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1 Some Homework Exercises

In introductory automata theory, one can find a wealth of enter-
taining automata-theoretic puzzles such as the classical first halves
problem:

Show that if A is a regular set, then so is the set of all
first halves of strings in A:

FirstHalves(A) = {x| 3y |y| = |z| and 2y € A} .

Once students master the basic pebbling technique for solving such
problems, they can move on to more challenging variants:

Show that if A is a regular set, then so are the following:

Az = A{x |3y ly| = |«]* and xy € A}
Ay = {x]3y |y| = 2" and zy € A}
Aprn = Az | Jy |yl = 22" and xy € A} .

Students are often quite surprised at first that these sets should
be regular, since the presence of the nonlinear functions seems to
contradict their emerging intuition about regularity.

An effective tool in all these problems is the Boolean transition
matriz of an automaton for A. This is the square Boolean matrix
A indexed by states of the automaton with 1 in position uv iff the
automaton contains a transition v —— v for some symbol a. The
Boolean powers A" give the n-step transition relations. To solve
the problem above for Asn, for example, one only has to determine
how to get from A?" to A2 in one step. This is done by squaring



the matrix. There are only finitely many possible such matrices, so
they can all be encoded in the finite control of an automaton for
Agn. Composing this construction with itself gives an automaton for
A22’ﬂ .

Similarly, to solve the problem for A, 2, one has to determine how
to get from A" to AC*” in one step. Observing that A(+1)’
A" A2"A | we see that it would also be nice to know A2, But this is
no problem, since A?" can be maintained in the state as well. Thus
the states of the new automaton encode pairs (C, D) of matrices,
along with transitions (C, D) — (C DA, DA?). One can then prove
easily by induction that in n steps, (I,1) - (A”2,A2”).

Expanding on this idea leads to an elegant proof that if A is
regular, then so is the set

A, = Hx| 3y ly| = p(|z|) and zy € A},
where p is any polynomial with nonnegative integer coefficients. The
solution is based on the hint
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where d is the degree of p and p() is the ¢*! derivative. From (1) we
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where a; is the coefficient of n/ in p(n).



Now one builds an automaton for A, whose states encode (d+1)-
tuples of matrices

(CZ|0§Z§d) = (007017"'7051)
and transitions

d k
(Cilo<i<d) — (J[c10<j<d).

iy
One can then show by induction using (2) and (3) that in n steps,

(A% |0<i<d) = (AP0 g <i<d).

In particular, the first component is AP(?),

2 Regularity-Preserving Functions

Exercises like these arouse one’s curiosity about the general class of
functions f for which the theorem

It A is regular, then so is
Ay = {a| 3y |yl = f(Jz|) and zy € A}

holds. Does this class have a nice characterization? Let us call
such functions regularity preserving. Not all functions are regularity
preserving: for example, logn is not. The class is closed under
addition, multiplication, exponentiation, composition, and contains
arbitrarily fast growing functions, including highly noncomputable
ones.

In the remainder of this note we give two characterizations of
the class of regularity-preserving functions in terms of the concept
of ultimate periodicity. One of these characterizations involves two
simple independent conditions that are relatively easy to check.

Let ¥ be a finite alphabet, ¥* the set of finite-length strings over
Y, N={0,1,2,...}. Subsets of ¥* are denoted A, B, ... and subsets
of N are denoted U, V,... The length of a string 2 € ¥* is denoted
|z|. The set of all lengths of strings in A is denoted lengths(A).
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Definition 1 A set U C N is called ultimately periodic (u.p.) (or
semilinear) if

dp>1 O‘v’on nell on+pel.

More generally, a function f : N — N is called ultimately periodic if

Fp=>1 Y fn)=fln+p).

a

Here O\v’o means “for all but finitely many.” Note that a set is u.p. iff
its characteristic function is. The number p is called a period of U
or f. Every u.p. set or function has a smallest period, which is the
ged of all its periods.

A simple example of a u.p. set is [k],,, the congruence class of &
modulo m; i.e., the set of numbers n such that m | n — k. In fact,
the family of u.p. sets is the smallest family containing all finite sets
and the sets [k],, and closed under the Boolean operations. If U,V
are u.p. with periods p, g respectively, then U UV is u.p. with period
lem(p, q).

It is well known (and not difficult to prove) that for any regular
set A, the set lengths(A) is u.p.; and for any u.p. set U, the set
{z | |z| € U} is regular. In particular, if A a set of strings over a
single letter alphabet, then A is regular iff lengths(A) is u.p.

Definition 2 A function f : N — N is said to preserve ultimate
periodicity if f~*(U) is u.p. whenever U is. O

Definition 3 A function f : N — N is said to be ultimately peri-
odic modulo m (u.p. mod m) if the function n — f(n) mod m is
ultimately periodic. a

For A C ¥* and f:N —= N, let

Ay = A{x |3y lyl = f(|z]) and xy € A}
Ay = x| 3y lyl = f(|z]) and y € A} .

Consider the following four conditions:
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C1 Ay is regular whenever A is.
C2 A’ is regular whenever A is.
C3 f preserves ultimate periodicity.

C4 (i) f is ultimately periodic modulo m for all m > 1; and
(i1) f~'({z}) is ultimately periodic for all z € N.

We remark that the two subconditions of C4 are independent.
For any U' C N, the function

(n) = 0, iftnel,
) = nl, ifngU

satisfies C4(i), since for any n > m, g(n) = 0 mod m; but ¢~ ({0}) =
U, so C4(ii) fails when U is not u.p. On the other hand, the function

h(n) = k, where 2% is the highest power of 2 dividing n + 1

= the position of the first 0 in the binary representation of n,
reading from right to left

satisfies C4(ii), since A~ ({k}) = [2¥ — 1]yx41, but not C4(i), since
for any p > 1 there are arbitrarily large n such that h(n) is odd iff
h(n + p) is even: if k = h(p — 1) 4 2, then for any m > 1,

RRFTT 1) = k™41
R(2FT — 1 4 p) k—2.

Thus h is not u.p. modulo 2.

Lemma 4 The statement C4(i) is equivalent to the statement that
I~ H[Z)m) is ultimately periodic for all i and m.

Proof. For all m,

“H([1m

)1sup 0<:<m-—1
- /\ Ip; > 1 f7'([1],m) is w.p. with period p;



— Ip>1 A [7'([{]n) is wp. with period p (take p = lem; p;)

n € f7H([im) o n+pe ()

m—1

< dp=1 /\ Voo f(n) € liln e fln+p) € il

o Ip>1 Vn /_\ f(n) € [ilm & f(n+p) € [i]n

Vo f(n)=f(n+p)modm

f is u.p. modulo m.
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Theorem 5 The four conditions C1 — C4 are equivalent.

Proof. (C1 — C4) To show C4(i), let 0 < k < m — 1, and

consider the regular set (a™)*a*. We have

((@™)*a*); = {x |3y lyl = f(le]) and zy € {a""*" | n > 0}}
= {d'| 35 j = f(i) and a'a’ € {a™"* | n > 0}}
= {a'|3j 5= f(:) and i +j = k mod m}
= {d'|i+ f(i) = k mod m} ,

and by C1, this set is regular, thus

lengths(((a™)*a*);) = lengths({a'|i+ f(i) = k mod m})
= {i]i+ f(¢) = k mod m}
= 7 ([km)
is u.p., where f'(n) = n + f(n). Since this holds for arbitrary k and
m, it follows from Lemma 4 that [’ satisfies C4(i), thus f'(n) is u.p.

modulo m for any m. Since the function n — (—n) mod m is also
u.p., so is the sum

f'(n) mod m+ (—n) modm = f'(n) —nmodm
= f(n) modm .



To show C4(ii), consider the regular set a®ba®. Intersecting
(a®ba®); with the regular set a™b, we obtain

a®bn (a*bak)f
= {a"b |3y ly| = f(|a"b]) and a"by € {a"ba" | n > 0}}
= {a"b |3y lyl = f(n+1) and y = ¢*}
= {d"blk=fn+1)}
= {a"b[n+1e 1 ({kD},

and by C1 this set is regular, therefore

lengths({a"b[n+1€ [T'({k})}) = {n+1]|n+1e [({k})}
= [T ({k}) - {0}
is w.p. Then f~'({k}) is u.p. as well.
(C4 — C3) Let U be a u.p. set with period p. Then U can be

expressed as a Boolean combination of a finite set F' and sets of the
form [¢],:

U = F&([t]pUlea]pU---Ulirlp)

where @ denotes symmetric difference of sets. Then

)
= [T F ([, Uliap U- - Ulikly)

= [ e (f (['])Uf_l([iz]p)U---Uf_l([ik]p))
(

Ur & (ST () U T ([dp) U U () -

zeF

By C4, Lemma 4, and the closure of u.p. sets under the Boolean
operations, this set is u.p.

(C3 — C2) Note that
Ay = o l3ye Ayl = f(lel))
= {a|dn €lengths(A) n = f(|z|)}
= {a] f(|z|) € lengths(A)}
= {a||z| € f_l(lengths(A))} .
If A is regular, then lengths(A) is u.p. By C3, f~'(lengths(A)) is

u.p., therefore A’ is regular.



(C2 — C1) In the notation of [1], let A be any regular set and
let M = (Q, ¥, 6, s, F) be a deterministic finite automaton with
LIM)y=A. lfpe@ and G C Q, let Mf be the automaton

MG — (Q? 27 57p7 G)'
Then

Ay = {o |y lyl=1f
= {z|ylyl=71
= {z |3y lyl =S
= Uflzl3ylyl=17s

) and xy € A}

) and 6(s,zy) € F'}

) and 6(6(s,x),y) € F'}

(|z|) and 6(s,x) = p and 8(p,y) € F'}

pEQ

= UAa | 6(s,2) =pyn{z |3y |yl = f(|z]) and &(p,y) € F'}
pEQ

= U Lm&PynrLmly, .
pEQ

By C2 and the closure of the regular sets under the Boolean set
operations, this is a regular set. a

It follows from the various characterizations of Theorem 5 that
the regularity-preserving functions are closed under addition, multi-
plication, exponentiation, and composition. The function log n is not
regularity preserving, because it is not ultimately periodic modulo

2.

Acknowledgement

Devdatt Dubhashi first observed the equivalence of C1 and C3.

References

[1] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.



