Efficient Algorithms for
Optimal Video Transmission

Dexter Kozen Yaron Minsky Brian Smith

Computer Science Department
Upson Hall
Cornell University

Ithaca, New York 14853-7501
{kozen,yminsky,bsmith}@cs.cornell.edu

Abstract

This paper addresses the problem of sending an MPEG-encoded video stream
over a channel of limited bandwidth. When there is insufficient bandwidth
available for the rate at which the sequence was encoded, some data must be
dropped. In this paper we give fast algorithms to determine a prioritization of
the data that optimizes the visual quality of the received video sequence in the
sense that the mazimum gap of unplayable frames is minimized.

Our results are obtained in a new model of encoded video data that is
applicable to MPEG and other encoding technologies. The model identifies a
certain key relationship between the play order and dependence order of frames
that allows fast determination of optimal send orders by dynamic programming.

1 Introduction

The transmission requirements for video data and ordinary data are quite different.
Ordinary data need not be received in real time, but every bit must be correct. Video
data, on the other hand, can tolerate some loss, but must be received, decoded, and
played back in real time. Unfortunately, limitations on channel bandwidth may not
allow all the data to get through for real-time playback. The question then arises:
which data should be sent so as to optimize the perceived quality of the received video
stream?

For example, consider a video segment consisting of 120 frames, all the same size
and independently decodable. Suppose further that due to bandwidth constraints
only 90 frames will get through in the allotted time. The question is: which frames
should be sent? Sending the frames in the order of play would leave a 30-frame gap at
the end, which at a playback rate of 30 frames/sec would be perceived by the viewer

as a one-second discontinuity. A better choice would be to drop every fourth frame,
because the gaps are small and evenly distributed.

Determining which frames to drop is easy if all frames are the same size and there
are no dependencies, as with the example above. However, the problem is significantly
more complicated without these restrictions.

Such is the case with the MPEG encoding standard [4]. Dependencies between
frames arise because frames that are very similar to neighboring frames are not rep-
resented in their entirety, but encoded succinctly as modifications to neighboring
frames. This gives considerable savings in storage and transmission time, but has
the disadvantage that to decode a frame, the receiving process must also have access
to all the frames it depends on. Another complicating factor is that the sizes of the
encoded frames vary significantly due to dependencies and compression, in practice
from 1K to 12K bytes.

When transmitting MPEG data over a traditional network, experiments show that
available bandwidth is highly variable, depending on network characteristics such as
link capacities and network load. This has lead many researchers to develop priori-
tized transmission schemes. For example, Priority Encoded Transmission (PET) [1]
uses a variation on forward error correction where redundant data is introduced to
compensate for data loss. Priority is encoded by associating high redundancy with
more important frames. Cyclic-UDP [7] uses a retransmission scheme that allows for
prioritized delivery. Reservation networks such as Tenet [3] allow users to reserve
bandwidth in the network, with statistical guarantees on the transmission properties
of the packets. Prioritized delivery can be obtained using several channels. For ex-
ample, a 1.5 Mbit/sec channel could be divided into a 1.0 Mbit/sec channel that has
no packet loss, and a 0.5 Mbit/sec channel that has 20% packet loss. One would then
place high priority data on the first channel and low priority data on the second.

An open problem in all of these systems is to choose a prioritization order for
MPEG video data sensibly. It is this problem we address in this paper.

Our solution assumes a transport layer that implements some priority-based trans-
mission scheme that when provided with n packets in priority order will transmit the
k highest priority packets. For our probabilistic results, we model £ as a random
variable distributed in the set {0,1,...,m} according to some probability distribu-
tion Pr , where m is the total number of packets. For instance, Pr (k = 0) is the
probability that no data will be received, while Pr (k = m) is the probability that all
packets get through.

1.1 Results

In this paper, we present fast algorithms to determine optimal transmission orders.
They are optimal in the sense that they minimize the mazimum gap for a given
bandwidth, where a gap is an interval of unplayable frames. A frame is unplayable
if either it was not received, or it was received but cannot be decoded because it
depends on a frame that was not received.

We give two algorithms for two different situations. The first algorithm is deter-
ministic and assumes that we know the channel bandwidth exactly. This would be

the situation for example with a reservation-based ATM network, where the network
server provides a guaranteed bandwidth to the sending process for an interval of time.
The algorithm produces a table that can be calculated offline in advance and stored
with the video data. The table gives for each £ < m a set of frames of total weight
at most k that minimizes the maximum gap. The complexity of the algorithm to
create the table is O(mn?®). When the video stream is to be transmitted, the frames
to transmit are determined by table lookup.

The second algorithm does not assume known bandwidth, but assumes that the
bandwidth is uniformly distributed in an interval with known endpoints. This as-
sumption is realistic, since there exist techniques to measure the channel bandwidth
at any instant of time reliably [7]. The algorithm computes an optimal order to trans-
mit the frames, where p is the size of the interval. The order is optimal in the sense
that it minimizes the expected maximum gap. The complexity of the algorithm is
O(pmn?).

We remark that the obvious greedy algorithm (in each step, choose the enabled
frame that minimizes the maximum gap of the remaining set of frames; continue until
the cutoff k is exceeded) is not optimal in either case.

1.2 Comparison with Recent Work

The problem we solve in this paper is part of an approach to the general problem called
temporal decimation, in which selected frames are dropped from the encoded sequence
of frames. The missing frames are filled in by replaying the latest decoded frame or
by interpolation. As more frames are dropped, the image degrades by developing a
jerkiness, depending on the sizes of the gaps between playable frames and the quality
of the interpolation process. While temporal decimation is standard practice for
some kinds of compressed video, it has generally not been used with MPEG streams
because of the frame dependencies. Interpolation methods for MPEG are currently
under investigation [6], which could be used in conjunction with our algorithms.

A more common approach, popular with the signal processing community, is spa-
tial decimation. This takes the form of dropping the least significant coefficients of
the Fourier or cosine transform of the image [2]. As more data are dropped, the im-
age degrades by developing a fuzziness around the edges of objects, called the corona
effect. This approach is highly dependent on the coding method and data format,
whereas the temporal approach is relatively independent of the particular coding
method. We would expect that a combination of the two approaches would produce
the best results in practice.

The remainder of this extended abstract contains a more detailed technical de-
velopment. Proofs are omitted from this abstract for lack of space. Full proofs and
further details can be found in [5]. A sample run is given in the Appendix.

2 A Formal Model of Video Sequences

We model an MPEG-encoded video sequence by:

a finite set U of frames,

a total order C on U called the play order, intuitively the chronological order
of the frames,

e a partial order < on U called the dependence order, intuitively the order giving
the dependence of one frame on another as described in the introduction. We
write u < v to indicate that frame v depends on u, i.e. cannot be decoded
without knowledge of u; and

e a weight function w : U — N giving the number of data units (nominally
“packets”) comprising each frame.

We also postulate the following key condition describing the relationship between the
two orders C and <:

Condition 2.1 For any frame u, the set of frames depending on u form an C-
interval. In other words,

Vudz 2z {v|u=vi={y|zCyLCz}.

This condition is satisfied by all MPEG sequences.

Although in reality if v < v then u is typically larger than v, we do not assume
any formal relationship between < and w in the model; nor do we take advantage of
any special structure of MPEG other than Condition 2.1.

Let < be any partial order on U. We write v < v if v < v but not v < u. For
u€ U and A C U, define

T<(u) = {v]u<o}
T<(4) = UTg(u) = {v|FueAu<v}.

u€A

l< (u) and |< (A) are defined similarly. For V' C U, a <-suffiz of V is a subset
X C V such that X = VN 7<(X), i.e. it is closed upward under <. A <-prefiz of
V is a subset X C V such that X = VN |<(X), i.e. it is closed downward under <.
An <-interval of V is an intersection of a suffix of V' and a prefix of V.

In this notation, Condition 2.1 says that for all frames u, 1< (u) is an C-interval.

For any set A, denote the cardinality of A by |A|. For A C U, define w(A) =
Y ueaw(u). A send order is a map 7 : {1,2,...,w(U)} — U such that for any u,
|77 ()] = w(u). Intuitively, at time 7, we send the next packet from frame (7).

For a send order 7, u € U, A C U, and 0 < i < w(U), define

last, (u) o max 7 *(u) (1)
last,(A) o max last, (u) (2)
received, (i) = {u|last,(u) < i} (3)

playable (i) = {u|l<(u) C received, (i)}

= {ulastz(l<(u)) < i} (4)
unplayable_(7) - playable_ (i) (5)
maxint(A) o max{|I| | [is an C-interval of A} (6)
M, (1) o maxint(unplayable_(7)) (7)
w(U)
E(Mn(k) =" Mo(i)Pr (k=) . (8)
i=0

The number last,(u) represents the time that the last packet of u is sent under the
send order 7, and last,(A) is the time that the last packet of some frame in A is
sent under the send order m. When 7 is the send order and ¢ is the cutoff, the set
received, (i) is the set of frames received; the set playable (i) is the set of playable
frames (the set of frames u such that w and all frames on which u depends are
received); the set unplayable (i) is the set of unplayable frames; and the number
M, (i) is the length of the longest unplayable interval. The quantity £(M,(k)) is the
expected length of the longest unplayable interval when 7 is the send order. A send
order 7 is optimal if £(M,(k)) is minimum.

The send order 7 defines a total order on frames according to the time at which
their last packets are sent:

udyv &L last, (u) < last.(v) .

2.1 Acceptable Send Orders

Define a send order 7 to be contiguous if for all u € U, 7 '(u) is an <-interval. In
other words, all packets of one frame are sent together. Define a send order 7 to be
consistent with the dependence order < if u < v = u <, v; that is, if <, is a total
extension of <. We say that a send order is acceptable if it is both contiguous and
consistent with <.

Without loss of generality, we can restrict our attention to acceptable send orders:

Lemma 2.2 For any send order mw, there is a contiguous send order ©' such that
&My (k) < £(My(K)).

Lemma 2.3 For any contiguous send order , there is a contiguous send order 7'
consistent with < such that E(M (k)) < E(M(k)).

Intuitively, a frame is not considered received until its last packet is received; and
it does not make sense to send a frame unless all frames on which it depends have
already been sent, since it cannot be decoded without them anyway.

Note that an acceptable send order 7 is uniquely determined by its induced total
order <, on U, for this reason we henceforth omit the 7 and speak of send orders <.

2.2 Basic Properties

Let < be a partial order on U. Two sets V,W C U are said to be <-independent if
no pair of elements v € V and w € W are <-comparable; i.e., if for all v € V' and
w € W, neither v < w nor w < v. A family of subsets of U is said to be pairwise
<-independent if all pairs of sets in the family are <-independent.

Let V' C U. We say that a set A is enabled in V if A is a <-prefix of V. A set is
enabled if it is enabled in U. A single element u is enabled in V if {u} is enabled in
V', i.e. if u is a <-minimal element of V.

The following independence property is the crucial observation that allows optimal
send orders to be computed efficiently. Intuitively, if w is an element of an enabled
set A, there are no precedence constraints between two frames in U — A on opposite
sides of w. Thus no remaining frame occurring before w in the play order sent in
the future can cause a frame occurring after w in the play order to become enabled,
or vice versa. In other words, the sets of frames occurring before and after w in the
play order are =<-independent. This will allow us to process the C-intervals to the
left and right of w independently to get optimal send orders on those subsets, then
merge them to get an optimal send order on the union.

Lemma 2.4 If A is enabled, w € A, u,v € U — A, and u C w C v, then u and v are
=<-incomparable. In other words, if A is enabled and w € A, then | (w) N (U — A)
and T (w) N (U — A) are <-independent.

Corollary 2.5 The set of gaps of any enabled set are pairwise <-independent.

3 Algorithms for Known Cutoff

Algorithm 3.1 is a recursive algorithm for computing an enabled set A minimizing
maxint(A) subject to w(A) < k for known cutoff k. The order of transmission does
not matter. The algorithm actually computes a table of such sets for all values of k&
by dynamic programming.

The algorithm is called by GAP(I), where [is a gap of some enabled set. It returns
a list of subsets B(d) C I and a list of numbers C(d), one for each 0 < d < w(I),
such that

The algorithm is called at the top level by GAP(U).

Algorithm 3.1 GAP(I):
If I = @, return lists with one element B(0) = & and C'(0) = 0.
Otherwise, for each element u € enabled([/), set

Iry, = IN{v]vCu}
I, = In{v|v3du}.

It can be shown that I, and I, are <-suffixes of U. Recursively compute GAP(/-,)
and GAP(I5,). This gives By, Cry, By, and C,. Create the lists By, and Cp,
that give the optimal sets to send and their max gap sizes given that u is one of the
frames sent, as follows. For each d < w(u), set

Br,(d) = o
CIu(d) = |]|

’

For each d such that w(u) < d < w([I), set

Bl,u(d) = BEu(Z)U{u}UBju(])
Cru(d) = max Cr,(i), Cou(j)

where 4, j are such that 0 <7+ j 4+ w(u) < d and max Cr,(i), C,(j) is minimum.
It can be shown that the set By ,(d) is enabled in I. Using the fact that Cr,(7)
and C5,(7) are monotonically nonincreasing in ¢, one can scan the lists C-, and C+,
linearly to determine By, and Cy, in time O(w(I)).

Now for each d, 0 < d < w([), set Br(d) = Bru(d) and Cr(d) = Cru(d), where
Cru(d) is minimum over all enabled w € I. This requires linear time in the sizes of
the lists.

This algorithm can be implemented in a dynamic programming style by computing
GAP(I) for all <-upward closed C-intervals I of length 1, then the same for all such
I of length 2, and so on. Alternatively, the algorithm can be implemented in a
recursive style with intermediate results cached so that subsequent calls with the
same parameters take constant time.

There are at most O(n?) intervals on which the procedure can be called. A call on
interval I takes time O(w(I) - |I]) exclusive of recursive subcalls, giving a total time
bound of O(w(U) - n?).

4 Algorithms for Unknown Cutoff

In this section, we do not assume that the cutoff £ is known, but is uniformly dis-
tributed on some interval [a,b]. We give the algorithm here for a = 0 and b = w(U),
then discuss how to modify it for an arbitrary interval at a cost of an extra linear
factor in complexity. In fact, we can give a polynomial-time algorithm for any step
function with a constant number of steps, although this is not very interesting because
the dependence is exponential in the number of steps of the step function.

Assume then that & is uniformly distributed in the interval [0,w(U)]. Thus

Pr(k=1)= W In this case, (8) simplifies to
1 :
E(Mx(k)) = WzmaXIHt(Tg (u))w(u) .
uelU

Since all we care about is minimization, we can drop the normalization term and just
minimize #(U) over all choices of send order <, where for any gap I of an enabled
set,

(1) = Z maxint(Tq (u) N Iw(u) .

4.1 Greedy Merge

The following result allows us to treat <-independent sets separately, then combine
the results to give an optimal solution for the union of the two sets.

Let V,W be <-independent <-suffixes of U such that any C-interval intersecting
both V' and W also intersects U — (V U W). In our application, V and W will be
adjacent gaps of some enabled set.

We say that a total order < on V U W is the greedy merge of its restrictions to V'
and Wifforallu e VUW,

uw €V <<= maxint(T<(u) NV) > maxint(T< (u) N W) (9)
uwelW <= maxint(T<(u) NV) < maxint(t< (u) N W) (10)

(the two conditions are equivalent). The greedy merge of two send orders on V' and
W can be computed by taking in each step either the least remaining element v € V'
or the least remaining element w € W, depending on whether maxint(t4 (v)) >
maxint(T< (w)) or maxint(T4 (v)) < maxint(T4 (w)), respectively.

Theorem 4.1 Any greedy merge of optimal send orders on V and W is an optimal
send order on VU W.

This implies that the optimal acceptable send order for an C-interval I of U is of
the form u followed by a greedy merge of optimal send orders on I, and I+, for some
u enabled in /. This gives rise to the following recursive algorithm for computing an
optimal send order for a given interval /. For each enabled element u of I, separate
the interval into I, and I, and recursively compute 0(I-,) and #(3 u) and optimal
send orders on /., and I,. Set

6(I) = ueeg&l})du) 11|+ w(u) 4+ 0(Izy) + 0(1qu) .
For the u € enabled(]) giving the minimum, greedily merge the optimal send orders
on §(I-,) and #(/4u) and put u in front to get an optimal send order on /.

As in Algorithm 3.1, the algorithm can be implemented either in a bottom-up
dynamic programming style or in a recursive style in which intermediate results are

cached. There are O(n?) possible intervals on which the algorithm can be called, and
a call on interval I takes time O(]I]) exclusive of recursive subcalls. This gives a total
time bound of O(n?).

A slight modification of the algorithm works for an arbitrary interval distribution

[a, b]. We actually compute recursively, for each gap of an enabled set, a table giving
the optimal send order for each possible interval distribution [a’,b]. The optimal
send orders on subintervals are greedily merged as above. The merge that gives the
best result for each interval distribution [a, b] is retained, and all others are discarded.

References

[1]

A. Albanese, J. Blomer, J. Edmonds, M.Luby, and M. Sudah. Priority encoding
transmission. Symposium on Foundations of Computer Science, pages 604-612,
October 1994.

A. Eleftheridas, S. Pejhan, and D. Anastassiou. Algorithms and performance
evaluation of the XPhone multimedia communication system. In Proceedings of
ACM Multimedia 93, pages 311-320, New York, 1993. Association for Computing
Machinery Press. (Anaheim, CA, August 1-6, 1993).

D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia—a discus-
sion of the Tenet approach. Computer Networks and ISDN Systems, 26(10):1267—
1280, July 1994.

D. Le Gall. MPEG: a video compression standard for multimedia applications.
Communications of the ACM, 34(4):46-58, April 1991.

Dexter C. Kozen, Yaron Minsky, and Brian Smith. Efficient algorithms for optimal
video transmission. Technical Report 95-1517, Computer Science Department,
Cornell University, May 1995.

Daniel Scharstein. Synthesizing new views from stereo data. In IEFE Work-
shop on Representations of Visual Scenes (in conjunction with ICCV’95), 1995.
Submitted.

Brian Christopher Smith. Implementation Techniques for Continuous Media Sys-
tems and Applications. PhD thesis, University of California at Berkeley, 1994.

Appendix

Here is a sample run. The program asks for an MPEG sequence consisting of I, P,
and B frames. The I frames are independently coded and are usually the largest.
Each P frame depends on the previous I or P frame. Each B frame depends on the
previous and next I or P frame.

sequence? ibbpbbpbbibbpbbbpbbibppbbpbbb

01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 position

I BB P B B P B I BB P B BBPBBTIBPP B B P B B B type

01 2 1 4 5 4 7 8 7 10 11 10 13 14 15 13 17 18 17 20 20 22 23 24 23 26 27 28 left

8 1 2 8 4 5 8 7 818 10 11 18 13 14 15 18 17 18 28 20 28 28 23 24 28 26 27 28 right

211111111 21111111 1 1 211 1 1 1 1 1 1 1 weight
total weight = 32

0: —————————

10 -

2 ————————- I-————

3 - I--P-——————————————-

4: ——-—————- I-—-————- I--——————-

5: ————————- I--P--—--- I-———————-

6: ——=—————- I--P---—--- I-P------—-

7: I-————-—- I--P-==--- I-———————-

8: I--—----- I--P---—--- I-P------—-

9: I--P----- I--P--—--- I-P-—=--—-

10: I--P-----I--P------I-PP------

11: I--p-----I--P---P--I-PP------

12: I--P-----I--P---P--I-PP--P---

13: I--P--P--I--P---P--I-PP--P---
14: I--P--P--I--P---P--I-PP--P-B-
15: I--P--P--I--P-B-P--I-PP--P-B-
16: I--P--P--I--P-B-P--I-PPB-P-B-
17: I--P--P--I--P-B-PB-I-PPB-P-B-
18: I--P--P--IB-P-B-PB-I-PPB-P-B-

19: I--P--PB-IB-P-B-PB-I-PPB-P-B-
20: I--PB-PB-IB-P-B-PB-I-PPB-P-B-
21: IB-PB-PB-IB-P-B-PB-I-PPB-P-B-
22: IB-PB-PB-IB-P-B-PB-I-PPB-PBB-
23: IB-PB-PB-IB-P-B-PB-I-PPB-PBBB

24: IB-PB-PB-IB-P-B-PB-I-PPBBPBBB
25: IB-PB-PB-IB-P-B-PB-IBPPBBPBBB
26: IB-PB-PB-IB-P-B-PBBIBPPBBPBBB
27: IB-PB-PB-IB-PBB-PBBIBPPBBPBBB
28: IB-PB-PB-IB-PBBBPBBIBPPBBPBBB
29: IB-PB-PB-IBBPBBBPBBIBPPBBPBBB
30: IB-PB-PBBIBBPBBBPBBIBPPBBPBBB
31: IB-PBBPBBIBBPBBBPBBIBPPBBPBBB
32: IBBPBBPBBIBBPBBBPBBIBPPBBPBBB

The program determines the endpoints of the interval influenced by each frame.
For example, the I frame at position 9 influences all frames between position 7 and
18, inclusive. The weights of the frames are arbitrarily assigned 1 (B and P frames)
or 2 (I frames) for simplicity for purposes of illustration.

The total weight of all frames in this example is 32. The table that is produced
contains a row for each weight. Row 7 gives a set of frames of total weight at most ¢
which minimize the maximum gap over all sets of weight at most i. For example, if
we can only get 14 packets through, we should send the frames indicated in row 14.
In this case the maximum gap is 3, and we can do no better.

