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Abstract - It is generally assumed that when  a 
turbo decoder is operating at low bi t  error rates, er- 
ror sequences have small  Hamming  weights. From 
this, and properties of turbo encoders, a mathemati- 
cal structure is developed for interleaver design, per- 
mitt ing the identification of quantitatively opt imal  in- 
terleavers. Simulations show the math captures some  
b u t  not all the essential characterist ics of a successful 
interleaver. Modifying a random interleaver accord- 
ing to the mathematical  ideas gives excellent simula- 
t ion results. 

I. INTRODUCTION 
The function of the interleaver in the standard rate 1/2 turbo 
encoder presented in [l] is to assure that at  least one of the 
three codeword components (one systematic and two punc- 
tured Binary Recursive Filter (BRF) outputs) has high Ham- 
ming weight. As shown in [2], weight-two input sequences 
dominate in the “average” turbo code distance spectrum, 
which motivates using primitive BRF feedback polynomials. 
For a better turbo code, we can design an interleaver of permu- 
tation length p that maximizes the minimum Hamming weight 
generated by weight-two inputs. This requires maximizing: 

nr+ z min Ij - il + I‘IT(~) -  IT(^)] (1) 
1 *3 

where the min is over 1 5 i, j 5 p such that, 

( j  - i) mod (2” - 1) = ( ~ ( j )  -  IT(^)) mod (2” - 1) = 0, (2) 

where ‘IT is the interleaver function and v is the constraint 
length of the BRFs. A similar problem, more prominent in 
the literature, replaces the sum in (1) with the maximum: 

An alternate method for interleaver design is to disperse 
symbols as widely as possible. Thus, inputs generating short 
bursts of activity via one BRF will be dispersed and generate 
long bursts via the other BRF. Two natural definitions of this 
dispersion are exactly (1) and (3), without restriction (2). 

11. SOLUTIONS AND SIMULATION RESULTS 
When [T is odd and p = (g2 - 1)/2, there are exactly two 
solutions to (1): 

~ ( i )  = (ai + a - 1) mod o < i < +  (4) 

and its inverse. Similar solutions exist for even 0, and for the 
other problems posed. 

Computer simulations of interleavers derived using (2) with 
either (1) or (3) perform badly, because they do not disperse 
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activity from input sequences of weight three and higher. Sim- 
ulations from interleavers derived without (2) perform better. 
Using (4) with [T = 49,p = 1200 and BRF transfer function 
(1 + D + D2 + D 3 ) / ( l  + D2 + D3)  gives curve a in the figure 
after 20 iterations. 

111. ADDING RANDOMNESS 
Curve c shows simulation results from a pseudo-random inter- 
leaver of length 1176 with the same BRFs. The regularity of 
the mathematically derived interleavers permits “rectangular” 
error events with high multiplicities as described in [l], among 
others; the irregularity of the pseudo-random interleaver vir- 
tually eliminates them. 

By culling out pairs analytically identified as weak from 
a pseudo-random interleaver, we can gain the advantages of 
the analysis and of the irregularity. One effective method is 
to choose s1 and s2 and generate ‘IT one point at  a time. For 
each i E [ l ,p]  taken sequentially, random values are consid- 
ered for ~ ( i )  until one is found satisfying (3) for S,  = SI, 
and both (3),(2) for sr,“ = s2. .When no satisfactory values 
remain, the unused ordinate values are inserted in the unfin- 
ished interleaver such that (3),(2) are not violated. While this 
algorithm may not complete successfully for large SI, results 
are satisfactory. Simulations using such an interleaver with 
p = 1176, SI = 23, s2 = 49 and the same BRFs (curve d )  out- 
perform other cases considered here, including an interleaver 
constructed according to [3] (curve b). Virtually all remain- 
ing errors observed are due to non-convergence of the iterative 
decoder. 
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