
On Hoare Logic, Kleene Algebra, and Types

Dexter Kozen
Department of Computer Science

Cornell University
Ithaca, New York 14853-7501, USA

kozen@cs.cornell.edu

January 3, 2000

Abstract

We show that propositional Hoare logic is subsumed by the type calculus
of typed Kleene algebra augmented with subtypes and typecasting. Asser-
tions are interpreted as typecast operators. Thus Hoare-style reasoning with
partial correctness assertions reduces to typechecking in this system.

1 Introduction

In previous work (Kozen 1999), we have shown that Kleene algebra with tests
(KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and
deductive apparatus of Hoare logic are inessential and can be replaced by simple
equational reasoning. We have also shown that KAT provides a complete deductive
system for Hoare-style inference rules involving partial correctness assertions and
that PHL is PSPACE-complete.

In other recent work (Kozen 1998), we have introduced a simple and natural
type system for Kleene algebra (KA) in which objects have types s� t. The use
of types was motivated by the desire to handle nonsquare matrices, although there
are other useful interpretations.

In this paper we extend the type system of KA to KAT by adding rules for
subtypes and typecasting. Tests are interpreted as typecast operators. We then
observe that a Hoare partial correctness assertion fbg p fcg can be regarded as a
type judgement p : b� c. We show that under this encoding, all the inference
rules of PHL can be derived in the type calculus. Thus Hoare-style reasoning with
partial correctness assertions is essentially a matter of typechecking in this system.
Moreover, the typing rules of KAT can be soundly encoded in pure (typeless) KAT.



The interplay of types and assertions, programs and proofs has been observed
in many contexts and at many levels, from constructive mathematics and program-
ming language semantics to program analysis and compiler certification. Perhaps
the most far-reaching example is the Curry-Howard isomorphism, or propositions-
as-types principle, and its ramifications (Bates and Constable 1985, Constable
1988, Constable 1998, Girard 1971, Girard, Lafont and Taylor 1989, Martin-Löf
1982, Reynolds 1974). The present work reveals yet another aspect of this phe-
nomenon.

2 Definitions

2.1 Hoare Logic

Hoare logic is a system for reasoning inductively about well-structured programs.
Comprehensive surveys can be found in (Apt 1981, Cousot 1990).

A common choice of programming language in Hoare logic is the language of
while programs. The first-order version of this language contains a simple assign-
ment x :� e, conditional test if b then p else q, sequential composition p ; q, and a
looping construct while b do p.

The basic assertion of Hoare logic is the partial correctness assertion (PCA)
fbg pfcg, where b and c are formulas and p is a program. Intuitively, this statement
asserts that whenever b holds before the execution of the program p, then if and
when p halts, c is guaranteed to hold of the output state. It does not assert that p
must halt.

Semantically, programs p in Hoare logic are usually interpreted as binary in-
put/output relations pM on a domain of computationM, and assertions b are inter-
preted as subsets bM ofM (Cook 1978, Pratt 1978). The definition of the relation
pM is inductive on the structure of p; for example, �p ; q�M � pM �qM, the ordi-
nary relational composition of the relations corresponding to p and q. The meaning
of the PCA fbg p fcg is the same as the meaning of the DL formula b � [p]c,
where � is ordinary propositional implication and the modal formula [p]c is in-
terpreted in M as the set of states s such that for all �s� t� � pM, the output state t
satisfies c.

Hoare logic provides a system of specialized rules for deriving valid PCAs,
one for each programming construct. The verification process is inductive on the
structure of programs. The traditional Hoare inference rules are:

Assignment rule:

fb[x�e]g x :� efbg (1)

2



Composition rule:

fbg pfcg� fcgqfdg

fbg p ; qfdg
(2)

Conditional rule:

fb� cg pfdg� f�b� cgqfdg

fcg if b then p else qfdg
(3)

While rule:

fb� cg pfcg

fcgwhile b do pf�b� cg
(4)

Weakening rule:

b� � b� fbg pfcg� c� c�

fb�g pfc�g
� (5)

The propositional fragment of Hoare logic (PHL) consists of atomic proposition
and program symbols, the usual propositional connectives, while program con-
structs, and PCAs built from these. Atomic programs are interpreted as arbitrary
binary relations on a setM and atomic propositions are interpreted as arbitrary sub-
sets of M. The deduction system consists of the composition, conditional, while,
and weakening rules (2)–(5) and propositional logic. The assignment rule (1) is
omitted, since there is no first-order relational structure over which to interpret
program variables; in practice, its role is played by PCAs over atomic programs
that are postulated as assumptions.

2.2 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions (Conway 1971, Kleene
1956). The axiomatization used here is from (Kozen 1994). A Kleene algebra is an
algebraic structure �K� �� �� �� 0� 1� that is an idempotent semiring under �� ��0�1
and that satisfies

1� pp� � p� (6)

1� p�p � p� (7)

q� pr � r � p�q� r (8)

q� rp� r � qp� � r (9)

3



where � refers to the natural partial order on K:

p� q
def
�	 p�q � q�

The operation � gives the supremum with respect to the natural order �. Instead
of (8) and (9), we might take the equivalent axioms

pr � r � p�r � r (10)

rp� r � rp� � r� (11)

These axioms say essentially that � behaves like the Kleene asterate operator of
formal language theory or the reflexive transitive closure operator of relational al-
gebra.

Terms in the language of Kleene algebra are built from variables x�y� � � � , bi-
nary operators � and �, unary operator �, and constants 0 and 1. Terms are often
called regular expressions and are denoted p�q� � � � . Atomic formulas are equations
between terms. The expressions p� q and q
 p are abbreviations for p�q � q.

Kleene algebra is a versatile system with many useful interpretations in seman-
tics, verification, and algorithm design and analysis. Standard models include the
family of regular sets over a finite alphabet; the family of binary relations on a set;
and the family of n� n matrices over another Kleene algebra. A more unusual
interpretation is the min,+ algebra used in shortest path algorithms.

The following are some typical identities that hold in all Kleene algebras:

�p�q��p� � �p�q�� (12)

p�qp�� � �pq��p (13)

�pq�� � 1� p�qp��q (14)

p� � �pp���1� p�� (15)

All the operators are monotone with respect to �. In other words, if p � q, then
pr � qr, rp� rq, p� r � q� r, and p� � q� for any r.

The completeness result of (Kozen 1994) says that all true identities between
regular expressions interpreted as regular sets of strings are derivable from the
axioms of Kleene algebra. In other words, the algebra of regular sets of strings
over the finite alphabet Σ is the free Kleene algebra on generators Σ. The axioms
are also complete over relational models.

See (Kozen 1994) for a more thorough introduction.

2.3 Kleene Algebra with Tests

Kleene algebras with tests (KAT) were introduced in (Kozen 1996, Kozen 1997)
and their theory was further developed in (Cohen, Kozen and Smith 1996, Kozen

4



and Smith 1996). A Kleene algebra with tests is just a Kleene algebra with an
embedded Boolean subalgebra. That is, it is a two-sorted structure

K � �K� B� �� �� �� � 0� 1�

such that

� �K� �� �� �� 0� 1� is a Kleene algebra,

� �B� �� �� � 0� 1� is a Boolean algebra, and

� B 
 K.

The Boolean complementation operator is defined only on B. Elements of B are
called tests. The letters p�q�r�s denote arbitrary elements of K and a�b�c denote
tests. If Σ is an alphabet representing atomic Kleene elements and B is an alphabet
representing atomic Boolean elements, then TΣ�B and TB denote the set of all terms
and the set of all Boolean terms, respectively.

This deceptively simple definition actually carries a lot of information in a
concise package. The operators �� ��0�1 each play two roles: applied to arbitrary
elements of K, they refer to nondeterministic choice, composition, fail, and skip,
respectively; and applied to tests, they take on the additional meaning of Boolean
disjunction, conjunction, falsity, and truth, respectively. These two usages do not
conflict—for example, sequential testing of b and c is the same as testing their
conjunction—and their coexistence admits considerable economy of expression.

The encoding of the while program constructs is as in PDL (Fischer and Ladner
1979):

p ; q
def
� pq (16)

if b then p else q
def
� bp�bq (17)

while b do p
def
� �bp��b� (18)

For applications in program verification, the standard interpretation would be
a Kleene algebra of binary relations on a set and the Boolean algebra of subsets of
the identity relation. One could also consider trace models, in which the Kleene el-
ements are sets of traces (sequences of states) and the Boolean elements are sets of
states (traces of length 0). As with KA, one can form the algebra Mat�K�n� of n�n
matrices over a KAT K � �K� B�; the Boolean elements of this structure are the
diagonal matrices over B. There is also a language-theoretic model that plays the
same role in KAT that the regular sets of strings over a finite alphabet play in KA,
namely the family of regular sets of guarded strings over a finite alphabet Σ with

5



guards from a set B. This is the free KAT on generators Σ�B; that is, the equational
theory of this structure is exactly the set of all equational consequences of the KAT
axioms. Moreover, KAT is complete for the equational theory of relational models
(Kozen and Smith 1996).

In (Kozen 1999), it was shown that KAT subsumes PHL in the following sense.
A partial correctness assertion fbg p fcg is encoded as an equation bpc � 0, or
equivalently, bp � bpc. If a rule

fb1g p1 fc1g� � � � � fbng pn fcng

fbg pfcg

is derivable in PHL, then its translation, the universal Horn formula

b1 p1c1 � 0� �� ��bnpncn � 0 � bpc � 0�

is a theorem of KAT. More generally, one can show that all relationally valid Horn
formulas of the form

r1 � 0� �� �� rn � 0 � p � q

are theorems of KAT (Kozen 1999).

2.4 Typed Kleene Algebra

Typed Kleene algebra was introduced in (Kozen 1998). It is motivated primarily by
the desire to interpret regular expressions as matrices of various shapes, possibly
nonsquare. For example, in the completeness proof of (Kozen 1991, Kozen 1994),
it must be argued that a few essential theorems of Kleene algebra, such as

ax� xb � a�x� xb�� (19)

still hold when the symbols are interpreted as matrices of various sizes and shapes,
provided there is no type mismatch. The equational implication (19) holds in
Mat�K�n�, the n� n matrices over a Kleene algebra K, simply by virtue of the
fact that Mat�K�n� is a Kleene algebra. However, for the purposes of (Kozen
1991, Kozen 1994), we need to know that it holds even when a is interpreted as an
m�m matrix, x is interpreted as an m� n matrix, and b is interpreted as an n� n
matrix for any m and n.

To handle nonsquare matrices and other similar typed applications, we intro-
duced a typing discipline in which regular expressions p have types of the form
s� t, where s and t are elements of an abstract set Ω. Every expression has a most
general typing (mgt) under which the expression is well-typed and which refines

6



every other typing for which this is true. For example, the most general typing of
the expression ab�c is a : u� v, b : v� v, c : v�w, where u, v, and w are distinct.
Most general typings exist and are unique up to a bijection. These ideas give rise
to a theory called typed Kleene algebra.

In our principal interpretation, Ω�N and the type judgement p : s� t indicates
that p is a matrix with row and column dimensions s and t, respectively. There are
other useful interpretations as well: sets of traces in a labeled transition system,
binary relations with specified domains and ranges, regular sets of guarded strings
(Kozen 1997, Kozen and Smith 1996), semiadditive categories (Manes 1992).

Let Ω be a set and ω : fx�y� � � �g � Ω2. Elements of Ω are denoted s� t�u�v� � � �
and are called pretypes. Elements of Ω2 are called types and are denoted s� t. (In
(Kozen 1998) we also included a type � for Boolean values.)

The map ω is called a type environment. If ω�x� � s� t, we write x : s� t

and say that x has type s� t under ω.
We can use the following calculus to derive types for certain expressions from

ω. A type judgement is an expression

p : s� t

where p is a regular expression and s� t is a type. Given a type environment ω,
types for compound terms and formulas are inferred inductively according to the
following rules:

p : s� t q : s� t

p�q : s� t
(20)

p : s� t q : t� u

pq : s� u
(21)

p : s� s

p� : s� s
(22)

0 : s� t (23)

1 : s� s (24)

Note that 0 has all types and 1 all square types (types of the form s� s for
some s �Ω).

Every type environment ω extends uniquely to a minimal set of type judge-
ments closed under these rules. This unique extension is also denoted ω and is
called a typing. An expression p is well-typed under the typing ω if ω contains a

7



type judgement p : s� t. A set of expressions is said to be well-typed under ω if
every expression in the set is well-typed under ω.

Not all expressions are well-typed under all typings. For example, if x : s� t

and s �� t, the expression x� is not well-typed. Moreover, the type of an expression
under a typing ω is not unique; for example, if x : s� t, then x0 : s� u for all u.
However, the type of a variable is unique.

A class of models called typed Kleene algebras was defined in (Kozen 1998);
this semantics is reviewed below in Section 4.

In (Kozen 1998) it was shown that a wide class of theorems of untyped Kleene
algebra are also theorems of typed Kleene algebra under their most general typings.

3 Encoding Hoare Logic

In (Kozen 1999) we showed that partial correctness assertions can be regarded as
equations in the language of KAT and that the usual rules of propositional Hoare
logic are theorems of KAT under this encoding.

In this section we extend the type calculus of KA as described in Section 2.4
to account for tests. We augment the system with subtypes, intersection types, and
rules for subtyping and typecasting. Tests are interpreted as typecast operators. We
then show how PHL is subsumed by this type calculus. To complete the triangle,
we show how to encode the rules of the type calculus as valid universal Horn for-
mulas in the language of pure (typeless) KAT. These two encodings compose to
give the encoding of (Kozen 1999).

Let K � �K� B� be an arbitrary KAT. We impose a type structure on K as
follows. Take the Boolean algebra B as the set of pretypes; we write b � B in a
different font b when using it as a pretype. As in Section 2.4, a type judgement is
an expression of the form p : b� c.

We regard the natural order � on B as a subtype order and the conjunction op-
eration on B as a type intersection operator on pretypes. We postulate the following
subtyping rule:

b
� � b� p : b� c� c� c

�

p : b� � c
�

� (25)

(We will reconcile this view with the flat type structure of typed KA in Section 4
below.)

We regard a test b � B as a typecast or coercion operator that takes an object of
type c and casts it down to an object of type bc. This is reflected in the following
typing rule:

b : c� bc (26)

8



Note that in the presence of the subtype rule (25), this subsumes the rules 1 : s� s

and 0 : s� t of typed KA.
The rule (26) represents an idealized form of the behavior of typecast oper-

ators and runtime type checks in modern programming languages. For example,
consider the following Java fragment:

class High {}
class Low extends High {}
...
void fun(High y) {

Low x = null;
try {

x = (Low)y;
} catch (ClassCastException e) {}

}
...
fun(new Low());

The typecast operator (Low) is applied to an object whose runtime type Low is
a proper subtype of its type High as determined by the static type environment.
If the cast is unsuccessful, then a ClassCastException is thrown. But suc-
cessful or not, the type of the expression (Low)y is Low, and after the cast it is
type-correct to assign the object to a variable of that type.

The type calculus of KAT consists of the rules (20)–(24) of typed KA, the
subtype rule (25), and the typecast rule (26).

To encode PHL in the type calculus of KAT, we encode the PCA fbg pfcg by
the type judgement

p : b� c� (27)

Using (16)–(18) and (27), we obtain the following translations of the Hoare
rules (2)–(5):

Composition rule:

p : b� c� q : c� d

pq : b� d
(28)

Conditional rule:

p : bc� d� q : bc� d

bp�bq : c� d
(29)

9



While rule:

p : bc� c

�bp��b : c� bc
(30)

Weakening rule:

b
� � b� p : b� c� c� c

�

p : b� � c
�

(31)

We now show that these rules can be derived in the type calculus of KAT.

Theorem 3.1 The rules (28)–(31) are derived rules of the type calculus (20)–(26).

Proof. The rule (28) is just the composition rule (21) and the rule (31) is just
the subtype rule (25), so in these two cases there is nothing to prove.

For (29), we have

bp�bq : c� d
(g)

bp : c� d bq : c� d
(e) (f)

b : c� bc p : bc� d b : c� bc q : bc� d
(a) (b) (c) (d)

Here (a) and (c) are instances of the typecast rule (26), (b) and (d) are the premises,
(e) and (f) are applications of the composition rule (21), and (g) is an application
of the sum rule (20).

For (30), we have

�bp��b : c� bc
(f)

�bp�� : c� c b : c� bc
(e)(d)

bp : c� c
(c)

b : c� bc p : bc� c
(a) (b)

Here (a) and (e) are instances of the typecast rule (26), (b) is the premise, (c) and
(f) are applications of the composition rule (21), and (d) is an application of the
iteration rule (22). �

Now we encode the rules of the type calculus as universal Horn formulas in the
language of pure (typeless) KAT; thus the type calculus is redundant. Interpret the
type judgement p : b� c as one of the two equivalent equations

bpc � 0 or bp � bpc� (32)

10



The typing rule
p1 : b� � c�� � � � � pn : bn � cn

p : b� c

becomes the universal Horn formula

b1 p1c1 � 0� �� ��bnpncn � 0 � bpc � 0� (33)

Theorem 3.2 The typing rules (20)–(26), encoded as Horn formulas according to
(32) and (33), are all theorems of KAT. In other words, the type calculus of KAT
is sound under the interpretation (32).

Proof. Translating the rules (20)–(26) according to (32) and (33), we obtain

bpc � 0�bqc � 0 � b�p�q�c � 0 (34)

bp � bpc� cq � cqd � bpq � bpqd (35)

bp � bpb � bp� � bp�b (36)

b0c � 0 (37)

b1b � 0 (38)

b� � b�bpc � 0� c� c� � b� pc� � 0 (39)

cbbc � 0� (40)

respectively. These are all easy exercises in KAT. The most difficult is (36), which
we argue explicitly. The inequality bp�b � bp� holds by monotonicity of multi-
plication, thus it suffices to show

bp� bpb � bp� � bp�b�

By (9), it suffices to show

bp� bpb � b�bp�bp� bp�b�

But if bp� bpb, then bp� pb by monotonicity, therefore

b�bp�bp � bb�bp�pb � b�1� p�p�b � bp�b�

�

11



4 Embedding Typed KA in KAT

Although based on the type discipline of typed KA (Kozen 1998) as described
in Section 2.4, the type discipline of KAT as described in Section 3 looks quite
different. The latter assumes a Boolean algebra structure on pretypes, whereas the
former is flat. In this section we show that the two type disciplines are compatible
by showing that every typed KA has a natural embedding in a KAT such that the
type structure is preserved. The embedding is an extension of a natural embedding
of a typed KA in a typeless KA described in (Kozen 1998).

First we review the semantics of typed KA from (Kozen 1998). Briefly, a typed
Kleene algebra is structure in which

� each element has a unique type of the form s� t;

� there is a collection of polymorphic typed operators �� ���� 0� 1 and binary
relation � whose application is governed by the typing rules;

� all well-typed instances of the Kleene algebra axioms hold.

Formally, a typed Kleene algebra is a structure

K � �K� Ω� ω� �� �� �� 0� 1� ��

where K and Ω are sets and ω : K � Ω2; we write ω�p� � s� t. Elements of K
are denoted p�q�r� � � � .

For s� t �Ω, define

Kst � fp � K j ω�p� � s� tg�

The operators �� �� �� 0� 1 and relation � have the following polymorphic types:

� : Λs� t �Ω��s� t�� �s� t�� �s� t�

� : Λs� t�u �Ω��s� t�� �t� u�� �s� u�
� : Λs �Ω��s� s�� �s� s�

0 : Λs� t �Ω��s� t�

1 : Λs �Ω��s� s�

� : Λs� t �Ω��s� t�� �s� t�� ��

This means for example that � consists of a family of functions �st : K2
st � Kst,

one for each choice of s� t �Ω. The operator �st can only be applied to arguments
of type s� t and produces a sum of type s� t. The polymorphic constant 0 rep-
resents a family of elements 0st, one for each choice of s� t �Ω. The polymorphic
constant 1 represents a family of square elements 1ss, s �Ω.

12



To be a typed Kleene algebra, K must also satisfy all well-typed instances of
the Kleene algebra axioms. For example, the multiplicative associativity property
p�qr� � �pq�r must hold whenever the expression p�qr� � �pq�r is well typed; that
is, whenever p : s� t, q : t� u, and r : u� v for some s� t�u�v �Ω.

We now show how to construct a KATM from a given typed KA K with pre-
types Ω. Let B be the smallest Boolean subalgebra on 2Ω containing all singleton
sets. Thus B consists of the finite and cofinite subsets of Ω. (If Ω is finite, then B is
just 2Ω.) We denote elements of B by b�c� � � � . Consider the Ω�Ω matrices P of fi-
nite support with Pst �Kst. As argued in (Kozen 1998), this is a typeless 1-free KA,
and K embeds homomorphically into it under the map p �� P such that Pst � p,
where ω�p� � s� t, and Puv � 0uv elsewhere. (The word “embedding” is used
here in the sense of typed embedding (Kozen 1998); although all 0st are mapped
to the zero matrix, no pair of distinct elements of the same type are collapsed.)
Now include the Boolean algebra B in the form of diagonal matrices; the matrix
corresponding to b � B has as its sth diagonal element either 1ss or 0ss according as
s � b or s �� b, respectively. Closing under the KA operations, the resulting matri-
ces are no longer necessarily of finite support, but all rows and columns are still of
finite support, so that multiplication is defined. Moreover, the diagonal elements
are almost all 1 or almost all 0, thus each matrix decomposes into a block diago-
nal matrix of two blocks, one a finite square matrix and the other a square zero or
identity matrix, thus � is defined. This gives a KAT M whose Boolean elements
are the diagonal matrices over 0,1 corresponding to elements of B.

InM, the interpretation (32) says that P : b� c iff

s � b and Pst �� 0 	 t � c; (41)

in other words, the b� c submatrix of P is the zero matrix.
It is instructive to understand the significance of the typing rules (20)–(26) in

light of (41). For example, the rule (22) says that if P : b� b, then P� : b� b.
The matrix P can be decomposed (after permuting the rows and columns) into
quadrants

P �

�
A B
C D

�

where A, B, C, and D are the b� b, b� b, b� b, and b� b submatrices of P,
respectively. The type judgement P : b� b says that B � 0. But by the definition
of � for matrices,

�
A B
C D

��
�

�
�A�BD�C�� �A�BD�C��BD�

�D�CA�B��CA� �D�CA�B��

�
�

13



and �A�BD�C��BD� � 0, therefore P� satisfies the same property.
Similarly, I : b� b for any b, where I is the identity matrix, since if s � b and

Ist �� 0, then s � t, therefore t � b; thus (41) holds.
Finally, the typecast rule (26) says that for any Boolean element b, if B is the

diagonal matrix corresponding to b, then B : c� bc. By (41), if s � c and Bst �� 0,
then we should have t � bc. But Bst �� 0 iff s � t and s � b, therefore t � bc.

The following theorem describes the relationship between the typing disci-
plines of K andM.

Theorem 4.1 Let K be an arbitrary typed KA with pretypes Ω, and let M be the
KAT constructed from it as described above. Let p �K such that p : s� t, and let
P be its image inM. Then either

(i) p � 0st, in which case P : b� c for all b�c � 2Ω; or

(ii) p �� 0st, in which case P : fsg � ftg but not P : fsg � fug for any u �� t

(thus by (25), not P : fsg ��), and P : fug �� for all u �� s.

Proof. (i) If p � 0st, then P is the zero matrix, thus by (41), P : b� c for all
b�c � 2Ω.

(ii) If p �� 0st and p : s� t, then Pst � p �� 0 and Puv � 0 elsewhere. This
says that the sth row of P is nonzero in column t and zero elsewhere, therefore by
(41) P : fsg � ftg but not P : fsg � ftg for any u �� t. All other rows are zero,
therefore by (41), P : fug �� for u �� s. �

Acknowledgements

I am indebted to Robert Constable, Neal Glew and Greg Morrisett for valuable
ideas and comments. This work was supported by the National Science Foundation
under grant CCR-9708915.

References

Apt, K. R.: 1981, ‘Ten years of Hoare’s logic: a survey—part 1’, ACM Trans. Prog. Lang. Syst.
3, 431–483.

Bates, J. L. and Constable, R. L.: 1985, ‘Proofs as programs’, ACM Trans. Program. Lang. Syst.
7(1), 53–71.

Cohen, E., Kozen, D. and Smith, F.: 1996, ‘The complexity of Kleene algebra with tests’, Technical
Report 96-1598, Computer Science Department, Cornell University.

14



Constable, R. L.: 1988, ‘Themes in the development of programming logics circa 1963–1987’, Ann.
Rev. Comput. Sci. 3, 147–165.

Constable, R. L.: 1998, ‘Types in mathematics, logic, and programming’, in S. R. Buss (ed.), Hand-
bood of Proof Theory, Elsevier, Amsterdam, chapter X, pp. 683–786.

Conway, J. H.: 1971, Regular Algebra and Finite Machines, Chapman and Hall, London, U.K.

Cook, S. A.: 1978, ‘Soundness and completeness of an axiom system for program verification’,
SIAM J. Comput. 7(1), 70–90.

Cousot, P.: 1990, ‘Methods and logics for proving programs’, in J. van Leeuwen (ed.), Handbood of
Theoretical Computer Science, Vol. B, Elsevier, Amsterdam, pp. 841–993.

Fischer, M. J. and Ladner, R. E.: 1979, ‘Propositional dynamic logic of regular programs’, J. Comput.
Syst. Sci. 18(2), 194–211.

Girard, J.-Y.: 1971, ‘Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types’, Proc. 2nd Scand. Logic
Symp., Springer-Verlag, pp. 63–69.

Girard, J.-Y., Lafont, Y. and Taylor, P.: 1989, Proofs and Types, Cambridge University Press.

Kleene, S. C.: 1956, ‘Representation of events in nerve nets and finite automata’, in C. E. Shannon
and J. McCarthy (eds), Automata Studies, Princeton University Press, Princeton, N.J., pp. 3–
41.

Kozen, D.: 1991, ‘A completeness theorem for Kleene algebras and the algebra of regular events’,
Proc. 6th Symp. Logic in Comput. Sci., IEEE, Amsterdam, pp. 214–225.

Kozen, D.: 1994, ‘A completeness theorem for Kleene algebras and the algebra of regular events’,
Infor. and Comput. 110(2), 366–390.

Kozen, D.: 1996, ‘Kleene algebra with tests and commutativity conditions’, in T. Margaria and
B. Steffen (eds), Proc. Second Int. Workshop Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), Vol. 1055 of Lecture Notes in Computer Science, Springer-
Verlag, Passau, Germany, pp. 14–33.

Kozen, D.: 1997, ‘Kleene algebra with tests’, Transactions on Programming Languages and Systems
pp. 427–443.

Kozen, D.: 1998, ‘Typed Kleene algebra’, Technical Report 98-1669, Computer Science Department,
Cornell University.

Kozen, D.: 1999, ‘On Hoare logic and Kleene algebra with tests’, Proc. Conf. Logic in Computer
Science (LICS’99), IEEE, pp. 167–172.

Kozen, D. and Smith, F.: 1996, ‘Kleene algebra with tests: Completeness and decidability’, in D. van
Dalen and M. Bezem (eds), Proc. 10th Int. Workshop Computer Science Logic (CSL’96),
Vol. 1258 of Lecture Notes in Computer Science, Springer-Verlag, Utrecht, The Netherlands,
pp. 244–259.

15



Manes, E.: 1992, Predicate transformer semantics, Cambridge University Press.

Martin-Löf, P.: 1982, ‘Constructive mathematics and computer programming’, 6th Int. Congr. Logic,
Methodology, and Philosophy of Science, North-Holland, pp. 153–175.

Pratt, V. R.: 1978, ‘A practical decision method for propositional dynamic logic’, Proc. 10th Symp.
Theory of Comput., ACM, pp. 326–337.

Reynolds, J. C.: 1974, ‘Towards a theory of type structure’, Proc. Colloque sur la Programmation,
Vol. 19 of Lect. Notes in Comput. Sci., Springer-Verlag, pp. 408–423.

16


