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ABSTRACT 

1In emerging systems, CPUs and memory are 
integrated into active disks, controllers, and network 
interconnects. Query processing on these new 
multiprocessor systems must consider the 
heterogeneity of resources among the components. 
This leads to the more general problem of how to deal 
with performance heterogeneity in parallel database 
systems. 

We study database query processing techniques that 
increase the leverage of heterogeneous resources. We 
show that the traditional algorithms used in shared-
nothing parallel databases fail to utilize non-uniform 
resources. Uniform resource usage across non-
uniform components leads to resource bottlenecks. 

We describe a class of new execution techniques that 
balance the usage of system resources using non-
uniform intra-operator parallelism. We show that 
these techniques improve performance on 
heterogeneous architectures by allowing trade-offs 
between the various resources. Traditional techniques 
are subsumed as a special case for symmetric 
architectures. 

We show a formal model that maps out the new 
execution space of alternative processing techniques. 
A simplified cost model allows analytic performance 
evaluation of the alternative techniques. The 
proposed new execution paradigm is an extension of 
the classical dataflow paradigm. 

1 Introduction 
This section motivates and explains the problems that 
arise for database query processing in environments 
with active components. We describe the 
technological trends that motivate this paper and how 
these new technologies should be modeled from the 
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viewpoint of database query processing. We point out 
the problem of traditional processing techniques and 
describe our contribution to the solution.  

1.1 Motivations 
The performance demands on database systems grow 
with increasing data volumes and processing 
workloads. The standard approach to building 
scalable database systems uses off-the-shelf 
computing components, attached to a fast 
interconnect, with “shared-nothing” parallel query 
processing techniques [DG92,D+90,B+90,S86]. But 
the hardware architectures underlying this approach 
are changing: Due to continued cost and size 
reduction of CPUs and memory, processing power is 
becoming a cheap commodity available on every 
system component, like disk drives, storage 
controllers and network interconnects. The emerging 
class of system architectures consisting of such 
“active” components, which each contribute their 
processing power, holds great promise for highly 
scalable systems [G+97,G+98,KPH98,RGF98, 
AUS98,UAS98,HM98]. 

As an environment for query processing, such 
architectures differ from traditional parallel 
architectures in the heterogeneity of the involved 
resources. Processing is not confined to the servers – 
it can happen on all active components of the system, 
e.g., disks, storage controllers and clients. The 
utilized platforms vary widely in terms of  processing 
power, disk I/O rate, and communication bandwidth. 

The next subsection shows how to model systems 
with active components from the viewpoint of 
relational database query processing. 

1.2 Modeling the New Environments  
Our goal is to find an abstract model for the new 
architectures that reflects all aspects that are relevant 
for query processing. This will allow us to recognize 
the shortcomings of traditional parallel processing 
techniques in these new environments.  
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Because of our focus on the heterogeneity of 
resources across different components, each 
individual resource will be modeled with its specific 
bandwidth. Each site consists of several such 
resources, and all sites are connected by a shared 
interconnect, which also corresponds to a resource. 
Figure 1 shows this structure. In this example, a site 
consists of the resources processor, disk and 
networking. The networking bandwidth corresponds 
to the site’s specific bandwidth limitations for inter-
site communication, while the interconnect represents 
the bandwidth limitations on the accumulated 
communication between all sites.  
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Figure 1: Resource Model 

This bandwidth-centric model can represent a broad 
class of real-life systems. As examples, consider 
shared-nothing parallel systems, systems with active 
disks and systems with network attached storage. 
Figure 2 shows instantiations for these systems in our 
resource model.  

What distinguishes the new architectures that we 
want to discuss from classical ones? Our concern is 
that the resources are not uniform across the sites of 
the system: Uniformity means that the different 
resources are present in the same proportion on each 
site. Figure 2a) shows an example with uniform 
resources. Figure 2b) and 2c) are examples for non-
uniform resources: In both cases the server has 
relatively more processing power, while other sites 
are stronger in either their networking or the disk 
bandwidth.  

With uniform resources, different sites can be fully 
characterized by simply giving their relative capacity 
– they are not distinguished by the proportion in 
which their resources are available. But the new 
architectures that we consider here do not allow this 
abstraction, the model has to represent each resource 
individually. The next section visualizes the problems 
of traditional techniques in this new model.  
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(a) A shared-nothing cluster consists of symmetric processing units each 
with disks and network access. A high bandwidth interconnect serves as a 
connection between the components. 
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(b) This active disk system has two active disks, each with a moderately 
powerful processing units. An older legacy disk, with little processing 
power, is also integrated. 

(c) This system consists of a server, two clusters of disks with processing 
power on their controllers, and an active disk that is directly attached to the 
network.  

Figure 2: Example Architectures 

1.3 Problems of Existing Techniques 
In the traditional approach, the primary way to 
distribute workload across the sites of a parallel 
system is the use of intra-operator parallelism 
[D+86]. A relational operation is executed identically 
on different subsets of the data that are located on the 
different sites. The sizes of the different subsets are 
balanced so that the overall execution time is 
minimized. Figure 3 shows such a balanced 
execution. No site and no single resource is 
dominating the execution time as a bottleneck.  
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Figure 3: Classical Parallel Execution on the System 
of Figure 2a) 

The existing techniques assume that the resources are 
distributed uniformly across the sites2. This can be 
seen from the uniform resource usage of these 
techniques: On each site the same operation is 
executed, using each site’s individual resources in the 
same proportion.  

But for non-uniform resources, balancing the local 
amounts of data on the sites does not prevent 
individual resources from being overutilized – 
forming a bottleneck, while others are underutilized.  

Figure 4 shows an example: While the resource usage 
of the operation is near optimal for the server, it leads 
to unbalanced use of the resources on the other 
components – even after adjusting the workloads to 
have balanced execution times across the sites..  
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Figure 4: Traditional Execution on the System of 
Figure 2b) 

The problem is that we can only vary the workload 
per site, not per resource. To leverage the 
heterogeneous resources it would be necessary to 
adapt for each site not only the workload size, but 
also the processing of that workload. The resource 
usage will be adapted to each site’s specific resource 
availability only after adapting the processing 
techniques for each site. This paper presents an 
execution paradigm that allows such adaptivity. 
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1.4 Contribution 
Based on the realization that the existing processing 
techniques fail to leverage heterogeneous resources, 
we propose an extension to the classical data-flow 
paradigm. Our extension allows the adaptation of the 
workload processing to each site’s specific resource 
situation. We present techniques that introduce 
tradeoffs between the individual resources in the 
extended data-flow paradigm. These techniques 
demonstrate but do not exhaust the possibilities of the 
proposed extension to the paradigm. 

Our contribution is based on a formal execution 
model for pipelined operator execution. The goal of 
this model is to fully reflect the inherent flexibility of 
the data-flow paradigm, thus allowing adaptation of 
the execution to heterogeneous resource situations. 
The benefits of the model are the description of the 
execution space and the costing of this space. The 
execution space is the set of all possible ways in 
which to execute a given pipeline of operators on a 
given architecture. It shows all possibilities to adapt 
the resource usage of execution to the given resource 
availability of the system. The costing of these 
possibilities allows us to analyze the expected 
performance benefits. 

Our techniques focus on intra-operator parallelism 
for two reasons:  

1. The benefits of pipeline and independent 
parallelism are very limited compared to intra-
operator parallelism. The degree of parallelism 
achieved is  limited by the length of the pipeline 
and the number of independently parallel 
subplans. 

2. For heterogeneous resources, the adaptation of 
intra-operator parallelism appears to be the main 
challenge, while the other forms of parallelism 
adapt easier3. 

Our contribution is the first step towards parallel 
database systems that leverage the heterogeneous 
resources available on active system components. We 
confined ourselves to the adaptation of operator 
execution, and left independent and pipeline 
parallelism for future work. Facing the complex 
execution space that we propose, resource-adaptive 
                                                      
3 Work has been done on the effects of inter-query parallelism 
[C+88,RM95] 
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query optimization will be challenging. We focused 
in this work exclusively on the exploration of the 
execution space, which in our view forms the 
necessary base for future work on optimization. 

2 The Traditional Approach 
This section explains the problems that non-uniform 
resources pose to traditional intra-operator 
parallelism. The traditional approach attempts to 
process data uniformly, applying the same algorithms 
to the data on different sites in parallel 
[D+90,C+88,DG90,GD93]. For heterogeneous 
resources, this results in bottlenecks: Certain 
resources are overloaded and slow down overall 
execution, while other resources are idle. The 
solution to this problem is presented in Section 2, 
where we describe how the idle resources can be used 
to relieve the overloaded ones. 

Subsection 2.1 establishes a basic understanding of 
the traditional data flow paradigm for intra-operator 
parallelism. Subsection 2.2 shows this paradigm’s 
limited adaptivity to the underlying resource 
situation, and points out the resulting bottleneck 
problem. 

2.1 Data Flow  
In the classical data flow approach [DG90,DG92], 
parallelism is achieved by executing the same 
operation in parallel on multiple sites. On each site, 
only the locally present data, called the site’s 
partition, is processed.  

Some operations, like joins or aggregates, cannot be 
correctly executed on arbitrary subsets of the data. An 
equality join, for example, has to process all tuples 
that are equal on the join column together. Data that 
could possibly be combined by an operation have to 
be collocated in the same partition, that is, on the 
same site. 

For this reason, the partitions usually have to be 
changed between two such operations. In addition, 
the number and the sizes of the partitions might need 
readjustment [C+88,MD93,MD97,RM95]. This 
process of changing partitions is called 
repartitioning. It involves data streams between each 
pair of involved sites: Every site splits its existing 
partition according to the new partitioning, and sends 
each fragment to its new location. Every site receives 
such fragments from all other sites and merges them 
to form its new partition. 
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Figure 5: The Classical Data Flow Paradigm 

Figure 5 shows this data flow for a pipeline of three 
operations, with two interleaved repartitionings. The 
operations are SPJ operators, each consisting of a 
join, a selection, and a projection. It is assumed that 
the data are initially distributed so that tuples that 
might be joined in the first operation are collocated 
on one site. The two repartitionings will establish 
adequate distributions for the other two joins.  

Besides the collocation of related tuples, 
repartitionings allow the adjustment of the data 
volumes that are processed by each site. This is called 
workload balancing. The size of the partitions is 
optimal if the overall execution time is minimized4. 
This is the case if all sites need the same amount of 
time to process their workload. If certain sites would 
need more time than others, execution time could be 
reduced by distributing some of their workload 
among the idle sites. For example, Figure 4 shows the 
result of balancing the workload across the sites of 
the architecture in Figure 2b). Because of the better 
resources of the server, workload has been moved 
from the other sites to the server to achieve equal 
execution times on all sites and thus to minimize 
overall execution time.  

To determine the execution time of a site with respect 
to the given operation, only the resource that is 
utilized most matters. In our bandwidth-centric view, 
this bottleneck resource dominates the execution time 
and its bandwidth becomes the effective bandwidth of 
the site. Every site processes its workload with its 
effective bandwidth. The next subsection explains in 
how far this limits performance. 

                                                      
4 We ignore the issues of overheads for full declustering [C+88] 

as well as the effects of inter-query parallelism 
[C+88,RM95,MD93]. 
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2.2 The Limitations of Workload Balancing 
For non-uniform resources, traditional techniques will 
optimize utilization only insofar as no site will be 
underutilized entirely. Its bottleneck resource will 
always be utilized for the full execution time. Figure 
4 shows how all sites are busy for the same time, 
because each site’s bottleneck resources are utilized 
for that time. But other resources will be 
underutilized. 

In general, why would some resources of a site be 
underutilized, while others are fully utilized? In the 
traditional approach, the same algorithms are 
executed on each site, leading to the same resource 
usage on all sites. However, the resources available in 
environments with active components will be highly 
non-uniform – they are part of fundamentally 
different hardware components, like disks, controllers 
and interconnects. Adjustment of the partition size 
only leads to proportionally higher or lower usage of 
all resources on a site. The problem is that the 
proportion of available resources is different for each 
site. Thus, the mentioned local bottlenecks are 
inevitable. 

In the non-uniform case, our focus has to be on the 
underutilization of single resources not on that of 
whole sites. In Figure 4, the resource usage of the 
executed operation matches the available bandwidth 
of the resources only for the server. Every of its 
resource is fully utilized during the execution time. 
On the active disk sites, most of the resources are 
underutilized because these sites are simply very 
different from the server. The available and unused 
bandwidth of these resources should be leveraged to 
relieve the bottleneck resources and thus reduce the 
overall execution time.  

To achieve this, different processing needs to happen 
on sites with different resources. Sites that have 
strong CPUs, like servers, should do CPU intensive 
tasks, while sites with relatively more disk bandwidth 
should be used mainly on this resource. The classical 
approach is based on the idea that the same operation 
is executed on all sites5. As we have seen, workload 
adaptation does only avoid underutilized sites, not 
underutilized resources.  

                                                      
5 The simple adaptation of choosing different implementations for 

the same operation on different sites is limited by the fact that 
the operation mostly dictates the resource usage.  

On clusters of identical components, for which the 
classical approach was developed, the traditional 
approach can succeed in fully utilizing every 
available resource. But in active environments the 
available resources are a byproduct of a variety of 
necessary hardware components and thus are 
inevitably heterogeneous. New techniques are needed 
to leverage these newly available resources for 
scalable, faster query processing. 

3 New Processing Techniques 
Our goal is to use the available bandwidth on 
underutilized resources to reduce the usage on the 
bottleneck resources. We achieve this goal by 
migrating the processing of certain tasks between 
sites. These tasks have a specific resource usage, 
which is removed from one site and applied to 
another. In contrast to workload balancing, where 
data is migrated, the migration of processing itself 
leads to a change in the usage of the individual 
resources on the involved sites. Workload balancing 
only attacks the problem of site bottlenecks, while our 
techniques can resolve local bottlenecks on each site.  

We can migrate processing by realizing the full 
flexibility inherent in the data flow paradigm. The 
paradigm must be extended to maximize its 
flexibility, which allows adaptive query processing on 
heterogeneous resources. For that, we identify all 
scopes at which processing of subsets of the data is 
possible during the data flow and allow different 
choices of processing for each of these scopes. 

Subsection 3.1 describes our new execution 
framework as an extension of the classical data flow 
paradigm. Subsection 3.2 describes a collection of 
techniques that realize some of the tradeoffs possible 
in the new framework. Section 4 develops the 
contents of this section to a formal framework. 

3.1 New Execution Framework 
Consider the data flow scheme shown in Figure 6: It 
shows all opportunities to execute algorithms on the 
data. We speak of the execution scope of an 
algorithm, consisting of the place and the timing of 
the execution, and the set of processed data. We use 
the partitions and data streams between sites as 
available data sets. Places are the sites of the system 
and possible timings are the stages of the pipeline, 
subdivided into five different phases that we now 
introduce into the data flow paradigm. 
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Say we have n sites, then for each stage of the 
pipeline and for each site the execution scopes are:  

1) On the n fragments of the partition incoming on 
the data streams from the n sites. We call this the 
incoming phase. 

2) During the merging of these fragments into one 
partition. We call this the merging phase. 

3) On the whole partition on the site. We call this 
the merged phase. 

4) During the splitting of the partition into the 
fragments outgoing during the following 
repartitioning. We call this the splitting phase. 

5) On the n fragments of the partition outgoing on 
the data streams to the n sites. We call this the 
outgoing phase.  

Figure 5 shows the five phases of each stage and the 
execution scopes within each phase. Each ellipses in 
the figure corresponds to an independent execution 
scope. Bold ellipses correspond to the execution 
scopes that are part of the original data flow 
paradigm. They form a subset of the scopes in the 
extended paradigm. 

Per pipeline stage, there are 2n2+3n independent 
opportunities to apply algorithms to parts of the data. 
In contrast, the traditional data flow paradigm applied 
algorithms identically on all sites during the merged 
phase, only varying the amounts of data on each site. 

Our motivation was to migrate processing between 
sites to vary the usage of individual resources. The 
extended paradigm allows, roughly, the following 
options: 

• Operations can be executed differently on the 
data streams between sites during repartitionings. 

• Splitting partitions into data streams and merging 
them can happen differently on different sites. 

• Operations can be executed differently on the 
partitions on different sites. 

The first two options allow us to migrate parts of an 
operation’s execution from site to site, while the last 
one allows a limited adaptation of the execution for a 
specific site.  

The next subsection shows concretely how the 
flexibility of the extended paradigm can be used to 
leverage non-uniform resources. 

3.2 Non-Uniform Execution Techniques 
The problem that we are trying to resolve is that 
certain resources form the bottleneck of execution, 
while others are underutilized and partially idle. This 
problem is caused by the fact that the same operation 
has to be executed on sites with very different 
resource availability. Our proposed solutions fall into 
three different categories: 

• Migration of processing: We migrate algorithms 
that use certain resources from sites that 
overutilize these resources to sites that 
underutilize them.  

• Additional processing: We introduce additional 
processing, like compression, which trades off 
some resources against others. 

• Alternative processing: We use alternative 
implementations of the same operations in 
different resource environments. 
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We present techniques from all three areas, while our 
focus is on the first one, which allows the greatest 
improvements over the traditional approach6.  

The formal model presented in Section 4 will allow 
us to map out the complete execution space, showing 
all possible ways to apply given operations to data on 
a given architecture. The techniques presented in this 
section point out important parts of the execution 
space, but are by no means exhausting. 

3.2.1 Migrating Operations 
Considering the operations in Figure 6, we realize 
that only the joins have to be executed on each 
partition as a whole. Selections and projections can 
also be correctly executed on each of the fragments of 
the partitions that are sent out to other sites. They are 
not bound to any particular partitioning of the data 
and can be applied separately to the subsets of the 
partition on the outgoing data streams.  

We migrate operations along the data streams by 
applying them on the sending site for some streams 
and on the receiving site for others. Figure 7 
illustrates this for a simple case, where selections and 
projections are migrated away from one of the sites. 
When the streams are merged on the receiver sites, 
the operations must have been applied to all of them.  
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Figure 7: Migrating Operations 

For each pair of sites, this technique gives us the 
decision if, on the data exchanged during the 
following repartitioning, the operation should be 
applied on the first or on the second site. This will be 
                                                      
6 The presented techniques will attempt to use underutilized 

resources as much as possible to reduce the usage on other 
resources. In the larger context of pipelined, independent and 
multi-query parallelism, there will be a tradeoff between the 
amount of underutilized resources used and the amount of 
utilized resources freed. 

of benefit if the resources used by the operation are 
overutilized by exactly one of the two sites. 

3.2.2 Migrating Join Preparation 
Only selections and projections can freely be moved 
between the sites during repartitioning. Joins have to 
happen on the full partition between repartitionings. 
The reason is that joins have to be executed on each 
partition as a whole. Executed separately on 
fragments of the partition, not all possibly 
combinable tupels would be combined.  

Nevertheless, the fragments on incoming data streams 
can be prepared on their source sites. For example, 
for a sort-merge join, the incoming fragments could 
already be sorted and would simply be merged when 
the partition is constructed. Only sites that have 
available resources would sort before sending off 
their partitions, while others would leave the sorting 
to the receiver.  

This technique allows migrating part of the join from 
one site to another despite of the mentioned 
constraints. Its applicability strongly depends on the 
available join algorithms. Preferably, these algorithms 
should be structured to allow preprocessing on parts 
of the data. Also, in many cases, the merging of 
incoming data streams has to be aware of the 
preprocessing. Streams that were not preprocessed on 
other sites, have to be preprocessed immediately 
before the merge.  

3.2.3 Migrating Repartitioning Preparation 
The last two subsections discussed how to migrate 
selections, projections, and parts of the join. The 
other major work done between repartitionings is the 
splitting of the partition into fragments for the 
outgoing data streams. This splitting prepares the next 
join, by partitioning the local subset of the data with 
respect to the new join column. 

The splitting itself can be prepared by tagging all data 
with its future partitions. Splitting would then simply 
dispatch the data according to the tag. We can migrate 
tagging across incoming data streams to some of the 
sending sites.   

3.2.4 Selective Compression 
This technique trades off processing bandwidth on a 
pair of sites against the network bandwidth between 
the sites. The three techniques presented earlier 
migrated work that consumed resources local to the 
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execution site. If they affected the network load at all, 
they increased it.  

Since the resources are distributed non-uniformly, not 
all sites have the same processing bandwidth 
available for data compression. Compression and 
decompression can be applied on the partition 
fragments sent to other sites during repartitioning. 
Thus the decision about compression can be made on 
a site to site base, utilizing only the underutilized 
resources to relieve the network. 

3.2.5 Alternative Algorithms  
Our initial observation, that uniform processing over 
non-uniform resources leads to bottlenecks, can guide 
us to two complementary solutions: 

• On different sites, do different parts of the query 
processing: Concentrate parts of the execution 
where the needed resources are available. This 
has been done in the first three subsections. 

• On different sites, do the query processing in 
different ways: Pick an implementation of the 
required operation whose resource usage matches 
availability. This is the topic of this subsection. 

There are usually many different implementations for 
a given operation that has to be processed in parallel 
on multiple sites. Implementations can be chosen for 
each site independently, as long as the partitioning of 
the workload before the operation and the 
repartitioning of the results work independent of the 
particular implementation. 

This technique finds its limitation in the variety of 
resource usage of different implementations of the 
same operation. Presumably, the operation will 
determine the usage to a large degree. This is why we 
expect the migration techniques, presented in 
Sections 3.2.1, 3.2.2, and 3.2.3, to be more powerful. 

4 Formal Execution Model 
This section formalizes the extension to the data flow 
paradigm, resulting in a definition of the new 
execution space and, based on it, a cost model. 

The execution space is the set of all possible ways in 
which given relational operations can be processed by 
a given system. The execution space of our extended 
data flow paradigm will be a superset of that of the 
traditional one. Our claim is that for non-uniform 
architectures there are executions that are elements of 
the extended but not of the traditional space and that 

have better performance than any of the traditional 
executions. The reason for this is that they allow 
improved leverage of otherwise underutilized 
resources and thus reduced execution time. 

Based on the execution space, we will model the cost 
of every execution in terms of overall execution time. 
This model allows us to compare different executions 
in terms of their expected performance. Also, such a 
cost model is the base for the design of optimization 
algorithms that search for optimal solutions within the 
execution space. 

4.1 System Architecture 
We want to model all features of the execution 
environment that we deem relevant for our execution 
space and cost model. The chosen abstraction should 
not hide any execution alternatives and it should 
reasonably reflect all execution constraints as costs. 
Accordingly, every involved component will be 
modeled as a full-fledged site allowing data 
processing in any form. Each site is modeled by 
individual bandwidths for a generic set of resources, 
which allows us to constrain data processing through 
the specific bandwidth settings of a site. The specific 
requirements of active environments and the 
corresponding contributions of our techniques are 
only reflected in models that have multiple resources 
with independent bandwidth7 on each site.  

To establish the components of an architecture, 
similar to the examples in Figure 2, we define a set of 
sites, of resources per site, and of shared resources.  

Let each of the following be a given set of identifiers: 

• Sites = {x,y,z,…} (Components of the 
architecture) 

• SiteResTypes = { p, d, n,…} (Resources present 
on each component, e.g., processor, disk, network 
access) 

• SharedResTypes = {ic, …} (Resources shared 
among all components, e.g., the interconnect) 

Sites is the set of all components or sites of the 
architecture. Each site has individual instances of the 
resource types in SiteResTypes. Additionally, all sites 
                                                      
7 Independent bandwidth means that the proportion between the 

bandwidths on each site are not necessarily constant across all 
sites. 
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share a single instance of each resource type in 
SharedResTypes.  

Based on these given sets we define the following 
naming conventions: 

• ResTypes = SiteResTypes∪ SharedResTypes 

• SiteRes = {rx : r∈ SiteResTypes, x∈ Sites } 

(Set of resource instances present on the 
components) 

• SharedRes = SharedResTypes 
(Set of shared resource instances, one per type) 

• Res = SiteRes ∪ SharedRes 
(Set of all resource instances) 

• ResType :  Res →  ResTypes 
For rx∈ SiteRes : ResType(rx )= r 

For r ∈ SharedRes : ResType(r )= r 
(Type of a resource) 

• ResSite : SiteRes → Sites 
For rx∈ SiteRes : ResSite(rx )= x 

(Site on which a resource is located) 

• For r ∈  SiteResTypes:  R = {rx, ry, rz,…}  
(Set of all instances of a site resource) 

• ResOfSite : Sites → 2 SiteRes 
For x ∈ Sites: ResOfSite(x) = {rx’∈ Res : x = x’} 

(Set of all resource instances on a site)  

This gives us the set of resource instances as the 
shared resources together with the combinations of 
given sites with given site resource names. In Figure 
2, the set of sites consists of the four clusters of 
columns on the right, while the columns in the 
clusters correspond to the site resources. The single 
column on the left is the only shared resource. 

We will assign a bandwidth to every one of these 
resources, expressing the amount of data processed 
per time unit8. Let the following be a given mapping 
from resources to their bandwidths: 

•   BW:  Res → [0;∞ [ 

Bandwidth expresses the amount of data that can be 
processed during a given time period, relative to the 
processing algorithms resource usage. Usage will be 
defined in Section 4.3.    
                                                      
8 The units in which data volumes and time are measured are 

unimportant for the development of the model. Only the ratios 
between the involved bandwidths are relevant to determine the 
relative performance of different processing strategies. 

For example, BW(px )=2*BW(py ) implies that the same 

algorithm executed on the same amount of data would 
utilize the processor resource on site x twice as long as on 
site y. If the resource usage is RU(a,p) (see Section 4.3), 
then the execution time would be  RU(a,p)/ BW(px ) on 

site x. The value of BW for a resource corresponds to the 
height of the corresponding column in resource graphs like 
Figure 2.  

Resources are not exclusively used by algorithms. Shipping 
data between sites during repartitionings will utilize some 
of the resources. For this reason we identify local and 
shared resources that are utilized whenever data is sent or 
received by a site. While the shared resources are always 
used, the local resources are only used for communications 
of their specific site.  

Let the following be given sets: 

• SharedComResTypes  ⊆  SharedResTypes 
(Shared resource types that incur cost for 
communication) 

• LocalComResTypes  ⊆  LocalResTypes 
(Local resource types that incur cost for 
communication) 

• ComRes = {r∈ Res:  
                    ResType(r)∈ SharedComResTypes ∨  
                    ResType(r)∈ LocalComResTypes }  
(Resource instances that incur cost for communication) 

Section 4.6 will detail how communications and the 
execution of algorithms will affect the execution cost. As 
example, let d amount of data be sent by site x, with n and 
ic being a local and a shared resource. Then d/BW(nx ) is 

incurred on resource nx and d/BW(ic ) on resource ic.  

Some caveats are in place, regarding the simplicity of 
the presented abstractions. Our model focuses 
completely on data throughput and does not reflect 
any latency. The solutions that  we propose for the 
problems of traditional techniques are based on 
leverage of idle bandwidth. We simplified the 
presentation by focusing on this performance 
component. 

It could be argued that our resource model is to 
simplistic in that a resource is either used only by one 
site or shared by all sites. More complex models 
could allow resources shared by a subset of the 
components, like a local interconnect. Again, 
simplicity of the presentation motivated our choice. 

Algorithms are executed on a site at a specific time 
on a specific subset of the local data. The next section 
refines our model to express this scope of execution. 
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4.2 Execution Scopes 
Figure 5 shows the possible scopes of execution for 
an algorithm on the defined architecture as part of a 
pipeline. Execution of algorithms is possible during 
the different phases of the pipeline on the different 
subsets available on a site. Each of the ellipses in 
Figure 5 forms a separate execution scope. 

As explained in Section 3.1, each stage of the pipeline 
is subdivided into five independent phases, each of 
which forms execution scopes in combination with 
the available data sets in that phase. During the 
incoming and outgoing phases, on each site there is 
one dataset per incoming respectively outgoing data 
stream. That is, one set for each pair of sites. During 
the merging, the merged and the splitting phase, there 
is only one relevant data set per site, to which 
algorithms can be applied. 

Let nStages be the number of stages in the pipeline. Stages 
has to be a finite set that is linearly ordered by ‘⊆’. We 
simply take natural numbers as names for stages9: 

• Stages = {0,1,…, nStages} 

• For x,y ∈ Stages: x ⊆ y ⇔ x ≤ y 

We observed, that within each stage there are five possible 
execution phases. We need a naming convention for these 
phases. We call phase types the abstract phases that will 
happen in every stage, while a phase is a concrete instance 
within a specific stage. 

• PhaseTypes = {Incoming, Merging, Merged,   
                         Splitting, Outgoing } 
(Identifiers for phase types, independent of  stages) 

• Phases = { ps : p∈ PhaseTypes, s∈ Stages } 

(Set of phase instances across all the stages) 

The following are naming conventions for relevant subsets 
of Phases : 

• For s ∈ Stages : Phasess = { ps’ ∈ Phases : s’ = s } 

 (Phases in the nth stage of the pipeline) 

• Incoming = ∪s ∈ Stages {Incomings } 

(Set of phase instances of a certain type across all 
stages) 

• Merging = ∪ s ∈ Stages {Mergings } 

                                                      
9 Our very generic definition would alternatively allow for 

sequences of stages, in which new stages could be inserted by 
the optimizer. In that case, natural numbers would be 
inadequate identifiers. 

• Merged = ∪ s ∈ Stages {Mergeds } 

• Splitting = ∪ s ∈ Stages {Splittings } 

• Outgoing = ∪ s ∈ Stages {Outgoings }  

Each phase has to be combined with a data set to 
form an execution scope. This happens for the 
merging, merged and splitting phases simply by 
picking the site of execution. For the incoming and 
outgoing phases, we also have to pick a subset on the 
chosen site, by picking the source or destination site 
of the in- or out-bound data stream. Thus, each 
execution scope is a combination of a phase with one 
respectively two sites: 

Execution scopes for algorithms during the five 
phases:  

• WhileIncoming = Incoming ×  Sites ×  Sites 
(Incoming streams on the first site, coming from 
the second site) 

• ForMerging = Merging ×  Sites 
(Merging of all streams on a specific site) 

• WhileMerged = Merged ×  Sites 
(Processing of the merged data on a site) 

• ForSplitting = Splitting ×  Sites 
(Splitting of the data into the data streams on a 
site) 

• WhileOutgoing = Outgoing ×  Sites×  Sites 
(Outgoing streams on a site, directed to the 
second site) 

The sites in the incoming and outgoing tuples are not 
in the direction of the stream’s flow. The first site is 
always the site on which the data is located, while the 
second site, if present, is the remote source or the 
target site of the data. The following are notational 
conventions related to the given definitions. 

• ExecScopes = WhileIncoming ∪ ForMerging ∪  
  WhileMerged  ∪  ForSplitting  ∪    
  WhileOutgoing 
(Set of all execution scopes) 

• Site: ExecScopes → Sites 

• Let (p,s)∈ ForMerging∪ WhileMerged∪    
                ForSplitting:     Site(p,s) = s 

• Let (p,s,s’)∈ WhileIncoming∪ WhileOutgoing:  
 Site(p,s,s’) = s 
(Site of an execution scope) 
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The following section shows how to populate 
execution scopes with algorithms.  

4.3 Algorithms 
The application of relational operations on a data set 
is modeled as the execution of algorithms at specific 
execution scopes within the pipeline. According to 
the different signatures of the execution scopes – 
merge of multiple streams, processing of a single 
stream, splitting into multiple streams – there are 
three different kinds of algorithms: 

• Merge: An algorithm that processes multiple data 
sets as inputs and that produces a single result, 
for example, a simple union of the inputs. 

• Standard: An algorithm that works on a single 
input data set, producing a single output. 
Examples are a sort, a projection, or a filter 
operation. Only standard algorithms can be 
executed in sequence. 

• Split: An algorithm that works on a single input 
data set and that produces multiple result sets. An 
example is a hash partitioning of the data. 

Algorithms are characterized through their resource 
usage and their effect on the data volume. The usage 
in combination with the available bandwidth and the 
processed data volume determines the execution time. 
Every algorithm has linear resource usage in terms of 
the shared and local resources. The usage is modeled 
as a number that, divided over the corresponding 
bandwidth, determines the execution time per data 
item.  

The results of an algorithm’s processing can have a 
different size than the inputs. In our model, the result 
size is linear in the size of the input. Associated with 
every algorithm is a resizing factor that reflects this 
linear relation between in- and output. For multiple 
in- or outputs, there is a separate resizing factor for 
each processed or produced data set. 

We begin by defining the sets of available algorithms: 

• Let StdAlg, SplitAlg, and MergeAlg, be given sets 
of disjoint algorithms.  

Resource usage is defined for each algorithm with 
respect to every single resource type. Usage is 
defined for resource types and not for resources, 
because for multiple resource instances of the same 
type the resource usage should be the same. The cost 

of an algorithm on different sites only differs if the 
available bandwidth is different.  

• RU: (StdAlg ∪  SplitAlg ∪  MergeAlg) ×  
ResType    
        →  [0;∞ [ 
(Resource usage of the algorithms) 

• RF : StdAlg  ∪ 
        MergeAlgorithms ∪ 
        SplitAlgorithms ×  Sites  →  [0;∞ [ 
(Resizing factors of the algorithms)  

For split algorithms, resizing happens with respect to 
each in- and output separately. For example, a split s 
sends RF(s,x) of its input to site x, it produces |Sites| 
separate outputs of the accumulated size ∑x∈ Sites RF(s,x) 

times the input size. The size of a merge’s output is 
RF(m) times the sum of its inputs.  

Since standard algorithms can be executed in 
sequence, the definitions of resource usage and of 
resizing are extended for sequences of standard 
algorithms. We write [X] for the set of sequences 
over a given set X. For sx ∈ [X], we write Length(sx) 
for the length of sx, and sxn for the nth element of sx (1 ≤ 

n ≤ Length(sx)). We also use set notation on sequences to 
mean the set of a sequence’s elements, eg, sxi ∈ sx. 

• RU: [StdAlg] →  [0;∞ [ 
For seq ∈ [StdAlg], rt ∈ ResType: 
RU(seq, r)  =  
 ∑1≤  i ≤ Length(seq) (Π1≤ j<i  RF(algj )) * RU(algi , rt) 

(Resource usage for a sequence of algorithms) 

• RF: [StdAlg] →  [0;∞ [ 
For seq ∈ [StdAlg]:  
   RF(seq) = Π1≤ i≤ Length(seq) RF(seqi ) 

(Resizing for a sequence of algorithms) 

With this we established sequences of algorithms as an 
extension of the set of algorithms. We can now identify 
StdAlg with the one-element sequences in [StdAlg] and use 
the latter whenever standard algorithms can be applied. The 
next section details how algorithms are applied in the 
execution scopes of the last section. 

4.4 Execution Space 
The proposed extended data flow paradigm consists 
of the combination of the execution scopes with the 
algorithms that are executed on them. Every such 
combination is a way to process the data on the given 
architecture. The traditional dataflow paradigm 
consists of a subset of the possible combinations. 
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This section defines the extended execution space 
consisting of all possible combinations.   

An execution maps each execution scope onto the 
algorithms that are executed in that scope. We 
combine five mappings, one for each type of 
execution scope, to represent this. The mappings have 
different ranges, depending on the kind of algorithms 
that can be executed. Our execution space is the set of 
all combinations of such mappings. 

• ExecSpace =  
 (WhileIncoming →  [StdAlg] )  × 
 (ForMerging   →  MergeAlgorithms )  × 
 (WhileMerged   →  [StdAlg] )  × 
 (ForSplitting   →  SplitAlgorithms)  ×  
 (WhileOutgoing →  [StdAlg] )    

As an example, consider the execution shown in 
Figure 5. Each scope, shown as an ellipsis, is mapped 
onto the algorithms that are shown inside the ellipsis. 
As a convention, we will use the name of an 
execution as the symbol for each of its mappings. If 
the shown execution is called ex, we would write 
ex(Incoming1, s1, s2 ) = [sel1, proj1] and ex(Merging1 , s1 

) = stdMerge.   

The extended execution space, named ExecSpace 
above, is the space of all executions possible in our 
model. It represents the extended data-flow paradigm 
that this paper proposes. The size of this space is 
behemoth: Even if only one algorithm should be 
applied on the data streams of a single repartitioning, 
there are 2(n2) possible ways to combine early and late 
executions for n sites. Sophisticated optimization 
techniques will be needed to find close to optimal 
executions in such a space. 

4.5 Data Distribution 
This section formalizes an abstract concept of data 
distributed across the components of the system. The 
structure or semantics of the processed data is not 
necessary to demonstrate our techniques. A set of 
data that processed by an algorithm is simply 
represented as a specific amount of data. Consistent 
with bandwidth, usage and time, data amounts are 
measured by positive numbers without explicit units. 

We start with the given initial distribution of data 
across the sites.  

• Let IDD: Sites → [0;∞ [ be a given mapping 
from sites to their initial data volume.  
(Initial Data Distribution) 

Based on such a distribution and on a given 
execution, we can determine the data amounts for all 
execution scopes. This data distribution, expressing 
the amount of data that is processed as input in each 
scope, is represented by the following mapping. 

• DD :  ExecScopes → [0;∞ [ 
(Data Distribution) 

The first pipeline stage will need too be defined 
different than later ones, because it reflects the initial 
data distribution instead of distributions of earlier 
stages. 

Let  x,y ∈  Sites:  

• DD(Incoming0 , x, y ) = 0 

(In the first stage, nothing is received) 

• DD(Merging0 , x) = 0 

(Nothing is merged) 

• DD(Merged0 , x ) = IDD(x)  

(This reflects the initial data distribution) 

• DD(Splitting0 , x) = IDD(x) * RF(ex(Merging0 , x)) 

(The effect of the operation in Merged on the data) 

• DD(Outgoing0 , x, y) = IDD(x) *  

 * RF(ex(Merging0 , x)) *  RF(ex(Splittingi , x), y) 

(The combined effects from Merged and Splitting) 

We compute the data volume that has to be processed 
at each execution scope. It depends on the initial data 
distribution and on the resizing that happens later. 
The data is resized by all algorithms that are executed 
on it. Splitting algorithms divide the data in 
independently resized fragments, while merging 
algorithms unite such fragments, resizing them 
uniformly. All phases are defined in terms of preceding 
phases. 

Let  x,y ∈  Sites, s ∈ Stages, s ≠ 0: 

• DD(Incomings , x, y) = 

  DD(Outgoings-1 , y, x) * RF(ex(Outgoings-1, y,x)) 

(The data resulting at the other end of the data stream) 

• DD(Mergings , x) =  

 ∑ y ∈ Sites  ( DD( Incomings , x, y) *  

                    RF(ex(Incomings , x, y)) )  

(All data from incoming data streams) 
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• DD(Mergeds , x) =  

  DD(Mergings , x) * RF(ex(Mergings , x)) 

(All data after merging) 

• DD(Splittings , x) = 

  DD(Mergeds , x) * RF(ex(Mergeds , x)) 

(All data on the site, after local processing) 

• DD(Outgoings , x, y) = 

  DD(Splittings , x) * RF(ex(Splittings , x), y)    

(The fraction that is sent to the specific target) 

Thus the algorithms in every execution scope have to 
process the resized data processed in the last 
execution scope. In the case of a split, the resizing 
depends on the site of the follow-up scope. In the case 
of a merge, the data of multiple preceding scopes are 
relevant and are resized together.  

This section determined the data amounts involved in 
a given execution. Based on this, the next section will 
determine its cost. 

4.6 Execution Costs 
Section 4.4 mapped out ExecSpace, the space of all 
possible executions in our new framework. This 
section will evaluate the alternative executions by 
estimating their costs in terms of overall execution 
time. As a result we can compare plans of our 
extended model with those of the traditional space 
(see Section 2.1). 

The cost is constituted by the costs of each algorithm 
on each site’s resources. It is influenced by the 
resource usage of the algorithm, by the resource 
availability on the execution site, and by the amount 
of data processed in the particular execution scope. 
Thus, we get utilization times for each algorithm and 
each resource. Multiple utilization of the same 
resource happens sequential and adds up, while the 
utilization of different resources happens in parallel 
and  shows as the maximum utilization time of all 
resources. The resulting cost is a real number in [0;∞ 
[ without unit. Its unit is omitted, analogously to the 
omitted units of bandwidth (see Section 4.1) and data 
volume (see Section 4.5). 

We will define the cost of an execution ex ∈ 
ExecSpace in three steps: First, we define the cost per 
scope es∈ ExecScopes and per resource r∈ Res , 
called Cost(ex,es,r) : 

• If  r ∉  Shared  ∨  r∈ ResOfSite(Site(es)) : 
 Cost(ex, es, r) =  

     DD(es) * RU(ex(es), ResType(r))  /  BW(r) 
else  Cost(ex, es, r) = 0 

Then, we define the cost per resource r∈ Res as the 
sum over all the scopes that affect that resource plus 
the incurred communication costs – Cost(ex, r) : 

• If  ResType(r) ∈  SharedComResTypes: 
  Cost(ex, r) =  
   ∑ es∈ ExecScopes Cost(ex,es,r)  + 

   ∑ es∈ WhileIncoming DD(es)/BW(r) 

If ResType(r) ∈  LocalComResTypes:  
  Cost(ex,r) = 
   ∑ es∈ ExecScopes Cost(ex,es,r)  + 

   ∑ (IncomingS ,x,y)∈ ExecScopes ∧ x=Site(r)∧ x ≠ y  DD(es) + 

   ∑ (OutgoingS ,x,y)∈ ExecScopes ∧ x=Site(r)∧ x ≠ y  DD(es)  

Finally, we define the overall cost as the maximum of 
the costs on the resources – Cost(ex) : 

• Cost(ex) = MAXr∈Res Cost(ex,r) 

We use one symbol, Cost, for the three cost functions 
with different domains. The cost of execution is the 
maximum of the times that the single resources need 
to finish. To finish, each resource has to sequentially 
serve in each execution scope on its site. An 
algorithm’s cost is its resource usage divided over the 
resource bandwidth times the amount of data.  

This cost model, complicated as it may seem, is the 
result of numerous simplifications. It does not reflect 
any concurrency overheads, latencies, sequential per-
task overheads, or resource conflicts. These very real 
complications were left out to allow a focus on the 
data flow pipeline with its execution scopes.  

5 Example: Migrating Workload along Data 
Streams 

This section exemplifies the use of the formal model 
by analyzing the effects of one of the techniques that 
we propose. We will present a simple example that 
serves to demonstrate the features of the model and 
its role in analyzing new execution techniques. It is 
important to keep in mind that the techniques 
discussed in Section 3, among them our example, do 
not exhaust the possibilities that are presented as the 
execution space defined in Section 4.4. 

For our example, we consider a join with a 
consecutive filter operation that is executed in 
parallel on the sites of a given system. Because the 
filter involves expensive computations, the combined 
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operation is CPU bound on all the sites. Formally, p∈ 
SiteResTypes being the CPU, j and f being the 
algorithms executing the join and the filter : 

  p = Maxrt ∈ SiteResTypes ( RU([j,f],rt) / BW(rtx ) ) 

for all x ∈ Sites. The fraction that is maximized, 
resource usage over bandwidth, is the execution cost 
for the operation on a specific resource, relative to the 
processed amount of data.   

When balancing the workload across the sites of the 
system, the optimizer can only attempt to balance the 
utilization times, minimizing the execution time of 
the whole system. Balancing can only be optimal for a 
single resource, as in our case the bottleneck resource p. 
The fraction of the overall data that should be processed on 
a site x is BW(px ) / ∑y ∈ Sites BW(py ). 

The resulting workloads are imbalanced with respect to 
other resources that are distributed in different proportions 
across the sites. Consider sites that are active disks. The 
bandwidths of their processors will be much weaker in 
proportion to their other resources than that of server sites. 
Assume that the processor of an active disk xa is ten times 
slower than the processor on a server xs, while their disk 
I/O is similar, i.e., BW(pxa )=0.1*BW(pxs ) and BW(dxa 

)=BW(dxs ). This implies that the utilization of the active 

disk is at most a tenth of that of the server’s disk:  

BW(pxa )/∑ y∈ Sites BW(py ) * RU([j,f],d)/BW(dxa ) =  

0.1*BW(pxs )/∑ y∈ Sites BW(py )* RU([j,f],d)/BW(dxs )  

Consequently, the active disks main resource, dxs , is 
utilized for less than 10% of the execution, because 
workload balancing can only account for a single 
‘weakest’ resource, pxs in our case.  

Clearly, other, more adaptive techniques are needed. 
We would like to move processor intensive tasks 
away from the active disks, relieving their CPU 
bottleneck. As a result, the amount of data processed 
on the disk could be increased, reducing overall 
execution time. We can achieve this goal using the 
task migration technique. Consider the traditional 
execution ex∈ Exec of the query, i≤ Stages  being the 
pipeline stage and x,y ∈ Sites arbitrary: 

ex(Incomingi ,x, y) = ex(Outgoingi ,x, y) = [] 

ex(Mergedi, x) = [ j, f ] 

ex(Mergingi, x) = union     ex(Splittingi, x) = partition 

(union forms the union of its inputs; partition10 splits its 
input in preparation for the join in the next stage) 

As a first step, we realize that the filter does not need to be 
executed on the partition as a whole. It can also be applied 
on its fragments, before sending them to other sites11. This 
movement from the Mergedi phase to the Outgoingi phase 

does not change the overall costs, as long as the sum of the 
resizing factors of partition is 1:  

∑y∈ Sites RF(partition,y)=1.0. This reflects the fact that the 

overall amount of data is the same before and after the 
partitioning.  

As a second step, we realize that the data processed in 
(Outgoingi, x, y) are the same as in (Incomingi+1, y, x) 

because these phases are the two ends of the same data 
stream. This allows us to delay the application of f to the 
data of the stream until after the shipping of the data:  

ex(Outgoingi ,x, y) = []  and   
ex(Incomingi+1 ,y, x) = [f] 

 
This affects the resource usage on x, y, and on the 
communication resources. The latter are affected 
because the selectivity of the filter is lost on the 
shipped data: DD(Incomingi , y, x) = DD(Outgoingi 

,x, y), instead of  DD(Incomingi , y, x) = RF(f) * 
DD(Outgoingi ,x, y). The table in Figure 8 presents 
the change in costs per resource as a consequence of 
delaying  f between x and y (ex’ is the modified 
execution). The effect on communication resources is 
additional to the other effects. 

 Cost(ex’, r) - Cost(ex, r) 

r ∈ ResOfSite(x) 
-  RU(f, ResType(r)) * 
   DD(Outgoingi , x, y) / BW(r ) 

r ∈ ResOfSite(y) 
+ RU(f, ResType(r)) * 
    DD(Outgoingi , x, y) / BW(r ) 

r ∈ SharedRes + 0 

additionally,  
if r ∈ ComRes 

+  DD(Outgoingi , x, y) * (1-RF(a)) 

Figure 8: Effects of Migrating the Operation 

                                                      
10 We simplify by not costing these operations. 
11 Certainly this will involve overheads in terms of the separate, 

additional processing phase. For now, we ignore these 
overheads and leave their exploration to future work with actual 
prototype systems. 
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Site x is relieved of exactly the specific resource 
usage of the filter algorithm, which is instead added 
to site y. The effect is different, though, since the 
bandwidths of the resources on both sites are 
different. The costs are in inverse proportion to the 
resources’ bandwidths. Moving CPU load from a site 
with slow CPU to a site with strong CPU will add less 
cost to the latter than it removed from the former. The 
effect on shipping the data corresponds to the amount 
by which the data would have been reduced. 

If we delay processing on all data streams, the filter is 
simply applied immediately before the next join. 
This, as delaying it on none of the streams, 
corresponds to a traditional execution. Migrating the 
filter task allows us an individual choice for each data 
stream between the source and the target site. For n = 

|Sites|, there are n2 independent choices and 2(n2) 
combinations of such. Searching for (near-)optimal 
executions among these possibilities is future work. 

Returning to the example, the techniques can be used 
to relieve the active disks of the CPU workload that 
comes with the filter operation. On any data stream 
connecting an active disk and a server site, the filter 
will be delayed to the server process. This reduces the 
usage on the disks’ bottleneck resource relative to its 
other resources. As a consequence, more data can be 
processed on the site within the same amount of time. 
The additional workload can be taken from the 
servers which received additional CPU workload. The 
benefit of this corresponds to the ratio of disk versus 
server CPU bandwidth. Combining the effects from 
Figure 8 with the assumption that the disk’s CPU 
bandwidth is a tenth of the server’s, we get:  

RU(f, r) * DD(Outgoingi , x, y) / BW(rd ) = 

RU(f, r) * DD(Outgoingi , x, y) / (0.1*BW(rs )) = 

10 * RU(f, r) * DD(Outgoingi , x, y) / BW(rs ) 

This means that moving the tasks to the server only 
adds a tenth of the utilization time to the server 
compared to what was gained on the disks. The 
migrating of tasks is complemented by a rebalancing 
of workload in the reverse direction. The migration 
adds utilization time to one resource while removing 
it from another in a favorable proportion. Workloads 
have to be rebalanced to take this into account.  

This concludes our example. 

6 Related Work 
Traditional approaches to query processing in parallel 
shared-nothing database systems assume a more or 
less uniform architectural model  [DG90, DG92, 
C+88, D+90, GD93]. Accordingly, they do not 
explicitly model non-uniform resources, as we do. 
The same resources are available on each component 
of the system12. We described, the underlying 
approach – the classical data-flow paradigm – in 
Section 2. In the following, we survey existing 
systems in their relation to our approach. In a later 
subsection we discuss related work that focuses on 
specific aspects of query processing. 

6.1 Existing Parallel Systems 
Heterogeneous resource environments were not a 
focus in either of the discussed database systems. We 
will thus simply try to outline the specific techniques 
that each system contributed to what we termed the 
traditional approach. River, the last system in this 
section is a generic parallel processing environment, 
not specialized for relational query processing. We 
include it because it discusses dynamic fluctuations 
of resource availability, a topic closely related to the 
static heterogeneities that are central to this paper. 

6.1.1 Gamma 

Gamma was built between 1984 and 1989 at the 
University of Wisconsin, Madison, as a highly 
parallel database prototype [D+90]. Architecturally, 
Gamma is based on a shared-nothing architecture 
[S86]. It followed the much earlier DIRECT project 
[D79], which used shared memory and centralized 
control and thus had very limited scalability [D+90].  

Gamma’s key concepts are horizontally partitioned 
relations, hash-based parallel algorithms and dataflow 
scheduling. Horizontal partitioning, also known as 
declustering, targets the leverage of the accumulated 
I/O bandwidth. Gamma allows round robin, hashed 
and range partitioning. Round robin13 across all nodes 
is the standard for query results that are relations14. 
                                                      
12 The join sites of the simple hash join [SD89] do not need to 

have disks. An early version of Gamma [D+90] integrates disk-
free sites as a special case. 

13 Round Robin was characterized as a strategy that minimizes 
locality and such skew, as compared to value based partitioning 
schemes [C+88]. 

14 Dewitt et al. saw this as a major design flaw in retrospect. See 
Bubba’s heat of a relation as a better alternative [C+88]. 
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Clustered and non-clustered indexes are allowed 
orthogonal to the employed partitioning scheme. 
The query scheduler uses the partitioning information 
in the query plan to distribute operators on a subset of 
the sites, for example based on the intersection of a 
predicate and the partition ranges. The generation and 
execution of plans follows traditional relational 
techniques [SA80,A+76]. Left-deep trees with 
pipelining of not more than two joins are used.  

On the relevant subset of sites, operators are executed 
locally on the data received from other sites. Their 
output is partitioned through different types of split 
tables [D+86] that relate the tuples to their outgoing 
streams.  

A centralized scheduler that coordinates the execution 
of a query initiates processes for each operator on 
each site through local dispatchers. Build inputs to a 
join are scheduled concurrently with the join build 
phase, but complete before the probe inputs are 
initiated to run concurrently with the join probe 
phase. Consuming operations later in the pipeline are 
always initiated before earlier, producing operations. 
Scans and selects are operations without input 
streams while store operations have no output 
streams. 

Gamma allows simple scans and selects, both 
executed at the relevant subset of sites where the 
relation is initially located. Predicates are executed as 
compiled native code.  

Equijoins are by default executed as hybrid hash joins 
[SD89], which involves two split tables: The 
partitioning split table separates the joined relations 
into logical buckets that each fit into the aggregate 
memory of the components. The joining split table is 
used to separate the tuples of each bucket into the 
partitions that will be joined on the components. 

Aggregate functions are computed in two phases: 
Each component computes local, partial results. Then 
the tuples are repartitioned on the ‘group by’ column. 
The results for each group can then be computed 
locally on its site.  

Gamma uses chained declustering [HD90] as a 
replication scheme to cope with site failures. See 
[B81,CK89] for alternatives and improvements to 
chained declustering.  

[D+92] treats the problem of workload skew with 
Gamma as a test bed. Hash-based partitioning leads to 

load imbalances during further processing (for the 
effects on Gamma’s join algorithms, see [SD89]). 
Weighted range partitioning with replication of 
subsets of repeated values is proposed. Adequate 
ranges are determined by sampling the involved data.  
Virtual processor scheduling (similar to the ‘data 
cells’ of [HL90]) produces many small partitions 
instead of a single large one per processor. These 
partitions can be migrated between components to 
mitigate join product skew.  

6.1.2 Bubba 
[C+88] sets out to find some compromise between 
minimizing the amount of total work and optimizing 
the load balance across the sites. Data partitioning 
and parallel execution increase the total work by 
introducing overheads. But avoiding these overheads 
leads to underutilization of sites due to imbalanced 
execution on one or a few sites. Analogously, our 
approach tries to increase the balancing of processing 
across the individual resources and eventually a 
compromise between the introduced overheads and 
the gained balance has to be found. For Bubba, the 
benefit of minimizing overall work is the availability 
of processing capabilities for other queries, 
independent, or dependent parallelism15. In contrast to 
Bubba’s limited declustering, Gamma and Teradata 
used full declustering. This was motivated by their 
focus on single transaction performance, which 
disregarded multi-query parallelism. Earlier work 
[LKB87] that did consider multi transaction 
workloads recommended full declustering for all but 
very high numbers of parallel transactions. [C+88] 
finds that less than full declustering outperforms full 
and no declustering. 

Bubba’s shared nothing architecture is quite similar 
to that of GAMMA [B+90, D+90]. The main 
difference is Bubba’s focus on optimal data 
placement while Gamma simply relies on full 
declustering. [C+88] suggest, but does not employ, a 
composite workload that consists of weighted 
workloads for the different resources, like CPU and 
disk. This already recognizes the problem that we are 
treating in the more critical context of non-uniform 
resources. Partitioning the workload according to the 
locality of usage of a specific resource could be seen 
                                                      
15 Our approach assumes, for the time being, that other forms of 

parallelism cannot make good use of the isolated underutilized 
resources that our techniques are designed to consume. 
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as a limited alternative to our approach: Data which is 
accessed by transactions of a specific resource usage 
is placed on sites with availability of the 
corresponding resources. 

6.1.3 Paradise 
Paradise was started in 1993 to combine object-
oriented techniques from the EXODUS project 
[C+86] and parallelization techniques from the 
GAMMA project [D+90]. The application was the 
emerging area of Geographic Information Systems 
(GIS) with their large data volumes and complex data 
types. We focus here on the parallel aspects, 
described in [P+97]. 

Paradise focuses on new parallelization techniques 
especially for geo-spatial workloads, like spatial 
partitioning, parallelism for individual objects, and 
complex aggregates. Underlying are the parallel 
techniques of GAMMA.  

Operators communicate via streams, following the 
push model from the leaves of a query plan up to the 
root. Streams allow flow-control to regulate the 
processing speed of different operators. Split streams 
are used to partition data sets for parallel processing. 
The different stream types are transparent to the 
operators.  

Large objects are accessed following the pull model: 
A separate operator on the source node is started 
which serves selective pull requests from the 
consumer node. This avoids the shipment of 
unnecessary data, but it introduces overheads for the 
separate operator, and it generates random disk seeks. 

Another project involving parallel geo-spatial data 
processing was MONET [BQ96].  

6.1.4 Volcano 
Volcano [G90,GD93,G94] integrates the parallelism 
into extensible query processing systems. Because 
new data types, functionality, and relational operators 
should be added in a simple manner, parallelism has 
to be transparent to these extensions. Another goal of 
Volcano is architectural independence, which also 
prohibits parallelism to be pervasive in the design of 
the system. Volcano’s answer is to focus all 
mechanisms that are necessary to introduce different 
forms of parallelism into one relational operator, 
called the ‘exchange’ operator. 

Earlier systems, like Gamma and Bubba, failed to 
completely separate parallelism issues from the 

implementation of the parallelized operators [G90]. 
Volcano proposes an operator model that introduces 
parallelism into query plans in the form of the 
‘exchange’ operator. This operator separates the flow 
of control in a pipeline by introducing two processes 
instead of one. This allows concurrency between the 
two parts of the pipeline, before and after the 
exchange operator. The exchange operator can also 
be used to partition its input data set and run 
independent versions of another operator on each of 
the fragments, introducing intra-operator parallelism. 
In a third variation, the exchange operator is used to 
allow independent (bushy) parallelism: Each of the 
independently executed subplans is extended by an 
exchange operator that runs it in a separate process.  

The underlying architectures of the Volcano system 
are shared memory and shared disk architectures, as 
well as hybrids. In contrast to Gamma and Bubba, 
shared nothing architectures are not employed. 
Nevertheless, the ideas embodied by Volcano – 
separation of parallelism and functionality, 
uniformity of operator interfaces and extensible 
optimizer design – seem to apply as well to shared 
nothing systems. 

6.1.5 River 
River [A+99,A99] introduces techniques that deal 
with performance skew – dynamic fluctuations in the 
availability of resources. Due to various reasons, 
components in a parallel system develop performance 
failures, which can reduce the available bandwidth of 
some of their resources dramatically. River introduces 
two techniques that make systems robust against 
these failures: Graduated declustering and distributed 
queues. 

Chained declustering [HD90,B81,CK89] is a 
replication scheme that ensures functionality in the 
case of component failures. Graduated declustering 
adapts this technique to deal gracefully with 
performance failures. While this alleviates 
performance skew on the producer site, distributed 
queues adapt the data flow for skew on the consumer 
site. Both techniques are based on adapting the flow 
between the different components of the system, 
depending on their actual processing rates.  

Flow control does not easily apply to parallel join 
processing because data is partitioned semantically. 
Depending on the value of the joined attribute, data is 
placed on a specific site. Adapting this partitioning 



18 

dynamically was explored in the context of  skew 
handling (see Section Error! Reference source not 
found.). River was used to implement query 
processing by using its techniques for non-join 
operations, like scans and writes [A99].  

River’s flow control dynamically changes the 
workload balancing between different components. 
The techniques that we propose are based on static 
information and actually change the resource usage, 
not only the amount of processed data per site.  

6.2 Other Related Work 
This section discusses contributions to specific 
problems in the area of parallel processing in their 
relation to our work.  

6.2.1 Algorithms 
Alternative algorithms implementing common 
relational operations have been explored in [SD89]. 
Performance is examined under certain resource 
constraints, like insufficient memory, and robustness 
with respect to performance skew. 

[SN95] proposes parallel aggregation algorithms 
where aggregation and repartitioning are intermixed. 
The repartitioning algorithm repartitions the raw data 
and computes the aggregates at the target nodes.  The 
two-phase algorithm first computes a local aggregate 
at the source nodes, then repartitions the locally 
aggregated data and finally merges local aggregates at 
the target nodes. The two-phase algorithm trades 
increased processing on the source node for reduced 
network traffic. Our approach would suggest to 
precompute aggregates only on sites with available 
resources, analogously to join preparation (see 
Section 3.2.2). 

6.2.2  Workload Balancing 
[RM95] examines how workloads should be balanced 
dynamically in a multi-query environment. The 
degree of parallelism – the number of nodes – and the 
placement of the computation – the choice of nodes – 
both depend on the existing workload of already 
running queries. Different resources, CPU, disk or 
memory, suggest different tradeoffs. Differently than 
this paper we focused on the more fundamental 
problem of balancing the execution of a single query 
in a setting with heterogeneous resources. 

Very influential work on data placement based on the 
‘heat’ of the data – its access frequency – was 
presented as part of the Bubba system [C+88] (see 

Section 6.1.2). The results suggest that relations 
should be spread across part of the available sites, 
with the degree of declustering depending on their 
heat. Other systems [T87,T88,D+90] find near-linear 
scaleup for declustering relations across as many sites 
as possible. This seeming discrepancy of results, 
between partial and full declustering is based on 
different workloads. While Bubba examined a 
workload consisting of many different transactions, 
the other studies focused on the idealized situation of 
processing a single query. As explained in Section 
6.1.2, the benefits of partial declustering are only 
realized through pipeline, independent, or multi-query 
parallelism.  

Most systems use replication in one or another form. 
Gamma uses chained declustering [D+90,HD90], 
Tandem mirrored disks [B81], and Teradata 
interleaved declustering [CK89]. River [A+99] 
introduces graduated declustering as a performance 
robust improvement of chained declustering. River 
proposes distributed queues as a flow control that 
allows the dynamic placement of data according to 
the availability of the data consumers. Unfortunately, 
this does not apply to imbalances during value-based 
partitioning, a problem that is called redistribution 
skew [WDJ91]. 

In an ideal uniform system, optimal performance is 
achieved with a perfectly balanced load (i.e., identical 
amount of data on each processing node) [HL90]. In a 
slightly different context, [BVW96] shows that, in an 
identical architecture, minimal response time is 
obtained when the loads of all servers are equal.  

Among our assumptions is the uniform distribution of 
data with respect to the values used in hash 
partitioning. Without this assumption, data skew 
poses a major problem for workload balancing. Hash 
functions with low skew are discussed in [CW79]. 
[WDJ91] describes and distinguishes redistribution 
skew from join product skew. Improved hash 
functions only improve the former, and they cannot 
deal with skew due to duplicate values [D+92]. 
[HL90] proposes partition tuning by reassigning data 
cells from overflow to underflow partitions 
dynamically. [HL91] discusses specializations of join 
algorithms based on partition tuning. [D+92] 
proposes different algorithms for different degrees of 
skew, measured on a small sample of the data. 
[MD97] simulates different strategies and shows how 
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changing technology trends change the involved 
performance tradeoffs.  

Dynamic scheduling and load balancing techniques 
have been developed to face the problems introduced 
by skewed data distributions, or by the concurrent 
execution of multiple queries [HL91,MD93, RM95]. 
These techniques either propose new join algorithms 
(repartitioning data to balance the load) or adjust the 
number of processing nodes and select the actual 
processing nodes based on CPU and memory 
utilization. The techniques we propose for trading 
bandwidth utilization across the various components 
of a system can be seen as a complement to these 
load-balancing techniques.  

6.2.3 Active Storage 
Existing work on active storage addresses general 
architectural issues [G+98,UAS98,KPH98,HM98], 
studies programming  models [AUS98], and evaluates 
the benefits for specific applications, like data mining 
[RGF98]. So far, relational query processing has not 
been a focus in this new environment.  

Work on storage systems [G+99,LT96] and on file 
systems [G+97,TML97] that integrate active storage, 
suggests that leveraging processing capabilities close 
to the data allows large performance benefits. Our 
expectation is, that leveraging these capabilities for 
higher-lever applications like relational query 
processing will have even higher benefits.  

7 Conclusion 
We identified the problem that heterogeneous 
resources pose for classical parallel query processing 
techniques. Heterogeneous resources, as present on 
active storage and active networks, extend the 
capabilities of a system in a non-uniform manner. 
Using traditional intra-operator parallelism to 
distribute operations uniformly across the available 
components will lead to severe underutilization of the 
resources of the new components. 

As an alternative we propose to extend the classical 
data-flow paradigm by recognizing, splits, merges, 
incoming and outgoing data streams as available 
execution scopes for data processing. This allows us 
to make independent choices for each data stream 
between a pair of sites. The execution of specific 
algorithm can be migrated towards sites which have 
the required resources available.  

We formalized the proposed extension to the classical 
paradigm by defining the space of possible executions 
of given algorithms on a given architecture. Our cost 
model allows us to estimate the performance gains of 
the extended space over the subsumed classical 
execution space. 

Our future work will examine the actual 
underutilization in a non-uniform prototype system, 
the performance gains possible through our 
techniques, and the introduced overheads. 
Optimization of declarative queries for parallel 
execution in this extended paradigm will be an 
interesting challenge. Finally, the automatic 
administration of systems consisting of heterogeneous 
hardware platforms, the declustering of relations and 
the choice of a replication scheme will be a very 
relevant contribution. 
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