture as part of a
pipeline. Execution of algorithms is possible during
the different phases of the pipeline on the different
subsets available on a site. Each of the ellipses in
Figure 5 forms a separate execution scope.

As explained in Section 3.1, each stage of the pipeline
is subdivided into five independent phases, each of
which forms execution scopes in combination with
the available data sets in that phase. During the
incoming and outgoing phases, on each site there is
one dataset per incoming respectively outgoing data
stream. That is, one set for each pair of sites. During
the merging, the merged and the splitting phase, there
is only one relevant data set per site, to which
algorithms can be applied.

Let nStages be the number of stages in the pipeline. Stages
has to be a finite set that is linearly ordered by ‘⊆’. We
simply take natural numbers as names for stages9:

• Stages = {0,1,…, nStages}

• For x,y ∈ Stages: x ⊆ y ⇔ x ≤ y

We observed, that within each stage there are five possible
execution phases. We need a naming convention for these
phases. We call phase types the abstract phases that will
happen in every stage, while a phase is a concrete instance
within a specific stage.

• PhaseTypes = {Incoming, Merging, Merged,
 Splitting, Outgoing }
(Identifiers for phase types, independent of stages)

• Phases = { ps : p∈ PhaseTypes, s∈ Stages }

(Set of phase instances across all the stages)

The following are naming conventions for relevant subsets
of Phases :

• For s ∈ Stages : Phasess = { ps’ ∈ Phases : s’ = s }

 (Phases in the nth stage of the pipeline)

• Incoming = ∪s ∈ Stages {Incomings }

(Set of phase instances of a certain type across all
stages)

• Merging = ∪ s ∈ Stages {Mergings }

9 Our very generic definition would alternatively allow for

sequences of stages, in which new stages could be inserted by
the optimizer. In that case, natural numbers would be
inadequate identifiers.

• Merged = ∪ s ∈ Stages {Mergeds }

• Splitting = ∪ s ∈ Stages {Splittings }

• Outgoing = ∪ s ∈ Stages {Outgoings }

Each phase has to be combined with a data set to
form an execution scope. This happens for the
merging, merged and splitting phases simply by
picking the site of execution. For the incoming and
outgoing phases, we also have to pick a subset on the
chosen site, by picking the source or destination site
of the in- or out-bound data stream. Thus, each
execution scope is a combination of a phase with one
respectively two sites:

Execution scopes for algorithms during the five
phases:

• WhileIncoming = Incoming × Sites × Sites
(Incoming streams on the first site, coming from
the second site)

• ForMerging = Merging × Sites
(Merging of all streams on a specific site)

• WhileMerged = Merged × Sites
(Processing of the merged data on a site)

• ForSplitting = Splitting × Sites
(Splitting of the data into the data streams on a
site)

• WhileOutgoing = Outgoing × Sites× Sites
(Outgoing streams on a site, directed to the
second site)

The sites in the incoming and outgoing tuples are not
in the direction of the stream’s flow. The first site is
always the site on which the data is located, while the
second site, if present, is the remote source or the
target site of the data. The following are notational
conventions related to the given definitions.

• ExecScopes = WhileIncoming ∪ ForMerging ∪
 WhileMerged ∪ ForSplitting ∪
 WhileOutgoing
(Set of all execution scopes)

• Site: ExecScopes → Sites

• Let (p,s)∈ ForMerging∪ WhileMerged∪
 ForSplitting: Site(p,s) = s

• Let (p,s,s’)∈ WhileIncoming∪ WhileOutgoing:
 Site(p,s,s’) = s
(Site of an execution scope)

11

The following section shows how to populate
execution scopes with algorithms.

4.3 Algorithms
The application of relational operations on a data set
is modeled as the execution of algorithms at specific
execution scopes within the pipeline. According to
the different signatures of the execution scopes –
merge of multiple streams, processing of a single
stream, splitting into multiple streams – there are
three different kinds of algorithms:

• Merge: An algorithm that processes multiple data
sets as inputs and that produces a single result,
for example, a simple union of the inputs.

• Standard: An algorithm that works on a single
input data set, producing a single output.
Examples are a sort, a projection, or a filter
operation. Only standard algorithms can be
executed in sequence.

• Split: An algorithm that works on a single input
data set and that produces multiple result sets. An
example is a hash partitioning of the data.

Algorithms are characterized through their resource
usage and their effect on the data volume. The usage
in combination with the available bandwidth and the
processed data volume determines the execution time.
Every algorithm has linear resource usage in terms of
the shared and local resources. The usage is modeled
as a number that, divided over the corresponding
bandwidth, determines the execution time per data
item.

The results of an algorithm’s processing can have a
different size than the inputs. In our model, the result
size is linear in the size of the input. Associated with
every algorithm is a resizing factor that reflects this
linear relation between in- and output. For multiple
in- or outputs, there is a separate resizing factor for
each processed or produced data set.

We begin by defining the sets of available algorithms:

• Let StdAlg, SplitAlg, and MergeAlg, be given sets
of disjoint algorithms.

Resource usage is defined for each algorithm with
respect to every single resource type. Usage is
defined for resource types and not for resources,
because for multiple resource instances of the same
type the resource usage should be the same. The cost

of an algorithm on different sites only differs if the
available bandwidth is different.

• RU: (StdAlg ∪ SplitAlg ∪ MergeAlg) ×
ResType
 → [0;∞ [
(Resource usage of the algorithms)

• RF : StdAlg ∪
 MergeAlgorithms ∪
 SplitAlgorithms × Sites → [0;∞ [
(Resizing factors of the algorithms)

For split algorithms, resizing happens with respect to
each in- and output separately. For example, a split s
sends RF(s,x) of its input to site x, it produces |Sites|
separate outputs of the accumulated size ∑x∈ Sites RF(s,x)

times the input size. The size of a merge’s output is
RF(m) times the sum of its inputs.

Since standard algorithms can be executed in
sequence, the definitions of resource usage and of
resizing are extended for sequences of standard
algorithms. We write [X] for the set of sequences
over a given set X. For sx ∈ [X], we write Length(sx)
for the length of sx, and sxn for the nth element of sx (1 ≤

n ≤ Length(sx)). We also use set notation on sequences to
mean the set of a sequence’s elements, eg, sxi ∈ sx.

• RU: [StdAlg] → [0;∞ [
For seq ∈ [StdAlg], rt ∈ ResType:
RU(seq, r) =
 ∑1≤ i ≤ Length(seq) (Π1≤ j<i RF(algj)) * RU(algi , rt)

(Resource usage for a sequence of algorithms)

• RF: [StdAlg] → [0;∞ [
For seq ∈ [StdAlg]:
 RF(seq) = Π1≤ i≤ Length(seq) RF(seqi)

(Resizing for a sequence of algorithms)

With this we established sequences of algorithms as an
extension of the set of algorithms. We can now identify
StdAlg with the one-element sequences in [StdAlg] and use
the latter whenever standard algorithms can be applied. The
next section details how algorithms are applied in the
execution scopes of the last section.

4.4 Execution Space
The proposed extended data flow paradigm consists
of the combination of the execution scopes with the
algorithms that are executed on them. Every such
combination is a way to process the data on the given
architecture. The traditional dataflow paradigm
consists of a subset of the possible combinations.

12

This section defines the extended execution space
consisting of all possible combinations.

An execution maps each execution scope onto the
algorithms that are executed in that scope. We
combine five mappings, one for each type of
execution scope, to represent this. The mappings have
different ranges, depending on the kind of algorithms
that can be executed. Our execution space is the set of
all combinations of such mappings.

• ExecSpace =
 (WhileIncoming → [StdAlg]) ×
 (ForMerging → MergeAlgorithms) ×
 (WhileMerged → [StdAlg]) ×
 (ForSplitting → SplitAlgorithms) ×
 (WhileOutgoing → [StdAlg])

As an example, consider the execution shown in
Figure 5. Each scope, shown as an ellipsis, is mapped
onto the algorithms that are shown inside the ellipsis.
As a convention, we will use the name of an
execution as the symbol for each of its mappings. If
the shown execution is called ex, we would write
ex(Incoming1, s1, s2) = [sel1, proj1] and ex(Merging1 , s1

) = stdMerge.

The extended execution space, named ExecSpace
above, is the space of all executions possible in our
model. It represents the extended data-flow paradigm
that this paper proposes. The size of this space is
behemoth: Even if only one algorithm should be
applied on the data streams of a single repartitioning,
there are 2(n2) possible ways to combine early and late
executions for n sites. Sophisticated optimization
techniques will be needed to find close to optimal
executions in such a space.

4.5 Data Distribution
This section formalizes an abstract concept of data
distributed across the components of the system. The
structure or semantics of the processed data is not
necessary to demonstrate our techniques. A set of
data that processed by an algorithm is simply
represented as a specific amount of data. Consistent
with bandwidth, usage and time, data amounts are
measured by positive numbers without explicit units.

We start with the given initial distribution of data
across the sites.

• Let IDD: Sites → [0;∞ [be a given mapping
from sites to their initial data volume.
(Initial Data Distribution)

Based on such a distribution and on a given
execution, we can determine the data amounts for all
execution scopes. This data distribution, expressing
the amount of data that is processed as input in each
scope, is represented by the following mapping.

• DD : ExecScopes → [0;∞ [
(Data Distribution)

The first pipeline stage will need too be defined
different than later ones, because it reflects the initial
data distribution instead of distributions of earlier
stages.

Let x,y ∈ Sites:

• DD(Incoming0 , x, y) = 0

(In the first stage, nothing is received)

• DD(Merging0 , x) = 0

(Nothing is merged)

• DD(Merged0 , x) = IDD(x)

(This reflects the initial data distribution)

• DD(Splitting0 , x) = IDD(x) * RF(ex(Merging0 , x))

(The effect of the operation in Merged on the data)

• DD(Outgoing0 , x, y) = IDD(x) *

 * RF(ex(Merging0 , x)) * RF(ex(Splittingi , x), y)

(The combined effects from Merged and Splitting)

We compute the data volume that has to be processed
at each execution scope. It depends on the initial data
distribution and on the resizing that happens later.
The data is resized by all algorithms that are executed
on it. Splitting algorithms divide the data in
independently resized fragments, while merging
algorithms unite such fragments, resizing them
uniformly. All phases are defined in terms of preceding
phases.

Let x,y ∈ Sites, s ∈ Stages, s ≠ 0:

• DD(Incomings , x, y) =

 DD(Outgoings-1 , y, x) * RF(ex(Outgoings-1, y,x))

(The data resulting at the other end of the data stream)

• DD(Mergings , x) =

 ∑ y ∈ Sites (DD(Incomings , x, y) *

 RF(ex(Incomings , x, y)))

(All data from incoming data streams)

13

• DD(Mergeds , x) =

 DD(Mergings , x) * RF(ex(Mergings , x))

(All data after merging)

• DD(Splittings , x) =

 DD(Mergeds , x) * RF(ex(Mergeds , x))

(All data on the site, after local processing)

• DD(Outgoings , x, y) =

 DD(Splittings , x) * RF(ex(Splittings , x), y)

(The fraction that is sent to the specific target)

Thus the algorithms in every execution scope have to
process the resized data processed in the last
execution scope. In the case of a split, the resizing
depends on the site of the follow-up scope. In the case
of a merge, the data of multiple preceding scopes are
relevant and are resized together.

This section determined the data amounts involved in
a given execution. Based on this, the next section will
determine its cost.

4.6 Execution Costs
Section 4.4 mapped out ExecSpace, the space of all
possible executions in our new framework. This
section will evaluate the alternative executions by
estimating their costs in terms of overall execution
time. As a result we can compare plans of our
extended model with those of the traditional space
(see Section 2.1).

The cost is constituted by the costs of each algorithm
on each site’s resources. It is influenced by the
resource usage of the algorithm, by the resource
availability on the execution site, and by the amount
of data processed in the particular execution scope.
Thus, we get utilization times for each algorithm and
each resource. Multiple utilization of the same
resource happens sequential and adds up, while the
utilization of different resources happens in parallel
and shows as the maximum utilization time of all
resources. The resulting cost is a real number in [0;∞
[without unit. Its unit is omitted, analogously to the
omitted units of bandwidth (see Section 4.1) and data
volume (see Section 4.5).

We will define the cost of an execution ex ∈
ExecSpace in three steps: First, we define the cost per
scope es∈ ExecScopes and per resource r∈ Res ,
called Cost(ex,es,r) :

• If r ∉ Shared ∨ r∈ ResOfSite(Site(es)) :
 Cost(ex, es, r) =

 DD(es) * RU(ex(es), ResType(r)) / BW(r)
else Cost(ex, es, r) = 0

Then, we define the cost per resource r∈ Res as the
sum over all the scopes that affect that resource plus
the incurred communication costs – Cost(ex, r) :

• If ResType(r) ∈ SharedComResTypes:
 Cost(ex, r) =
 ∑ es∈ ExecScopes Cost(ex,es,r) +

 ∑ es∈ WhileIncoming DD(es)/BW(r)

If ResType(r) ∈ LocalComResTypes:
 Cost(ex,r) =
 ∑ es∈ ExecScopes Cost(ex,es,r) +

 ∑ (IncomingS ,x,y)∈ ExecScopes ∧ x=Site(r)∧ x ≠ y DD(es) +

 ∑ (OutgoingS ,x,y)∈ ExecScopes ∧ x=Site(r)∧ x ≠ y DD(es)

Finally, we define the overall cost as the maximum of
the costs on the resources – Cost(ex) :

• Cost(ex) = MAXr∈Res Cost(ex,r)

We use one symbol, Cost, for the three cost functions
with different domains. The cost of execution is the
maximum of the times that the single resources need
to finish. To finish, each resource has to sequentially
serve in each execution scope on its site. An
algorithm’s cost is its resource usage divided over the
resource bandwidth times the amount of data.

This cost model, complicated as it may seem, is the
result of numerous simplifications. It does not reflect
any concurrency overheads, latencies, sequential per-
task overheads, or resource conflicts. These very real
complications were left out to allow a focus on the
data flow pipeline with its execution scopes.

5 Example: Migrating Workload along Data
Streams

This section exemplifies the use of the formal model
by analyzing the effects of one of the techniques that
we propose. We will present a simple example that
serves to demonstrate the features of the model and
its role in analyzing new execution techniques. It is
important to keep in mind that the techniques
discussed in Section 3, among them our example, do
not exhaust the possibilities that are presented as the
execution space defined in Section 4.4.

For our example, we consider a join with a
consecutive filter operation that is executed in
parallel on the sites of a given system. Because the
filter involves expensive computations, the combined

14

operation is CPU bound on all the sites. Formally, p∈
SiteResTypes being the CPU, j and f being the
algorithms executing the join and the filter :

 p = Maxrt ∈ SiteResTypes (RU([j,f],rt) / BW(rtx))

for all x ∈ Sites. The fraction that is maximized,
resource usage over bandwidth, is the execution cost
for the operation on a specific resource, relative to the
processed amount of data.

When balancing the workload across the sites of the
system, the optimizer can only attempt to balance the
utilization times, minimizing the execution time of
the whole system. Balancing can only be optimal for a
single resource, as in our case the bottleneck resource p.
The fraction of the overall data that should be processed on
a site x is BW(px) / ∑y ∈ Sites BW(py).

The resulting workloads are imbalanced with respect to
other resources that are distributed in different proportions
across the sites. Consider sites that are active disks. The
bandwidths of their processors will be much weaker in
proportion to their other resources than that of server sites.
Assume that the processor of an active disk xa is ten times
slower than the processor on a server xs, while their disk
I/O is similar, i.e., BW(pxa)=0.1*BW(pxs) and BW(dxa

)=BW(dxs). This implies that the utilization of the active

disk is at most a tenth of that of the server’s disk:

BW(pxa)/∑ y∈ Sites BW(py) * RU([j,f],d)/BW(dxa) =

0.1*BW(pxs)/∑ y∈ Sites BW(py)* RU([j,f],d)/BW(dxs)

Consequently, the active disks main resource, dxs , is
utilized for less than 10% of the execution, because
workload balancing can only account for a single
‘weakest’ resource, pxs in our case.

Clearly, other, more adaptive techniques are needed.
We would like to move processor intensive tasks
away from the active disks, relieving their CPU
bottleneck. As a result, the amount of data processed
on the disk could be increased, reducing overall
execution time. We can achieve this goal using the
task migration technique. Consider the traditional
execution ex∈ Exec of the query, i≤ Stages being the
pipeline stage and x,y ∈ Sites arbitrary:

ex(Incomingi ,x, y) = ex(Outgoingi ,x, y) = []

ex(Mergedi, x) = [j, f]

ex(Mergingi, x) = union ex(Splittingi, x) = partition

(union forms the union of its inputs; partition10 splits its
input in preparation for the join in the next stage)

As a first step, we realize that the filter does not need to be
executed on the partition as a whole. It can also be applied
on its fragments, before sending them to other sites11. This
movement from the Mergedi phase to the Outgoingi phase

does not change the overall costs, as long as the sum of the
resizing factors of partition is 1:

∑y∈ Sites RF(partition,y)=1.0. This reflects the fact that the

overall amount of data is the same before and after the
partitioning.

As a second step, we realize that the data processed in
(Outgoingi, x, y) are the same as in (Incomingi+1, y, x)

because these phases are the two ends of the same data
stream. This allows us to delay the application of f to the
data of the stream until after the shipping of the data:

ex(Outgoingi ,x, y) = [] and
ex(Incomingi+1 ,y, x) = [f]

This affects the resource usage on x, y, and on the
communication resources. The latter are affected
because the selectivity of the filter is lost on the
shipped data: DD(Incomingi , y, x) = DD(Outgoingi

,x, y), instead of DD(Incomingi , y, x) = RF(f) *
DD(Outgoingi ,x, y). The table in Figure 8 presents
the change in costs per resource as a consequence of
delaying f between x and y (ex’ is the modified
execution). The effect on communication resources is
additional to the other effects.

 Cost(ex’, r) - Cost(ex, r)

r ∈ ResOfSite(x)
- RU(f, ResType(r)) *
 DD(Outgoingi , x, y) / BW(r)

r ∈ ResOfSite(y)
+ RU(f, ResType(r)) *
 DD(Outgoingi , x, y) / BW(r)

r ∈ SharedRes + 0

additionally,
if r ∈ ComRes

+ DD(Outgoingi , x, y) * (1-RF(a))

Figure 8: Effects of Migrating the Operation

10 We simplify by not costing these operations.
11 Certainly this will involve overheads in terms of the separate,

additional processing phase. For now, we ignore these
overheads and leave their exploration to future work with actual
prototype systems.

15

Site x is relieved of exactly the specific resource
usage of the filter algorithm, which is instead added
to site y. The effect is different, though, since the
bandwidths of the resources on both sites are
different. The costs are in inverse proportion to the
resources’ bandwidths. Moving CPU load from a site
with slow CPU to a site with strong CPU will add less
cost to the latter than it removed from the former. The
effect on shipping the data corresponds to the amount
by which the data would have been reduced.

If we delay processing on all data streams, the filter is
simply applied immediately before the next join.
This, as delaying it on none of the streams,
corresponds to a traditional execution. Migrating the
filter task allows us an individual choice for each data
stream between the source and the target site. For n =

|Sites|, there are n2 independent choices and 2(n2)
combinations of such. Searching for (near-)optimal
executions among these possibilities is future work.

Returning to the example, the techniques can be used
to relieve the active disks of the CPU workload that
comes with the filter operation. On any data stream
connecting an active disk and a server site, the filter
will be delayed to the server process. This reduces the
usage on the disks’ bottleneck resource relative to its
other resources. As a consequence, more data can be
processed on the site within the same amount of time.
The additional workload can be taken from the
servers which received additional CPU workload. The
benefit of this corresponds to the ratio of disk versus
server CPU bandwidth. Combining the effects from
Figure 8 with the assumption that the disk’s CPU
bandwidth is a tenth of the server’s, we get:

RU(f, r) * DD(Outgoingi , x, y) / BW(rd) =

RU(f, r) * DD(Outgoingi , x, y) / (0.1*BW(rs)) =

10 * RU(f, r) * DD(Outgoingi , x, y) / BW(rs)

This means that moving the tasks to the server only
adds a tenth of the utilization time to the server
compared to what was gained on the disks. The
migrating of tasks is complemented by a rebalancing
of workload in the reverse direction. The migration
adds utilization time to one resource while removing
it from another in a favorable proportion. Workloads
have to be rebalanced to take this into account.

This concludes our example.

6 Related Work
Traditional approaches to query processing in parallel
shared-nothing database systems assume a more or
less uniform architectural model [DG90, DG92,
C+88, D+90, GD93]. Accordingly, they do not
explicitly model non-uniform resources, as we do.
The same resources are available on each component
of the system12. We described, the underlying
approach – the classical data-flow paradigm – in
Section 2. In the following, we survey existing
systems in their relation to our approach. In a later
subsection we discuss related work that focuses on
specific aspects of query processing.

6.1 Existing Parallel Systems
Heterogeneous resource environments were not a
focus in either of the discussed database systems. We
will thus simply try to outline the specific techniques
that each system contributed to what we termed the
traditional approach. River, the last system in this
section is a generic parallel processing environment,
not specialized for relational query processing. We
include it because it discusses dynamic fluctuations
of resource availability, a topic closely related to the
static heterogeneities that are central to this paper.

6.1.1 Gamma

Gamma was built between 1984 and 1989 at the
University of Wisconsin, Madison, as a highly
parallel database prototype [D+90]. Architecturally,
Gamma is based on a shared-nothing architecture
[S86]. It followed the much earlier DIRECT project
[D79], which used shared memory and centralized
control and thus had very limited scalability [D+90].

Gamma’s key concepts are horizontally partitioned
relations, hash-based parallel algorithms and dataflow
scheduling. Horizontal partitioning, also known as
declustering, targets the leverage of the accumulated
I/O bandwidth. Gamma allows round robin, hashed
and range partitioning. Round robin13 across all nodes
is the standard for query results that are relations14.

12 The join sites of the simple hash join [SD89] do not need to

have disks. An early version of Gamma [D+90] integrates disk-
free sites as a special case.

13 Round Robin was characterized as a strategy that minimizes
locality and such skew, as compared to value based partitioning
schemes [C+88].

14 Dewitt et al. saw this as a major design flaw in retrospect. See
Bubba’s heat of a relation as a better alternative [C+88].

16

Clustered and non-clustered indexes are allowed
orthogonal to the employed partitioning scheme.
The query scheduler uses the partitioning information
in the query plan to distribute operators on a subset of
the sites, for example based on the intersection of a
predicate and the partition ranges. The generation and
execution of plans follows traditional relational
techniques [SA80,A+76]. Left-deep trees with
pipelining of not more than two joins are used.

On the relevant subset of sites, operators are executed
locally on the data received from other sites. Their
output is partitioned through different types of split
tables [D+86] that relate the tuples to their outgoing
streams.

A centralized scheduler that coordinates the execution
of a query initiates processes for each operator on
each site through local dispatchers. Build inputs to a
join are scheduled concurrently with the join build
phase, but complete before the probe inputs are
initiated to run concurrently with the join probe
phase. Consuming operations later in the pipeline are
always initiated before earlier, producing operations.
Scans and selects are operations without input
streams while store operations have no output
streams.

Gamma allows simple scans and selects, both
executed at the relevant subset of sites where the
relation is initially located. Predicates are executed as
compiled native code.

Equijoins are by default executed as hybrid hash joins
[SD89], which involves two split tables: The
partitioning split table separates the joined relations
into logical buckets that each fit into the aggregate
memory of the components. The joining split table is
used to separate the tuples of each bucket into the
partitions that will be joined on the components.

Aggregate functions are computed in two phases:
Each component computes local, partial results. Then
the tuples are repartitioned on the ‘group by’ column.
The results for each group can then be computed
locally on its site.

Gamma uses chained declustering [HD90] as a
replication scheme to cope with site failures. See
[B81,CK89] for alternatives and improvements to
chained declustering.

[D+92] treats the problem of workload skew with
Gamma as a test bed. Hash-based partitioning leads to

load imbalances during further processing (for the
effects on Gamma’s join algorithms, see [SD89]).
Weighted range partitioning with replication of
subsets of repeated values is proposed. Adequate
ranges are determined by sampling the involved data.
Virtual processor scheduling (similar to the ‘data
cells’ of [HL90]) produces many small partitions
instead of a single large one per processor. These
partitions can be migrated between components to
mitigate join product skew.

6.1.2 Bubba
[C+88] sets out to find some compromise between
minimizing the amount of total work and optimizing
the load balance across the sites. Data partitioning
and parallel execution increase the total work by
introducing overheads. But avoiding these overheads
leads to underutilization of sites due to imbalanced
execution on one or a few sites. Analogously, our
approach tries to increase the balancing of processing
across the individual resources and eventually a
compromise between the introduced overheads and
the gained balance has to be found. For Bubba, the
benefit of minimizing overall work is the availability
of processing capabilities for other queries,
independent, or dependent parallelism15. In contrast to
Bubba’s limited declustering, Gamma and Teradata
used full declustering. This was motivated by their
focus on single transaction performance, which
disregarded multi-query parallelism. Earlier work
[LKB87] that did consider multi transaction
workloads recommended full declustering for all but
very high numbers of parallel transactions. [C+88]
finds that less than full declustering outperforms full
and no declustering.

Bubba’s shared nothing architecture is quite similar
to that of GAMMA [B+90, D+90]. The main
difference is Bubba’s focus on optimal data
placement while Gamma simply relies on full
declustering. [C+88] suggest, but does not employ, a
composite workload that consists of weighted
workloads for the different resources, like CPU and
disk. This already recognizes the problem that we are
treating in the more critical context of non-uniform
resources. Partitioning the workload according to the
locality of usage of a specific resource could be seen

15 Our approach assumes, for the time being, that other forms of

parallelism cannot make good use of the isolated underutilized
resources that our techniques are designed to consume.

17

as a limited alternative to our approach: Data which is
accessed by transactions of a specific resource usage
is placed on sites with availability of the
corresponding resources.

6.1.3 Paradise
Paradise was started in 1993 to combine object-
oriented techniques from the EXODUS project
[C+86] and parallelization techniques from the
GAMMA project [D+90]. The application was the
emerging area of Geographic Information Systems
(GIS) with their large data volumes and complex data
types. We focus here on the parallel aspects,
described in [P+97].

Paradise focuses on new parallelization techniques
especially for geo-spatial workloads, like spatial
partitioning, parallelism for individual objects, and
complex aggregates. Underlying are the parallel
techniques of GAMMA.

Operators communicate via streams, following the
push model from the leaves of a query plan up to the
root. Streams allow flow-control to regulate the
processing speed of different operators. Split streams
are used to partition data sets for parallel processing.
The different stream types are transparent to the
operators.

Large objects are accessed following the pull model:
A separate operator on the source node is started
which serves selective pull requests from the
consumer node. This avoids the shipment of
unnecessary data, but it introduces overheads for the
separate operator, and it generates random disk seeks.

Another project involving parallel geo-spatial data
processing was MONET [BQ96].

6.1.4 Volcano
Volcano [G90,GD93,G94] integrates the parallelism
into extensible query processing systems. Because
new data types, functionality, and relational operators
should be added in a simple manner, parallelism has
to be transparent to these extensions. Another goal of
Volcano is architectural independence, which also
prohibits parallelism to be pervasive in the design of
the system. Volcano’s answer is to focus all
mechanisms that are necessary to introduce different
forms of parallelism into one relational operator,
called the ‘exchange’ operator.

Earlier systems, like Gamma and Bubba, failed to
completely separate parallelism issues from the

implementation of the parallelized operators [G90].
Volcano proposes an operator model that introduces
parallelism into query plans in the form of the
‘exchange’ operator. This operator separates the flow
of control in a pipeline by introducing two processes
instead of one. This allows concurrency between the
two parts of the pipeline, before and after the
exchange operator. The exchange operator can also
be used to partition its input data set and run
independent versions of another operator on each of
the fragments, introducing intra-operator parallelism.
In a third variation, the exchange operator is used to
allow independent (bushy) parallelism: Each of the
independently executed subplans is extended by an
exchange operator that runs it in a separate process.

The underlying architectures of the Volcano system
are shared memory and shared disk architectures, as
well as hybrids. In contrast to Gamma and Bubba,
shared nothing architectures are not employed.
Nevertheless, the ideas embodied by Volcano –
separation of parallelism and functionality,
uniformity of operator interfaces and extensible
optimizer design – seem to apply as well to shared
nothing systems.

6.1.5 River
River [A+99,A99] introduces techniques that deal
with performance skew – dynamic fluctuations in the
availability of resources. Due to various reasons,
components in a parallel system develop performance
failures, which can reduce the available bandwidth of
some of their resources dramatically. River introduces
two techniques that make systems robust against
these failures: Graduated declustering and distributed
queues.

Chained declustering [HD90,B81,CK89] is a
replication scheme that ensures functionality in the
case of component failures. Graduated declustering
adapts this technique to deal gracefully with
performance failures. While this alleviates
performance skew on the producer site, distributed
queues adapt the data flow for skew on the consumer
site. Both techniques are based on adapting the flow
between the different components of the system,
depending on their actual processing rates.

Flow control does not easily apply to parallel join
processing because data is partitioned semantically.
Depending on the value of the joined attribute, data is
placed on a specific site. Adapting this partitioning

18

dynamically was explored in the context of skew
handling (see Section Error! Reference source not
found.). River was used to implement query
processing by using its techniques for non-join
operations, like scans and writes [A99].

River’s flow control dynamically changes the
workload balancing between different components.
The techniques that we propose are based on static
information and actually change the resource usage,
not only the amount of processed data per site.

6.2 Other Related Work
This section discusses contributions to specific
problems in the area of parallel processing in their
relation to our work.

6.2.1 Algorithms
Alternative algorithms implementing common
relational operations have been explored in [SD89].
Performance is examined under certain resource
constraints, like insufficient memory, and robustness
with respect to performance skew.

[SN95] proposes parallel aggregation algorithms
where aggregation and repartitioning are intermixed.
The repartitioning algorithm repartitions the raw data
and computes the aggregates at the target nodes. The
two-phase algorithm first computes a local aggregate
at the source nodes, then repartitions the locally
aggregated data and finally merges local aggregates at
the target nodes. The two-phase algorithm trades
increased processing on the source node for reduced
network traffic. Our approach would suggest to
precompute aggregates only on sites with available
resources, analogously to join preparation (see
Section 3.2.2).

6.2.2 Workload Balancing
[RM95] examines how workloads should be balanced
dynamically in a multi-query environment. The
degree of parallelism – the number of nodes – and the
placement of the computation – the choice of nodes –
both depend on the existing workload of already
running queries. Different resources, CPU, disk or
memory, suggest different tradeoffs. Differently than
this paper we focused on the more fundamental
problem of balancing the execution of a single query
in a setting with heterogeneous resources.

Very influential work on data placement based on the
‘heat’ of the data – its access frequency – was
presented as part of the Bubba system [C+88] (see

Section 6.1.2). The results suggest that relations
should be spread across part of the available sites,
with the degree of declustering depending on their
heat. Other systems [T87,T88,D+90] find near-linear
scaleup for declustering relations across as many sites
as possible. This seeming discrepancy of results,
between partial and full declustering is based on
different workloads. While Bubba examined a
workload consisting of many different transactions,
the other studies focused on the idealized situation of
processing a single query. As explained in Section
6.1.2, the benefits of partial declustering are only
realized through pipeline, independent, or multi-query
parallelism.

Most systems use replication in one or another form.
Gamma uses chained declustering [D+90,HD90],
Tandem mirrored disks [B81], and Teradata
interleaved declustering [CK89]. River [A+99]
introduces graduated declustering as a performance
robust improvement of chained declustering. River
proposes distributed queues as a flow control that
allows the dynamic placement of data according to
the availability of the data consumers. Unfortunately,
this does not apply to imbalances during value-based
partitioning, a problem that is called redistribution
skew [WDJ91].

In an ideal uniform system, optimal performance is
achieved with a perfectly balanced load (i.e., identical
amount of data on each processing node) [HL90]. In a
slightly different context, [BVW96] shows that, in an
identical architecture, minimal response time is
obtained when the loads of all servers are equal.

Among our assumptions is the uniform distribution of
data with respect to the values used in hash
partitioning. Without this assumption, data skew
poses a major problem for workload balancing. Hash
functions with low skew are discussed in [CW79].
[WDJ91] describes and distinguishes redistribution
skew from join product skew. Improved hash
functions only improve the former, and they cannot
deal with skew due to duplicate values [D+92].
[HL90] proposes partition tuning by reassigning data
cells from overflow to underflow partitions
dynamically. [HL91] discusses specializations of join
algorithms based on partition tuning. [D+92]
proposes different algorithms for different degrees of
skew, measured on a small sample of the data.
[MD97] simulates different strategies and shows how

19

changing technology trends change the involved
performance tradeoffs.

Dynamic scheduling and load balancing techniques
have been developed to face the problems introduced
by skewed data distributions, or by the concurrent
execution of multiple queries [HL91,MD93, RM95].
These techniques either propose new join algorithms
(repartitioning data to balance the load) or adjust the
number of processing nodes and select the actual
processing nodes based on CPU and memory
utilization. The techniques we propose for trading
bandwidth utilization across the various components
of a system can be seen as a complement to these
load-balancing techniques.

6.2.3 Active Storage
Existing work on active storage addresses general
architectural issues [G+98,UAS98,KPH98,HM98],
studies programming models [AUS98], and evaluates
the benefits for specific applications, like data mining
[RGF98]. So far, relational query processing has not
been a focus in this new environment.

Work on storage systems [G+99,LT96] and on file
systems [G+97,TML97] that integrate active storage,
suggests that leveraging processing capabilities close
to the data allows large performance benefits. Our
expectation is, that leveraging these capabilities for
higher-lever applications like relational query
processing will have even higher benefits.

7 Conclusion
We identified the problem that heterogeneous
resources pose for classical parallel query processing
techniques. Heterogeneous resources, as present on
active storage and active networks, extend the
capabilities of a system in a non-uniform manner.
Using traditional intra-operator parallelism to
distribute operations uniformly across the available
components will lead to severe underutilization of the
resources of the new components.

As an alternative we propose to extend the classical
data-flow paradigm by recognizing, splits, merges,
incoming and outgoing data streams as available
execution scopes for data processing. This allows us
to make independent choices for each data stream
between a pair of sites. The execution of specific
algorithm can be migrated towards sites which have
the required resources available.

We formalized the proposed extension to the classical
paradigm by defining the space of possible executions
of given algorithms on a given architecture. Our cost
model allows us to estimate the performance gains of
the extended space over the subsumed classical
execution space.

Our future work will examine the actual
underutilization in a non-uniform prototype system,
the performance gains possible through our
techniques, and the introduced overheads.
Optimization of declarative queries for parallel
execution in this extended paradigm will be an
interesting challenge. Finally, the automatic
administration of systems consisting of heterogeneous
hardware platforms, the declustering of relations and
the choice of a replication scheme will be a very
relevant contribution.

Bibliography

[A+76] M.Astrahan, et al.: System R: A Relational
Approach to Database Management. ACM
Transactions on Database Systems, Vol.1, No. 2,
June 1976, pp.97-137.

[A+99] Remzi H. Arpaci-Dusseau, Eric Anderson,
Noah Treuhaft, David E. Culler, Joseph M.
Hellerstein, David A. Patterson, Katherine A.
Yelick: Cluster I/O with River: Making the Fast
Case Common. IOPADS 1999: 10-22

[A99] Remzi H. Arpaci-Dusseau: Performance
Availability for Networks of Workstations. PhD
Thesis, Univ. of California at Berkeley 1999.

[AUS98] Anurag Acharya, Mustafa Uysal, Joel H.
Saltz: Active Disks: Programming Model,
Algorithms and Evaluation. ASPLOS 1998: 81-91

[B+90] Haran Boral, William Alexander, Larry
Clay, George P. Copeland, Scott Danforth, Michael
J. Franklin, Brian E. Hart, Marc Smith, Patrick
Valduriez: Prototyping Bubba, A Highly Parallel
Database System. TKDE 2(1): 4-24. 1990.

[B81] Andrea J. Borr: Transaction Monitoring in
ENCOMPASS: Reliable Distributed Transaction
Processing. VLDB 1981: 155-165

[BQ96] Peter A. Boncz, Wilko Quak, Martin L.
Kersten: Monet And Its Geographic Extensions: A

20

Novel Approach to High Performance GIS
Processing. EDBT 1996: 147-166

[BVW96] Yuri Breitbart, Radek Vingralek, Gerhard
Weikum: Load Control in Scalable Distributed File
Structures. Distributed and Parallel Databases 4(4):
319-354 (1996)

[C+86] Michael J. Carey, David J. DeWitt, Daniel
Frank, Goetz Graefe, M. Muralikrishna, Joel E.
Richardson, Eugene J. Shekita: The Architecture of
the EXODUS Extensible DBMS. OODBS 1986:
52-65

[C+88] George P. Copeland, William Alexander,
Ellen E. Boughter, Tom W. Keller: Data Placement
In Bubba. SIGMOD Conference 1988: 99-108

[CK89] George P. Copeland, Tom Keller: A
Comparison Of High-Availability Media Recovery
Techniques. SIGMOD Conference 1989: 98-109

[CW79] J. Lawrence Carter, Mark N. Wegman:
Universal Classes of Hash Functions (Extended
Abstract). STOC 1977: 106-112

[D79] David J. DeWitt: Query Execution in
DIRECT. SIGMOD Conference 1979: 13-22

[D+86] David J. DeWitt, Robert H. Gerber, Goetz
Graefe, Michael L. Heytens, Krishna B. Kumar, M.
Muralikrishna: GAMMA - A High Performance
Dataflow Database Machine. VLDB 1986: 228-237

[D+90] David J. DeWitt, Shahram
Ghandeharizadeh, Donovan A. Schneider, Allan
Bricker, Hui-I Hsiao, Rick Rasmussen: The Gamma
Database Machine Project. TKDE 2(1): 44-62
(1990).

[D+92] David J. DeWitt, Jeffrey F. Naughton,
Donovan A. Schneider, S. Seshadri: Practical Skew
Handling in Parallel Joins. VLDB 1992: 27-40

[DG90] David J. DeWitt, Jim Gray: Parallel
Database Systems: The Future of Database
Processing or a Passing Fad? SIGMOD Record
19(4): 104-112 (1990)

[DG92] David J. DeWitt, Jim Gray: Parallel
Database Systems: The Future of High Performance
Database Systems. CACM 35(6): 85-98 (1992)

[G90] Goetz Graefe: Encapsulation of Parallelism
in the Volcano Query Processing System. SIGMOD
Conference 1990: 102-111

[G94] Goetz Graefe: Volcano - An Extensible and
Parallel Query Evaluation System. TKDE 6(1):
120-135 (1994)

[G+97] Garth A. Gibson, David Nagle, Khalil
Amiri, Fay W. Chang, Eugene M. Feinberg,
Howard Gobioff, Chen Lee, Berend Ozceri, Erik
Riedel, David Rochberg, Jim Zelenka: File Server
Scaling with Network-Attached Secure Disks.
SIGMETRICS 1997: 272-284

[G+98] Garth A. Gibson, David Nagle, Khalil
Amiri, Jeff Butler, Fay W. Chang, Howard Gobioff,
Charles Hardin, Erik Riedel, David Rochberg, Jim
Zelenka: A Cost-Effective, High-Bandwidth
Storage Architecture. ASPLOS 1998: 92-103

[G+99] NASD Scalable Storage Systems.
USENIX99, Extreme Linux Workshop, Monterey,
CA, June 1999.

[GD93] Goetz Graefe, Diane L. Davison:
Encapsulation of Parallelism and Architecture-
Independence in Extensible Database Query
Execution. TSE 19(8): 749-764 (1993)

[HM98] Mark Heinrich and Rajit Manohar. Active
Fabric: An Architecture for Programmable,
Scalable I/O Subsystems. Cornell Computer
Systems Lab Technical Report CSL-TR-1998-990,
October 1998

[HD90] Hui-I Hsiao, David J. DeWitt: Chained
Declustering: A New Availability Strategy for
Multiprocessor Database Machines. ICDE 1990:
456-465

[HL90] Kien A. Hua, Chiang Lee: An Adaptive Data
Placement Scheme for Parallel Database Computer
Systems. VLDB 1990: 493-506

[HL91] Kien A. Hua, Chiang Lee: Handling Data
Skew in Multiprocessor Database Computers Using
Partition Tuning. VLDB 1991: 525-535

[KPH98] Kimberly Keeton, David A. Patterson,
Joseph M. Hellerstein: A Case for Intelligent Disks
(IDISKs). SIGMOD Record 27(3): 42-52 (1998)

21

[LKB87] Miron Livny, Setrag Khoshafian, Haran
Boral: Multi-Disk Management Algorithms.
SIGMETRICS 1987: 69-77

[LT96] Edward K. Lee, Chandramohan A.
Thekkath: Petal: Distributed Virtual Disks.
ASPLOS 1996: 84-92.

[MD97] Manish Mehta, David J. DeWitt: Data
Placement in Shared-Nothing Parallel Database
Systems. VLDB Journal 6(1): 53-72 (1997)

[MD93] Manish Mehta, David J. DeWitt: Dynamic
Memory Allocation for Multiple-Query Workloads.
VLDB 1993: 354-367

[P+97] Jignesh M. Patel, Jie-Bing Yu, Navin Kabra,
Kristin Tufte, Biswadeep Nag, Josef Burger, Nancy
E. Hall, Karthikeyan Ramasamy, Roger Lueder,
Curt Ellman, Jim Kupsch, Shelly Guo, David J.
DeWitt, Jeffrey F. Naughton: Building a Scaleable
Geo-Spatial DBMS: Technology, Implementation,
and Evaluation. SIGMOD Conference 1997: 336-
347

[RGF98] Erik Riedel, Garth A. Gibson, Christos
Faloutsos: Active Storage for Large-Scale Data
Mining and Multimedia. VLDB 1998

[RM95] Erhard Rahm, Robert Marek: Dynamic
Multi-Resource Load Balancing in Parallel
Database Systems. VLDB 1995: 395-406

[S86] Michael Stonebraker: The Case for Shared
Nothing. Database Engineering Bulletin 9(1): 4-9,
1986.

[SA80] Patricia G. Selinger, Michel E. Adiba:
Access Path Selection in Distributed Database

Management System. ACM SIGMOD 1979, p.23-
34, Boston, MA, USA, June 1979.

[SD89] Donovan A. Schneider, David J. DeWitt: A
Performance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Multiprocessor
Environment. SIGMOD Conference 1989: 110-121

[SN95] Ambuj Shatdal, Jeffrey F. Naughton:
Adaptive Parallel Aggregation Algorithms.
SIGMOD Conference 1995: 104-114

[T87] Tandem Database Group: NonStop SQL: A
Distributed, High-Performance, High-Availability
Implementation of SQL. HPTS 1987: 60-104

[T88] The Tandem Performance Group: A
Benchmark of NonStop SQL on the Debit Credit
Transaction (Invited Paper). SIGMOD Conference
1988: 337-341.

[TML97] Chandramohan A. Thekkath, Timothy
Mann, Edward K. Lee: Frangipani: A Scalable
Distributed File System. SOSP 1997: 224-237

[UAS98] M.Uysal, A.Acharya, J.Saltz: An
Evaluation of Architectural Alternatives for
Rapidly growing Datasets: Active Disks, Clusters,
SMPs. Technical Report TRCS98-27. University of
California at Santa Barbara. 1998.

[WDJ91] Christopher B. Walton, Alfred G. Dale,
Roy M. Jenevein: A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins.
VLDB 1991: 537-548

