
Secure and Portable Database Extensibility

Michael Godfrey Tobias Mayr Praveen Seshadri Thorsten von Eicken

Computer Science Department

Cornell University, Ithaca, NY 14853

fmigod,mayr,praveen,tveg@cs.cornell.edu

Abstract

The functionality of extensible database servers can be aug-
mented by user-de�ned functions (UDFs). However, the
server's security and stability are concerns whenever new
code is incorporated. Recently, there has been interest in
the use of Java for database extensibility. This raises sev-
eral questions: Does Java solve the security problems? How
does it a�ect e�ciency?

We explore the tradeo�s involved in extending the PREDA-
TOR object-relational database server using Java. We also
describe some interesting details of our implementation. The
issues examined in our study are security, e�ciency, and
portability. Our performance experiments compare Java-
based extensibility with traditional alternatives in the na-
tive language of the server. We explore a variety of UDFs
that di�er in the amount of computation involved and in
the quantity of data accessed. We also qualitatively com-
pare the security and portability of the di�erent alterna-
tives. Our conclusion is that Java-based UDFs are a viable
approach in terms of performance. However, there may be
challenging design issues in integrating Java UDFs with ex-
isting database systems.

1 Introduction

In an extensible DBMS, the database server can be extended
dynamically with new functionality. An important class
of such systems are \universal" database servers (e.g., In-
formix, DB2, Oracle 8) which support user-de�ned functions
(UDFs). While extensibility increases the functionality and

exibility of such a system, there are also serious concerns
with respect to security. The focus of this paper is on the de-
ployment of extensible client-server database technology in
a user environment such as the World Wide Web (WWW).
For example, consider a database of stock market data that
is accessible through a web site. A valid user is any amateur

investor with a web browser, a credit card, and an invest-
ment formula InvestVal. The following query would then
�nd technology stocks of interest to the user:

SELECT *
FROM Stocks S
WHERE S.type = ``tech'' and

InvestVal(S.history) > 5;

Here, InvestVal is a user-de�ned function. Ideally, it
should be possible (and relatively straightforward) for a large
number of such users in a web environment to create their
own UDFs and use them within SQL queries. If there are
many users, each desiring to extend the system without spe-
cial knowledge about its architecture, several issues arise:
� Security: Since the UDFs are supplied by unknown or
untrusted clients, the DBMS must be wary of UDFs that
might crash the database system, that modify its �les or
memory directly, circumventing the authorization mecha-
nisms, or that monopolize CPU, memory or disk resources
leading to a reduction in DBMS performance (i.e., de-
nial of service). Even if the developer of a UDF is not
malicious, the new code might inadvertently cause some
of these problems. Clearly, some security mechanism is
needed.

� Portability: How portable are the UDFs and how easy
are they to develop? Users need to be able to develop, test
and debug their UDFs on their local machines. It should
then be possible to register the UDFs with the server. Do
the security mechanisms adversely a�ect the portability
and ease of extensibility by users?

� E�ciency: How does the security mechanism a�ect the
performance of queries? Does the portability of UDFs
a�ect their e�cient execution?
Until recently, the UDF extensibility mechanisms used

in database systems have been unsatisfactory with respect
to security and portability. However, with the growing ac-
ceptance of Java as a relatively secure and portable pro-
gramming language, the question arises: can the use of Java
aid database extensibility? We are exploring this question
through implementation and performance measurement in
the PREDATOR OR-DBMS[SLR97].

Speci�cally, this work is performed in the context of the
Jaguar project which explores various bene�ts of incorporat-
ing Java into PREDATOR. The motivation of the project
is the next-generation of database applications that will be
deployed over the web. In such applications, a large num-
ber of physically distributed end-users working on diverse

platforms interact with the database server through their
web browsers. Because of the large user community with
diverse needs, the utility of UDFs increases, along with con-
cerns for the security of the system. In this environment,
Java seems a good choice as a language for UDFs, because
Java byte code can be run with security restrictions within
Java Virtual Machines (JVMs) supported by web browsers
on diverse platforms. The full scope of the project envi-
sions UDFs which must be run exclusively at the client, or
at the server, or at either site. This paper represents our
initial work on this subject, and is limited to studying the
execution of UDFs at the database server.

Many vendors of universal database servers are in the
process of adding Java-based extensibility [Nor97]. How-
ever, to the best of our knowledge, there has been no study
of the design needed or of the tradeo�s underlying vari-
ous design decisions. This paper presents such a qualitative
study, and a quantitative comparison of Java-based UDFs
with other UDF technologies. The experimental conclu-
sions are consistent with results from the Java benchmarking
community[NCW98].
� Java UDFs su�er marginally in performance compared to
native UDFs when the functions are computationally in-
tensive. Given current trends in JIT compiler technology,
we expect the di�erence in computation time to become
insigni�cant.

� For functions with signi�cant data accesses, Java exhibits
relatively poor performance because of run-time checks.
However, this is a reasonable price to pay for security.
Our experiments also indicate that when analogous run-
time checks are added to native code UDFs that run out-
side of the server, performance is comparable to (but still
somewhat better than) that of Java UDFs.

The paper also discusses speci�c issues that arise when in-
tegrating Java into a typical database server. Although the
Java language has security features, current Java environ-
ments lack resource control mechanisms needed to fully in-
sulate the server from malicious or buggy UDFs. Conse-
quently, some traditional security mechanisms are still needed
to protect the resources of the server. Further, many database
servers use proprietary implementations of operating system
features like threads. The server-side support for Java UDFs
can be non-trivial, since the Java virtual machine can inter-
act undesirably with the database operating system. Con-
sequently, it may be undesirable to embed an o�-the-shelf
Java Virtual Machine within the database server. Finally,
we present the implementation details in PREDATOR that
allow Java UDFs to be developed in a portable fashion, so
that they can be used at either client or server.

2 Related Technologies

In this section, we outline research and technology relevant
to this paper. We divide the work into four categories: (a)
web-based database deployment (b) work on database ex-
tensibility, (c) work on secure kernel extensions in operating
systems, and (d) work on safe programming languages such
as Java.

2.1 Web-Based Database Deployment

The architectures of web-based database applications fall
into two broad categories: Two-Tier and Three-Tier archi-
tectures. In both categories, a database server runs on a

machine accessible via the Internet, and user interact with
web browsers on their local machines.

In a Two-Tier architecture, a Java applet running within
the web browser also acts as the database client, meaning
that it directly connects to the database server, sends re-
quests to the server and displays the results to the user.
This resembles the familiar \query-shipping" architecture
of client-server database systems [FJK96] . The Java ap-
plets that act as client programs are downloaded from a
web server (i.e., HTTP server) running on the same ma-
chine as the database server. In a Three-Tier architecture,
the work of the client program is divided into two compo-
nents: presentation and program logic. The program logic is
abstracted into a separate tier of software which usually runs
on the same machine as the web server (and is sometimes
implemented as an extension of the web server). This \mid-
dleware" tier is responsible for connecting to the database
server, issuing queries and receiving replies. The presen-
tation tier runs within the user's browser and handles the
graphical input and output functionality. In such an envi-
ronment, the application developers who build the middle-
ware are typically the \users" who would create UDFs. Our
work applies to applications developed using either architec-
ture; however, for the rest of the paper, we will assume the
simpler Two-Tier architecture.

2.2 Database Extensibility

Since the early 1980s, database servers have been built to be
extensible; that is, to allow new application-speci�c function-
ality to be incorporated. While extensibility mechanisms
were developed in both object-relational (OR) and object-
oriented(OO) databases, similar issues apply in both cate-
gories of systems. In this paper, we focus on OR-DBMS sys-
tems, because they are the dominant commercial database
systems, and because PREDATOR falls into this category.
However, our results apply equally to OO-DBMSs as well.

While some research has addressed the ability to add new
data types [Sto86, SRG83] and new access methods [SRH90,
HCL+90], most extensible commercial DBMSs and large re-
search prototypes have been built to support user-de�ned
functions (UDFs) that can be added to the server and ac-
cessed within SQL queries. The motivation for server-side
extensibility (rather than implementing the same functional-
ity purely at the database client) is e�ciency; a user-de�ned
predicate could greatly reduce query execution time if ap-
plied at the early stages of a query evaluation plan at the
server. Further, this may lead to a smaller data transfer to
the client over the network.

Given the focus on e�ciency, most research on UDFs
has investigated the interaction between database query op-
timization and UDFs. Speci�cally, cost-based query opti-
mization algorithms have been developed to \place" UDFs
within query plans [Hel95, Jhi88]. Some recent research
has explored the possibility of evaluating queries partially
at the server and partially at the client (this has been called
\hybrid-shipping") [FJK96]. However, this work has not
been applied to extensible systems. Portability and ease
of extensibility have largely been neglected by current OR-
DBMS technology.

Traditionally, it has been assumed that most database
extensions would be written by authorized and experienced
\DB Developers", and not by naive users. This assump-
tion was reasonable because extending a database server
required non-trivial technical knowledge, and because few
automatic mechanisms were available to verify the safety of

untrusted code. Consequently, a large \third-party vendor"
industry has evolved around the relational database indus-
try, developing and selling database extensions (e.g., Virage,
Verity). Commercial extensible database systems usually
provide three options to those customers who prefer to write
UDFs themselves: (a) incorporating UDFs directly into the
server (and thereby incurring the substantial risks that this
approach entails), (b) running UDFs in a separate process
at the server, providing some simple operating system secu-
rity guarantees, or (c) running UDFs on the client-side in a
client environment that mimics the server environment. We
describe these options in detail in Section 3.

2.3 Secure Kernel Extensions

The operating systems community has explored the issue
of security and performance in the context of kernel exten-
sions. The main sources of security violations considered are
illegal memory accesses and the unauthorized invocation of
procedures. One proposed technique is to use safe languages
to write the extensions, and to ensure at compile and link
time that the extensions are safe. The Spin project [Ber95],
for example, uses a variant of Modula-3 and a sophisticated
linker to provide the desired protection. Another proposed
mechanism, called Software Fault Isolation (SFI)[WLAG93],
instruments the extension code with run-time checks to en-
sure that all memory access are valid (usually by checking
the higher order bits of each address to ensure that it lies
within a speci�c range). This work on kernel extension has
recently seen renewed interest with particular emphasis on
extending applications using similar techniques. Extensi-
ble web servers are a prime example, since issues such as
portability and ease of use are especially important. When
extending a server process, another option is to run the ex-
tension code in a separate process and use a combination of
hardware and operating system protection mechanisms to
\sandbox" the code; the virtual memory hardware prevents
unauthorized memory accesses, and system call interception
examines the legality of any interaction between the exten-
sion code and the environment.

One of the shortcomings of all the work on extensions
we are aware of is that only the safety of memory accesses
and control transfers is taken into account. In particu-
lar, the memory, CPU, and I/O resource usage of indi-
vidual extensions are not monitored or policed, and this
makes simple denial-of-service attacks (or simple resource
over-consumption) possible.

2.4 Safe Languages

Strongly typed languages such as Java, Modula-3, and ML
enforce safety of memory accesses at the object level1. This
�ner granularity makes it possible to share data structures
between the system core and the extensions. Access to
shared data structures is con�ned to well-de�ned methods
that cannot cause system exceptions. Additional mecha-
nisms allow the system designer to limit the extension's ac-
cess rights to the necessary minimum2.

1In a strongly typed language each identi�er has a type that can be
determined at compile time. Any access using such an identi�er has
to accord to the rules of that type. The necessary information that
cannot be determined statically, like array bounds and dynamic casts,
is checked at runtime (for a survey of type systems, see [Car97]).

2The security community calls this the `least privilege'
principle[SS75]. Every user is granted the least set of privileges
necessary.

Safe languages depend on the trustworthiness of their
compilers: the compiled code is guaranteed to have no in-
valid memory accesses and perform no invalid jumps. Un-
fortunately, these properties cannot, in general, be veri�ed
on resulting compiled code because the type information of
the source program is stripped o� during compilation. Pos-
sible solutions to this problem are the addition of a veri�-
able certi�cate to the compiled code either in the form of
proof carrying code [Nec97] or as typed assembly language
[MWCG98].

Another approach is the use of typed intermediate code
as the target language for compilation. This code can be
veri�ed and executed by platform-speci�c interpreters while
the code itself remains platform independent. The safety of
strongly-typed languages is preserved without the need for
a trusted compiler. The negatives of this approach include
the need for and overhead of an interpreter on each plat-
form, and the overhead of verifying the type-safety of the
code. Java uses exactly this design: source programs are
compiled into Java bytecode that is veri�ed by the Java vir-
tual machine (JVM) when loaded. Typically, the JVM also
compiles parts of the byte codes to machine code before ex-
ecution.

Since the JVM is a controlled execution environment,
it can apply further constraints to the executed programs,
including absolute bounds on the memory usage (for exam-
ple, the JVM in the Netscape 4.0 browser uses a limit of
4MB for the memory usage of Java applets). However, the
current JVMs do not provide any form of generic resource
management.

2.5 Contrast with Databases

Database systems provide an attractive application environ-
ment for user extensions, and therefore some of the work
from other areas mentioned in this section is applicable to
DBMS UDFs as well. However, there are some subtle dif-
ferences in perspective:
� In the case of database systems, the portability of the
UDFs is an important consideration. The users who are
developing UDFs may have di�erent hardware/OS plat-
forms.

� The portability of the entire DBMS server is also a con-
cern; it is undesirable to tie the UDF mechanism to a
speci�c hardware/OS platform.

� In OS research, there is usually some concern at the ini-
tial overhead associated with running new code (e.g., time
to start a new process). This may not be a concern in a
database system, since the cost can be amortized over sev-
eral invocations of the UDF on an entire relation of tuples.
Similarly, the overhead associated with compilation of new
code is often not a concern, since it can be performed of-

ine.

� In OS research, there is usually concern over the per-
invocation overhead for new code (e.g., message passing
overhead). Since there are several invocations of the UDF
in a database environment, it may be possible to reduce
the overhead through batching.

3 UDF Design Alternatives

We now examine the various design alternatives for adding
UDFs to a DBMS. Speci�cally, we examine two broad issues:
Location (i.e., where the UDF runs), and Language (i.e.,

how the UDF is speci�ed). For each design alternative, we
are interested in its e�ect on e�ciency, security, and ease
of use. We assume that the database server is written in a
language (like C or C++) that is compiled and optimized
to platform-dependent machine code. We call this language
\native" in contrast to languages with platform-independent
portable code, like Java. The clients are not necessarily
implemented in the native language and may run on diverse
platforms.
Location: There are three alternatives.
� The UDF runs at the server site, within the server pro-
cess.

� The UDF runs at the server site, in a process isolated
from the server.

� The UDF runs at the client site.3

Language: The UDF could be written in the native lan-
guage of the DBMS or in a di�erent language. If the UDF
is run at the client, the availability of language tools (com-
pilers, interpreters, etc.) at the client is an important con-
sideration. Languages that are supported on a wide range
of clients are obviously preferable. If the UDF is run at the
server site within the server process, there must be some
interface mechanism from the native language to the UDF
language.

To make the discussion concrete, we will assume in this
paper that the native language of the DBMS is C++,4 and
we will consider C++ and Java as representative UDF lan-
guages. These assumptions also correspond to our imple-
mentation. Our results with respect to C++ should general-
izable to any native language that is compiled into platform-
dependent machine code without strong security features
like type and array bounds checking.

3.1 Client-Side UDF Execution

The client-side execution of a UDF is obviously secure for
the server; however it can lead to unacceptably poor per-
formance. For example, consider a function REDNESS(I)
that computes the percentage of red pixels in image I. The
following query �nds images of bright sunsets from upstate
New York:

SELECT *
FROM Sunsets S
WHERE REDNESS(S.picture) > 0.7 and

S.location = ``fingerlakes''

If the UDF were not available at the server, all the im-
ages would need to be shipped to the client where their
\redness" would be checked as a post-processing �lter. This
would correspond to the \data-shipping" approach used by
object-oriented databases [Fra96] which is known to be a
poor choice for certain queries, as both the server and the
network perform signi�cant unnecessary work. An alterna-
tive strategy is for the server to contact the client for each
UDF execution. This too has obvious drawbacks in the la-
tency of many such calls (UDFs are often applied to each
tuple of a relation) and the cost of shipping the function

3A fourth alternative is for the UDF to run at some intermedi-
ate site. However, we consider this equivalent to running it at the
client site, since the advantages of server-side execution as well as the
connected security problems are not present.

4Most database servers including PREDATOR are written in C
or C++, making this a reasonable assumption. In an interesting de-
velopment, a few research projects and small companies are building
database systems totally in Java [Cim97].

arguments to the client. A further problem which is often
overlooked is that UDFs may require access to other func-
tions and facilities in the database server (for example, to
store intermediate results). Consequently, we will focus on
server-side UDFs in this paper. In future work, we intend to
explore client-side UDFs and �nd query optimization tech-
niques to choose between server-side and client-side execu-
tion.

3.2 Server-Side UDF Execution

Table 1 shows the design space for server-side UDFs. There
are four possible designs: the language of the UDF can be
the native server language or a non-native language, and
the UDF can be integrated within the same process or in an
isolated process.

Language Same Process Di�erent Process

Native Design 1 Design 2
(C++) (C++ Integrated) (C++ Isolated)
Non-Native Design 3 Design 4
(Java) (Java Integrated) (Java Isolated)

Table 1: Design Space for Server-Side UDFs

Clearly, Design 1 will have the best performance of all
the options since it essentially corresponds to hard-coding
the UDF into the server. However, the obvious concern is
that system security might be compromised. Buggy UDF
code could cause the server to crash, or otherwise result
in denial-of-service to other clients of the DBMS. Malicious
code could modify the server's memory data structures or
even the database contents on the local disks. Low-level OS
techniques such as software fault isolation (see Section 2.3)
can address only some of these concerns. Additionally, it
may be di�cult for a client to develop a UDF in the server's
native language without access to the server's compilers and
its environment.

Using Design 2, one could prevent the UDF from directly
crashing the server process. However, the UDF could still
compromise security by modifying �les or killing the server.
While Design 2 is less e�cient than Design 1, the concerns
about ease of use (or lack thereof) are similar. One of the
attractions of Design 2 is that since the UDF computation
occurs in a separate process, system call interception tech-
niques can be used to control its behavior (see Section 2.3).

This paper explores the possibilities of Design 3, compar-
ing it to the other alternatives. A Java UDF has some very
desirable properties: it is portable and supported on most
platforms. With an adequate environment on the client and
the server side, the UDF can be developed and tested at the
client and then migrated to the server. In Section 6, we de-
scribe such an environment built in PREDATOR. Because
Java was designed with the intent to allow secure and dy-
namic extensibility in a network environment, the addition
of an UDF and its migration between client and server is well
supported by the language features (see Section 6). How-
ever, there are some possible drawbacks with Java UDFs.
Java code may run more slowly than corresponding native
code. Further, whenever the language boundary is crossed,
there is an \impedance mismatch" that may be expensive5.
This is usually re
ected in the e�ciency of the system. Note

5In our case, the impedance mismatch is incurred by using the
Java native interfacing mechanism (e.g., JNI). There are di�erent
implementations available from Sun [JNI] and Microsoft [RNI].

that the language boundary needs to be crossed for each
UDF invocation, and there may be several such invocations.

In this paper, we quantify the e�ciency tradeo�s be-
tween the design alternatives, so that database developers
and UDF builders may balance them against the qualita-
tive advantages in the areas of security and portability. We
do not consider Design 4 explicitly | we assume that its
behavior can be extrapolated as a combination of Design 2
and Design 3.

4 Implementation in PREDATOR

PREDATOR is an object-relational database system devel-
oped at Cornell [SLR97]. It provides a query processing
engine on top of the Shore storage manager [CDF+94]. The
server is a single multi-threaded process, with at least one
thread per connected client. While the server is written
in C++, clients can be written in several languages, in-
cluding C++ and Java. Speci�cally, considerable e�ort has
been invested in building Java applet clients than can run
within web browsers and connect directly with the database
server [PS97].

The feature of PREDATOR most relevant to this paper
is the ability to specify and integrate UDFs. The original
implementation supports only Design 1 (i.e., UDFs imple-
mented in C++ and integrated into the server process). No
protection mechanism (like software fault isolation) was used
to ensure that the UDF is well-behaved. From published
research on the subject [WLAG93], we expect such a mech-
anism to add an overhead of approximately 25%. For the
purposes of this study, we have also implemented Design 2
(C++ UDFs run in a separate process) and Design 3 (Java
UDFs run within the server process). We now discuss these
implementations. The main details of interest are the mech-
anisms used to pass data/parameters to and results from the
UDF. Further, some UDFs may require additional commu-
nication with the database server. For example, a UDF that
extracts pixel hi; ji of an image may be given a handle to
the image, rather than the entire image. The UDF will then
need to ask the server for the appropriate data, based on
the parameters i and j. We call such requests \callbacks".

The actual mechanism used to load UDFs is not relevant
to this paper; either recompilation or dynamic loading can
be used. We assume that UDFs are free of side-e�ects; with-
out this assumption, it is di�cult to describe the semantics
of an SQL query that uses a UDF. Since PREDATOR is not
a parallel OR-DBMS, all expressions (including UDFs) are
evaluated in a serial manner.

4.1 Isolated Execution of Native UDFs

We added the ability to execute C++ UDFs in a separate
process from the server. When a query is optimized, one re-
mote executor process is assigned to each UDF in the query.
These executors could be assigned from a pre-allocated pool,
although in our implementation, they are created once per
query (not once per function invocation). The task of a re-
mote executor is simple: it receives a request from the server
to evaluate the UDF, performs the evaluation, and then re-
turns the evaluated result to the server. Communication be-
tween the server and the remote executors happens through
shared memory. The server copies the function arguments
into shared memory, and \sends" a request by releasing a
semaphore. The remote executor, which was blocked trying
to acquire the semaphore, now executes the function and

UDF

(native lang.)

Database Server

Client

UDF

(native lang.)

UDF Handler

Figure 1: Design 1: Integrated Native UDFs

places the results back into shared memory. The hand-o�
for callback requests and for the �nal answer return also
occur through a semaphore in shared memory.

We expect that there will be some overhead associated
with the synchronization and process switching. This over-
head will be independent of the computational complexity
of the UDF, but possibly a�ected by the size of the data (ar-
guments and results) that has to be passed through shared
memory.

4.2 Integrated Execution of Java UDFs

In our implementation, Java functions are invoked from within
the server using the Java Native Interface (JNI) provided as
part of Sun's Java Development Kit (JDK) 1.1 [JNI]. The
�rst step is to instantiate a Java Virtual Machine (JVM) as
a C++ object. Any classes that need to be used should have
been compiled from Java source (.java �les) to Java byte-
codes (.class �les). The classes are loaded into the JVM
using a speci�ed interface. When methods of the classes
need to be executed, they are invoked through the JNI in-
terface. Parameters that need to be passed must �rst be
mapped to Java objects.

The creation of a JVM is a heavyweight operation. Con-
sequently, a single JVM is created when the database server
starts up, and is used until shutdown. Each Java UDF is
packaged as a method within its own class. If a query in-
volves a Java UDF, the corresponding class is loaded once
for the whole query execution.

The translation of data (arguments and results) requires
the use of further interfaces of the JVM. Callbacks from the
Java UDF to the server occur through the \native method"
feature of Java. There are a number of details associated
with the implementation of support for Java UDFs. Im-
portantly, security mechanisms can prevent UDFs from per-
forming unauthorized functions. We describe these details
in Section 6.

Client

Shared
Memory

resultsdata

data results

Shared
Memory

resultsdata

data results

Database Server

UDF
(native lang.)

UDF
(native lang.)

UDF Handler

Figure 2: Design 2: Isolated Native UDFs

Client

data results

Database Server

UDF
(Java)

data results

UDF
(Java)

Java VM (JNI)

UDF Handler

Figure 3: Design 3: Java UDFs

5 A Performance Study

We now present a performance comparison of three imple-
mentations of UDF support:

1. Design 1: C++ within the server process [Marked
\C++" in the graphs]

2. Design 2: C++ in a separate (isolated) process [Marked
\IC++"]

3. Design 3: Java within the server process using the JNI
from Sun's JDK 1.1.4 [Marked \JNI"]

The purpose of the experiments was to explore the rela-
tive performance of the di�erent UDF designs while varying
three broad parameters:

� Amount of Computation: How does the computational
complexity of the UDF a�ect the relative performance?

� Amount of Data: How does the total amount of data
manipulated by the UDF (as parameters, callbacks, and
result) a�ect the relative performance?

� Number of Callbacks: How does the number of callbacks
from the UDF to the database server a�ect the relative
performance?

The three UDF designs were implemented in PREDATOR,
and experiments were run on a Sparc20 with 64MB of mem-
ory running Solaris 2.6. In all cases, the JVM included a
JIT compiler.

5.1 Experimental Design

Since UDFs can vary widely, the �rst decision to be made
is: how does one choose representatives of real UDFs? Real
UDFs may vary from something as simple as an arithmetic
operation on integer arguments, to something as complex as
an image transformation. We used a \generic" UDF that
takes four parameters (ByteArray, NumDataIndepComps,
NumDataDepComps, NumCallbacks) and returns an integer.

� The �rst argument (ByteArray) is an array of bytes of
variable size. This models all the data passed as parame-
ters to the UDF and during callback requests. By varying
the size of the bytearray, we explore the e�ect of variable
data access.

� The second argument (NumDataIndepComps) is an inte-
ger that controls the amount of \data independent" com-
putation in the UDF. The computation within the UDF
performs a simple integer addition operation several times
within a loop | the number of iterations is speci�ed by
NumDataIndepComps.

� There is also a separate loop in which the entire byte ar-
ray is repeatedly iterated over, as many times as speci�ed
by NumDataDepComps, the third parameter. This is meant
to model many real UDFs (such as image transformations)
in which the amount of computation depends on the size
of the parameters.

� The fourth parameter (NumCallbacks) speci�es the num-
ber of callback requests that the UDFmakes to the database
server during its execution. No data is actually transferred
during the callback; instead, all data transfers are modeled
in the �rst parameter (ByteArray). While this is slightly
inaccurate (real callbacks involve the transfer of data), we
chose this model for its simplicity.

The simplest UDF has values of 0 for its second, third and
fourth parameters. In all our experiments, parameter values
are 0 unless otherwise speci�ed.

In all our experiments, we used three relations of cardi-
nality 10,000. Each relation has an attribute of type ByteArray,
and all the bytearrays in tuples of the same relation are of
the same size. Relations Rel1, Rel100, and Rel10000 have
byte arrays of size 1, 100, 10000 bytes respectively in each
tuple. The basic query run for each experiment is:

SELECT UDF(R.ByteArray, NumDataIndepComps,
NumDataDepComps, NumCallbacks)

FROM Rel* R
WHERE <condition>

We vary the number of UDFs applied by specifying re-
strictive (and inexpensive) predicates in the WHERE clause.
In all experiments, our goal is to isolate the cost of applying
the UDFs and ignore the basic cost of scanning the relations.
All the graphs measure response time along the Y-axis, while
a single parameter is varied along the X-axis.

5.2 Calibration

The �rst two experiments act as calibration for the remain-
ing measurements. We �rst measure the basic cost of execut-
ing the query in Figure 5.1 with a trivial integrated C++
function that does no work. In Figure 4, the number of
UDF invocations is varied along the X-axis. The di�erent
lines correspond to di�erent sizes of bytearrays in the rela-
tions (the larger bytearrays being more expensive to access).
These numbers represent the basic system costs that we sub-
tract from the later measured timings to isolate the e�ects
of UDFs. In most experiments, we will use 10,000 UDF
invocations | the last point on the X-axis.

1

10

100

� �� ��� ���� �����

of func calls

ti
m

e
(s

ec
s) Rel1 Rel100 Rel10000

Figure 4: Calibration: Table Access Costs

In Figure 5, the number of UDF invocations is �xed at
10,000. The three UDF designs (C++, IC++ and JNI) are
compared as the bytearray size is varied along the X-axis.
The UDFs themselves perform no work. Note that 10,000
invocations of a Java UDF incurs only a marginal cost. In
fact, for the smaller bytearray sizes, the invocation cost of
IC++ is higher than for JNI. This indicates that the cost
of using the various JNI interfaces is lower than the context
switch cost involved in IC++. For the highest bytearray
size, JNI performs marginally worse than IC++, probably
because of the e�ect of mapping large bytearrays to Java.

However, for both JNI and IC++, the extra overhead is
insigni�cant compared to the overall cost of the queries.

1

10

100

1 100 10000

byte array size

ti
m

e
(s

ec
s) C++ IC++ JNI

Figure 5: Calibration: Function Invocation Costs

5.3 E�ect of Computation

In this set of experiments, our goal is to measure the e�ect
of computationally intensive UDFs. The number of UDF
invocations is set at 10,000 and the bytearray size is set
at 10,000 bytes. Along the X-axis is the UDF parameter
NumDataIndepComps that controls the amount of computa-
tion. We expected Java UDFs to perform worse than com-
piled C++. The results in Figure 6 indicate that JNI per-
forms worse than both C++ options. However, the di�er-
ence is a constant small invocation cost di�erence that does
not change as the amount of computation changes. This in-
dicates that the Java UDF is run as e�ciently as the C++
code (essentially, the result of a good JIT compiler).

The lower graph shows the performance of IC++ and
JNI relative to the best possible performance (C++). Even
when the number of computations is very high, there is
no extra price paid by JNI. In the UDFs tested, the pri-
mary computation was integer addition. While other op-
erations may produce slightly di�erent results, the results
here lead us to the conclusion that it is perfectly reasonable
to expect good performance from computationally intensive
UDFs written in Java.

5.4 E�ect of Data Access

The next step is to measure performance when there is sig-
ni�cant data access involved. Once again, we �x the num-
ber of UDF invocations at 10,000 and the bytearray size at
10,000. The data dependent computation, NumDataDepComps,
varies along the X axis. The other UDF parameters,
NumDataIndepComps and NumCallbacks, are set to 0 to iso-
late the e�ect of data access.

Java performs run-time array bounds checking which we
expect will slow down the Java UDFs. The results in Fig-
ure 7 reveal that this assumption is indeed valid, and there
is a signi�cant penalty paid. We did not run JNI with 1000
NumDataDepComps because of the large time involved. The
lower graph shows the relative performance of the di�erent
UDF designs.

In a sense, this is an unfair comparison, because the Java
UDFs are really doing more work by checking array bounds.
To establish the cost of doing this extra work, we tested
a second version of the C++ UDF that explicitly checks

40

50

60

0 10 100 1000 10000

DataIndepComps

ti
m

e
(s

ec
s) C++ IC++ JNI

0

0.5

1

1.5

2

0 100 10000 1000000

DataIndepComps

re
la

ti
ve

 t
im

e C++ IC++ JNI

Figure 6: Pure Computation

the bounds of every array access. When compared to this
version of a C++ UDF, JNI performs only 20% worse even
with large values of NumDataDepComps. It is evident that the
extra array bounds check a�ects C++ in just the same way
as Java.

Most UDFs are likely to make no more than a small
number of passes over the data accessed. For example, an
image compression algorithm might make one pass over the
entire image. For a small number of passes over the data, the
overall performance of Java UDFs is not very much worse
than C++.

5.5 E�ect of Callbacks

In our �nal set of experiments, we examine the e�ects of call-
backs from UDFs to the database server. It is our experience
that many non-trivial methods and functions require some
database interaction. This is especially likely for functions

that operate on large objects such as images or time-series,
but require only small portions of the whole object (a vari-
ety of Clip() and Lookup() functions fall in this category).
For each callback, the boundary between server and UDF
must be crossed.

In Figure 8, the number of callbacks varies along the
X-axis, while the functions themselves perform no compu-
tation (data dependent or independent). The isolated C++
design performs poorly because it faces the most expensive
boundary to cross. For Java UDFs, the overhead imposed
by the Java native interface is not as signi�cant. The higher
values of NumCallbacks occur rarely; one might imagine a
UDF that is passed two large sets as parameters, and com-
putes the \join" of the two using a nested loops strategy.
Even for the common case where there are a few callbacks,
IC++ is signi�cantly slower than JNI.

10

100

1000

10000

0 1 10 100 1000

DataDepComps

ti
m

e
(s

ec
s)

C++ IC++ JNI

0

1

2

3

4

5

0 1 10 100 1000

DataDepComps

re
la

ti
ve

 t
im

e C++ IC++ JNI

Figure 7: Data Access

5.6 Conclusion from Study

To summarize the conclusions of our performance study:
� Java seems to be an acceptable choice to build UDFs.
Its performs poorly relative to C++ only when there is
a signi�cant data-dependent computation involved. This
is the price paid for the extra work done in guaranteeing
memory accesses (array bounds checking).

� Remote execution of C++ functions incurs small over-
heads due to the cost of crossing process boundaries. While
this overhead is minimal if incurred only once per UDF
invocation, it may be more signi�cant when incurred mul-
tiply due to UDF callbacks.

� There is a tradeo� in the design of a UDF that accesses
a large object. Should the UDF ask for the entire object
(which is expensive), or should it ask for a handle to the
object and then perform callbacks? Our experiments in-
dicate the inherent costs in each approach. In fact, our

experiments can help model the behavior of any UDF by
splitting the work of the UDF into di�erent components.

6 Java-based UDF Implementation

Based on our experience with the implementation of Java-
based UDFs, we now focus on the following issues generally
relevant to the design of Java UDFs:
� Security and UDF isolation: Our goal was to extend the
database server without allowing buggy or malicious UDFs
to crash the server. On the other hand, limited interaction
of the UDFs and the server environment is desirable.

� Resource management: Even when a restrictive security
policy is applied, we face the problem of denial-of-service
attacks. The UDF could consume excessive amounts of
CPU time, memory or disk space.

� Integration of a JVM into a database server: The execu-
tion environment of the UDF is not necessarily compatible

1

10

100

1000

0 1 10 100

Callbacks

ti
m

e
(s

ec
s) C++ IC++ JNI

0
5

10
15
20
25

0 1 10 100

Callbacks

re
la

ti
ve

 t
im

e

C++ IC++ JNI

Figure 8: Callbacks

with the operating environment of the database system.

� Portability and Usability: The Java UDF design should
establish mechanisms to easily prototype and debug UDFs
on the client-side and to migrate them transparently be-
tween client and server.

6.1 Security and UDF Isolation

Isolating a Java UDF in the database is similar to isolating
an applet within a web browser. The four main mechanisms
o�ered by the JVM are:
� Bytecode Veri�cation: The JVM uses the bytecode ver-
i�er to examine untrusted bytecodes ensuring the proper
format of loaded class �les and the well typedness of their
code.

� Class Loader: A class loader is a module of the JVMman-
aging the dynamic loading of class �les. New restricted
class loaders can be instantiated to control the behavior
of all classes that it loads from either a local repository or
from the network. A UDF can be loaded with a special
class loader that isolates the UDF's namespace from that
of other UDFs and prevents interactions between them.

� Security Manager: The security manager is invoked by
the Java run-time libraries each time an action a�ecting
the execution environment (such as I/O) is attempted. For
UDFs, the security manager can be set up to prevent many
potentially harmful operations.

� Thread Groups: Each UDF is executed within its own
thread group, preventing it from a�ecting the threads ex-
ecuting other UDFs.

Under the assumption that we trust the correctness of the
JVM implementation, these mechanisms guarantee that only
safe code is loaded from classes that the UDF is allowed to
use[Yell96]. These can include other UDF classes, but, for
example, not the classes in control of the system resources.
The security manager allows access restriction with a �ner
granularity: a UDF might be allowed by its class loader to
load the `File' class, but only with certain path arguments,
as determined by the security manager. The use of thread
groups limits the interactions between the threads of di�er-
ent UDFs.

We note that while these mechanisms do provide an in-
creased level of security, they are not foolproof; indeed, there
is much ongoing research into further enhancements to Java
security. The security mechanisms used in Java are com-
plex and lack formal speci�cation [DFW96]. Their correct-

ness cannot be formally veri�ed without such a speci�ca-
tion, and further, their implementations are complex and
have been known to exhibit vulnerabilities. Additionally,
the three main components: veri�er, class loader, and secu-
rity manager are strongly inter-dependent. If one of them
fails, all security restrictions can be circumvented. Another
problem of the Java security system is the lack of auditing
capabilities. If the security restrictions are violated, there no
mechanism to trace the responsible UDF classes. Although
we are aware of these various problems, we believe that the
solutions being developed by the large community of Java
security researchers will also be applicable in the database
context.

6.2 Resource Management

One major issue we have not addressed is resource manage-
ment. UDFs can currently consume as much CPU time and
memory as they desire. Limiting the CPU time would be
relatively straight-forward for the JVM because each Java
thread runs within its own system thread and thus operating
system accounting could be used to limit the CPU time allo-
cated to a UDF or the thread priority of a UDF. Memory us-
age, however, cannot currently be monitored: the JVM does
not maintain any information on the memory usage of indi-
vidual UDFs. The J-Kernel project at Cornell [vEHCCH98]
is exploring resource management mechanisms in secure lan-
guage mechanisms, like JVMs. Speci�cally, the project is de-
veloping mechanisms that will instrument Java byte-codes
so that the use of resources can be monitored and policed.
Such mechanisms will be essential in database systems.

6.3 Threads, Memory, and Integration

It may be non-trivial to integrate a JVM into a database
server. In fact, some large commercial database vendors
have attempted to use an o�-the-shelf JVM, and have en-
countered di�culties that have lead them to roll-their-own
JVMs [Nor97]. The primary problem is that database servers
tend to build proprietary OS-level mechanisms. For in-
stance, many database servers use their own threads package
and memory management mechanisms. Part of the reason
for this is historical | given a wide variance in architectures
and operating systems on which to deploy their systems,
database vendors typically chose to build upon a \virtual
operating system" that can be ported to multiple platforms.
For example, PREDATOR is built on the SHORE storage
manager which uses its own non-preemptive threads pack-
age. Systems like Microsoft's SQLServer which run on lim-
ited platforms may not exhibit these problems because they
can use platform-speci�c facilities.

� Threads and UDFs: The JVM uses its own threads pack-
age, which is often the native threads mechanism of the
operating system. The presence of two threads packages
within the same program can lead to unexpected and un-
desirable behavior. The thread priority mechanisms of the
database server may not be able to control the threads cre-
ated by the JVM. If the database server uses non-preemptive
threads, there may be no database thread switches while
one thread is executing a UDF (this is currently the case in
PREDATOR). Further, with more than one threads pack-
age manipulating the stack, serious errors could result.

� Memory Management: Many commercial database servers
implement proprietary memory managers. For example, a
common technique is to allocate a pool of memory for a

query, perform all allocations in that pool, and then re-
claim the entire pool at the end of the query (e�ectively
performing a coarsely-grained garbage collection). On the
other hand, the JVM manages its own memory, perform-
ing garbage collection of Java objects. The presence of
two garbage collectors running at the same time presents
further integration problems. We do not experience this
problem in PREDATOR, because there is no special mem-
ory management technique used in our implementation of
the database server.

6.4 Portability and Usability

We have developed a library of Java classes that helps de-
velopers build Java applets that can act as database clients.
The details of this library are presented in [PS97]. It is
roughly analogous to a JDBC driver (in fact, we have built
a JDBC driver on top of it) with extensions for handling
complex data types. The user sits at a client machine and
accesses the PREDATOR database server through a stan-
dard web browser. The browser downloads the client applet
from a web server, and the applet opens a connection to the
database server.

Our goal is to be able to allow users to easily de�ne new
Java UDFs, test them at the client, and migrate them to
the server. This mechanism is currently being implemented.
The basic requirement is that there should be similar inter-
faces at the client and at the server for UDF development
and use. Every data type used by the database server is mir-
rored by a corresponding ADT class implemented in Java.
These ADT classes are available both to the client and the
server6. Each ADT class can read an attribute value of its
type from an input stream and construct a Java object rep-
resenting it. Likewise, the ADT class can write an object
back to an output stream. Thus the arguments of an UDF
can be constructed from a stream of parameter values, and
the result can be written to an output stream. At both
client and server, Java UDFs are invoked using the identical
protocol; input parameters are presented as streams, and
the output parameter is expected as a stream. This allows
UDF code to be run without change at either site.

6.5 Experience

We have described a relatively well-understood usage of the
Java security mechanisms that is essentially identical to run-
ning multiple applets within a web browser. Our implemen-
tation has developed a common internal interface that can
be supported at both client and server for the development
of portable Java UDFs.

There are interesting design issues in integrating a JVM
into the database server, especially in dealing with threads
and memory allocation. Based on our experiments, we ob-
serve that the cost of isolated-process UDFs is reasonable
unless there are a large number of callbacks. Consequently,
it may be practical to consider running the JVM in a sep-
arate process from the database server. The attraction of
this solution lies in its simplicity and the ability to use o�-
the-shelf JVMs.

7 Conclusion

This paper presented an initial study of the issues involved
in extending database systems using Java. The conclusion is

6The client can download Java classes from the server-site.

that an extensible database system can support secure and
portable extensibility using Java, without unduly sacri�cing
performance. We are currently developing the infrastruc-
ture to move Java UDFs between clients to servers, and
optimization mechanisms to choose between the various ex-
ecution options. We also intend to build applications that
will test this infrastructure in the real world.

References

[Ber95] Brian Bershad. Extensibility, safety and per-
formance in the spin operating system. In Fif-
teenth Symposium on Operating Systems Prin-
ciple, 1995.

[Car97] Luca Cardelli. Type Systems The Computer
Science and Engineering Handbook 1997: 2208-
2236

[CDF+94] M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E.
Hall, M. McAuli�e, J.F. Naughton, D.T. Schuh,
M.H. Solomon, C.K. Tan, O. Tsatalos, S. White,
and M.J. Zwilling. Shoring up persistent ob-
jects. In Proceedings of ACM SIGMOD '94 In-
ternational Conference on Management of Data,
Minneapolis, MN, pages 526{541, 1994.

[Cim97] Cimarron Taylor. Java-Relational Database
Management Systems. http://www.jbdev.com/,
1997.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach Java Security: From HotJava to Netscape
and Beyond 1996 IEEE Symposium on Security
and Privacy, Oakland, CA

[Fra96] M.J. Franklin. Client Data Caching. Kluwer
Academic Press, Boston, 1996.

[FJK96] M.J. Franklin, B.T. Jonsson and D. Kossman.
Performance Tradeo�s for Client-Server Query
Processing. In Proceedings of ACM SIGMOD
'96 International Conference on Management of
Data 1996.

[HCL+90] L. Haas, W. Chang, G.M. Lohman, J. McPher-
son, P.F. Wilms, G. Lapis, B. Lindsay, H. Pira-
hesh, M. Carey, and E. Shekita. Starburst mid-

ight: As the dust clears. IEEE Transactions on
Knowledge and Data Engineering, March 1990.

[Hel95] Joseph M. Hellerstein. Optimization and Exe-
cution Techniques for Queries With Expensive
Methods. PhD thesis, University of Wisconsin,
August 1995.

[Jhi88] Anant Jhingran. A Performance Study of Query
Optimization Algorithms on a Database System
Supporting Procedures. In Proceedings of the
Fourteenth International Conference on Very
Large Databases, pages 88{99, 1988.

[JNI] JNI { Java Native Interface
http://www.javasoft.com/products/jdk/1.1
/docs/guide/jni/index.html

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to Typed Assembly
Language To appear in the 1998 Symposium on
Principles of Programming Languages

[NCW98] Just In Time for Java vs. C++
http://www.ncworldmag.com/ncworld/ncw-01-
1998/ncw-01-rmi.html

[Nec97] George C. Necula. Proof-Carrying Code Pro-
ceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Lnaguages (POPL'97), Paris, France,
1997.

[Nor97] Anil Nori. Personal Communication, 1997.

[RNI] Microsoft Raw Native Interface
http://premium.microsoft.com/msdn/library/
sdkdoc/java/htm/rni introduction.htm

[PS97] Mark Paskin and Praveen Seshadri. Building an
OR-DBMS over the WWW: Design and Imple-
mentation Issues. Submitted to SIGMOD 98,
1997.

[SLR97] Praveen Seshadri, Miron Livny, and Raghu Ra-
makrishnan. The Case for Enhanced Abstract
Data Types. In Proceedings of the Twenty
Third International Conference on Very Large
Databases (VLDB), Athens, Greece, August
1997.

[SRG83] M. Stonebraker,
B. Rubenstein, and A. Guttman. Application
of Abstract Data Types and Abstract Indices to
CAD Data Bases. In Proceedings of the Engi-
neering Applications Stream of Database Week,
San Jose, CA, May 1983.

[SRH90] Michael Stonebraker, Lawrence Rowe, and
Michael Hirohama. The Implementation of
POSTGRES. IEEE Transactions on Knowledge
and Data Engineering, 2(1):125{142, March
1990.

[SS75] Jerome H. Saltzer, Michael D. Schroeder. The
Protection of Information in Computer Sys-
tems http://web.mit.edu/Saltzer/www/ publi-
cations/protection

[Sto86] Michael Stonebraker. Inclusion of New Types in
Relational Data Base Systems. In Proceedings of
the Second IEEE Conference on Data Engineer-
ing, pages 262{269, 1986.

[vEHCCH98] Thorsten von Eicken, Chris Hawblitzel,Chi-
Chao Chang, Gzegorz Czajkowski, and Deyu
Hu. Implementing Multiple Protection Do-
mains in Java to appear, Usenix 1998 Annual
Technical Conference, June 15-19, New Orleans,
Louisiana.

[WLAG93] R. Wahbe, S. Lucco, T. Anderson, and S. Gra-
ham. E�cient software-based fault isolation.
In Fourteenth Symposium on Operating Systems
Principle, 1993.

[Yell96] Frank Yellin. Low Level Security in Java
http://www.javasoft.com:81/sfaq/veri�er.html

