
E�cient Recursive Subtyping�

Dexter Kozeny

kozen�cs�cornell�edu

Jens Palsbergz

palsberg�daimi�aau�dk

Michael I� Schwartzbachz

mis�daimi�aau�dk

Abstract

Subtyping in the presence of recursive types for the ��calculus was
studied by Amadio and Cardelli in ���� ���� In that paper they showed
that the problem of deciding whether one recursive type is a subtype
of another is decidable in exponential time�

In this paper we give an O�n�	 algorithm� Our algorithm is based
on a simpli
cation of the de
nition of the subtype relation� which
allows us to reduce the problem to the emptiness problem for a certain

nite automaton with quadratically many states�

It is known that equality of recursive types and the covariant B�ohm
order can be decided e
ciently by means of
nite automata� since they
are just language equality and language inclusion� respectively� Our
results extend the automata�theoretic approach to handle orderings
based on contravariance�

� Introduction

Recursive types are present in most programming languages� since they pro�
vide a means of typing recursive functions and data structures� Subtyping is

�Math� Struct� in Computer Science� ���������� ����	
yComputer Science Department� Cornell University� Ithaca� New York �
���� USA	
zComputer Science Department� Aarhus University� ���� Aarhus C� Denmark	

�

also present in many languages and is especially important in object�oriented
languages as a means of typing functions in the presence of inheritance and
late binding�

The unrestricted combination of recursion and subtyping� found for exam�
ple in Amber ��� and Quest �	�
�� is of substantial pragmatic value� Since it
does not depend on programmer�de�ned names� it allows the �exible typing
of such constructs as data persistence and data migration�

The combination of recursive types and subtyping at an abstract level was
studied by Amadio and Cardelli in �

� ���� They considered types for the
��calculus generated by the following grammar� where v is a type variable�

t ��� v j � j � j t� � t� j �v�t

Intuitively� � is a minimal type containing only the divergent computation�
� is a maximal or universal type containing all values� t� � t� is the usual
function space� and �v�t is a recursive type that satis�es the equation

�v�t � t�v��v�t� �

where t�v�s� denotes the term t with s substituted for free occurrences of v
�after renaming bound variables if necessary��

In Amadio and Cardelli�s approach� types are understood as collections
of values� and subtypes are subcollections� Thus� types are partially ordered
by an inclusion relation �� It is postulated that � � t � � for any type t�
and function spaces are ordered by the usual rule

s� t � s�� t� if and only if s� � s and t � t� �

i�e�� � is covariant in the range and contravariant in the domain� This
de�nes a partial order inductively on �nite types� but not on recursive types�

Amadio and Cardelli showed how to extend the ordering to recursive
types� Their de�nition involves a rule of the form

�v � v� � t � t�� � ��v�t � �v��t�� �

where v occurs only in t and v� occurs only in t�� In other words� if by
assuming the inclusion of the recursion variables we can verify the inclusion
of the bodies� then we can deduce the inclusion of the recursive types�

�

They also considered the standard representation of types as labeled trees�
de�ned a partial order on in�nite trees� and showed that it agrees with the
type inclusion order� Their de�nition of the order on trees involves in�nite
sequences of �nite approximations� where the approximations are obtained
by truncating the trees at some �nite level� The relation � holds between
two trees i� it holds between all their �nite truncations�

For an illustration of the type and tree orderings� consider the following
two types and their tree representations�

�u���u� u�� �� �v���v������

�
� �

�
� �

�
� �

�
� �

�

�

���

���
���

�
� �

�
� �

�
� �

�
� �

�

�

�

����

It can be shown using Amadio and Cardelli�s type rules that the left type
is included in the right� It is somewhat easier to see this for the corresponding
trees� all level�k truncations are clearly ordered from left to right�

In order to automate type checking in the presence of subtypes and re�
cursive types� the problem of deciding type inclusion is of paramount impor�
tance�

Given two types s and t� is s � t�

Amadio and Cardelli showed that this problem is decidable� but gave no com�
plexity analysis� However� their algorithm involves the explicit construction
of a binary tree of polynomial depth� thus is in some cases exponential� Their
algorithm is based on a concrete representation of recursive types involving
back�pointers to represent recursion�

In this paper we show that the type inclusion problem is solvable in time
O�n��� Our algorithm is based on a simpli�cation of Amadio and Cardelli�s
de�nition of the subtype relation on trees� we show that the two de�nitions

are equivalent� Our de�nition� which is a generalization of an order intro�
duced by us in ���� intuitively says�

Two trees are ordered if no common path detects a counterex�
ample�

This allows us to reduce the problem to the emptiness problem for a certain
�nite automaton which accepts a language of counterexamples�

Our algorithm represents recursive types as so�called term automata� The
automaton that detects counterexamples is then de�ned as a certain product
of two term automata� For an illustration of this� consider the following two
types� their tree representations� and the term automata for these trees�

�v��v��� �� �u��u� ��

�
� �

�
� �

�

����

�
� �

�
� �

�

����

s s�

��
��

�
��

�
�v

� s s�

��
��

�
��

�
�u

�

These two types are not in the subtype relation� consider for example
their level�
 truncations� This can be detected by the following product
automaton �we show only the reachable states��

�
�
�R

�
�
�R

�
�

���
�
��

�

�

�
�

�

������ ���

����� ����v��u� ��

��v��u� ��

	

The idea is that the accept states �marked with double parentheses� are
those where the �rst component is not less than the second component in the
ordering � � � � �� Because of contravariance� however� we use the third
component to signal if the ordering should be reversed� � means �no� and
� means �yes�� The automaton above accepts the word ��� thus the level�

truncations of the trees are not ordered�

The test for emptiness takes linear time in the size of the product au�
tomaton using depth �rst search� The size of the product automaton is the
product of the sizes of the two term automata� Thus� our algorithm runs in
O�n�� time�

It may be surprising that the inclusion of recursive types can be decided
e�ciently using �nite automata� To quote Amadio and Cardelli ����

The problem of equating recursive types � � � can be related to
well�known solvable problems� such as the equivalence of �nite�
state automata� However� the similar problem for subtyping has
no well�known parallel�

Our results establish that the automata�theoretic approach is fruitful even in
the presence of subtyping and contravariance� Further evidence is provided
by the results of ���� which establish the �rst known polynomial time algo�
rithm for a type inference problem studied by Thatte ���� and O�Keefe and
Wand �
��

In the remainder of the paper we provide the de�nitions of term automata
and labeled trees� prove that Amadio and Cardelli�s tree ordering and ours
agree� and give the details of our algorithm� We introduce term automata
and labeled trees in a more general form than needed here� they may be
useful in other contexts�

� Terms

Here we give a general de�nition of �possibly in�nite� terms over an arbitrary
�nite ranked alphabet �� Such terms are essentially labeled trees� which we
represent as partial functions labeling strings over � �the natural numbers�
with elements of �� In our application� types are terms over the ranked
alphabet f�����g� �nite types are �nite terms and recursive types are
regular terms�

�

Let �n denote the set of elements of � of arity n� Let � denote the set
of natural numbers and let �� denote the set of �nite�length strings over ��

De�nition � A term over � is a partial function

t � �� � �

with domain D�t� satisfying the following properties�

	 D�t� is nonempty and pre�x�closed�

	 if t���
 �n� then fi j �i
 D�t�g � f�� �� � � � � n� �g�

The set of all terms is denoted T��
An element �
 �� is a leaf of t if �
 D�t� and � is not a proper pre�x

of any other element of D�t�� equivalently� if t���
 ��� �

A term t is �nite if its domain D�t� is a �nite set� We denote the set of
�nite terms over � by F�� A path in a term t is a maximal subset of D�t�
linearly ordered by the pre�x relation� By K�onig�s Lemma� a term is �nite
i� it has no in�nite paths�

De�nition � Let t be a term and �
 ��� De�ne the partial function
t�� � �� � � by

t����� � t���� �

If t�� has nonempty domain� then it is a term� and is called the subterm of
t at position �� �

De�nition � A term t is said to be regular if it has only �nitely many
distinct subterms� i�e�� if ft �� j �
 ��g is a �nite set� The set of regular
terms is denoted R�� �

Example � Let � � ff� g� a� bg� where f� g� a� b have arities ������� respec�
tively� The following picture represents a typical �nite term t�

f
� �

g g

a f
� �

a b

�

The leaves of t are the strings ��� ���� ��� with t���� � t����� � a and
t����� � b� The domain D�t� of t is the set of all pre�xes of these strings�
namely 	� �� �� �� in addition to those already mentioned� with t�	� � t���� �
f and t��� � t��� � g�

The following picture represents a typical in�nite regular term s�

f
� �

f
� �

f
� �

f
� �

a

a

a

a ���

The domain of s is the in�nite regular set �� � ���� with s��n�� � a and
s��n� � f for all n
 �� The leaves are the elements of the regular subset
���� The term is regular because it has only two subterms� namely s itself
and the singleton term a� �

The sets T�� F�� and R� become algebraic structures of signature � under
the natural syntactic de�nition of the operators

fT� � T n
� � T�

for each f
 �n given by

fT��t�� � � � � tn����i�� � ti���� � � i
 n

fT��t�� � � � � tn����	� � f �

Then

D�fT��t�� � � � � tn���� � f	g �
n���
i��

fi� j �
 D�ti�g �

In particular� for c
 ��� we have cT��	� � c and cT� unde�ned otherwise�
The following lemma establishes some elementary properties of these op�

erators�

Lemma �

�

�i� If f
 �n and � � i
 n� then fT��t�� � � � � tn���� i � ti�

�ii� If t�	� � f
 �n� then t � fT��t��� � � � � t� �n� ����

�iii� �t����� � t����

�iv� The string � is a leaf of t i� D�t��� � f	g�

Proof� All properties are immediate consequences of the de�nitions� �

� Term Automata

Every regular term over a �nite ranked alphabet � has a �nite representation
in terms of a special type of automaton called a term automaton�

De�nition 	 Let � be a �nite ranked alphabet� A term automaton over �
is a tuple

M � �Q� �� q�� �� ��

where�

	 Q is a �nite set of states�

	 q�
 Q is the start state�

	 � � Q� � � Q is a partial function called the transition function� and

	 � � Q� � is a �total� labeling function�

such that for any state q
 Q� if ��q�
 �n then

fi j ��q� i� is de�nedg � f�� �� � � � � n� �g �

We decorate Q� �� etc� with the superscript M where necessary� �

Let M be a term automaton as in De�nition �� The partial function �
extends naturally to a partial function

b� � Q� �� � Q

inductively as follows�

b��q� 	� � qb��q� �i� � ��b��q� ��� i� �
For any q
 Q� the domain of the partial function ���b��q� �� is nonempty �it
always contains 	� and pre�x�closed� Moreover� because of the condition on
the existence of i�successors in De�nition �� the partial function

�����b��q� ���
is a term�

De�nition
 Let M be a term automaton� The term represented by M is
the term

tM � �����b��q�� ��� �
A term t is said to be representable if t � tM for some M� �

Intuitively� tM��� is determined by starting in the start state q� and
scanning the input �� following transitions of M as far as possible� If it is
not possible to scan all of � because some i�transition along the way does
not exist� then tM��� is unde�ned� If on the other hand M scans the entire
input � and ends up in state q� then tM��� � ��q��

Lemma � Let t
 T�� The following are equivalent�

�i� t is regular	

�ii� t is representable	

�iii� t is described by a �nite set of equations involving the � operator�

Proof� �i� �� �ii� Suppose t has only �nitely many subterms� De�ne

Q � ft�� j �
 ��� D�t��� �� �g

q� � t � t�	

��s� � s�	�

��s� i� �

�
s� i � if � � i � arity���s��
unde�ned � otherwise

and let M be the automaton with these data� A straightforward inductive
argument using Lemma � shows that

b��t� �� �

�
t�� � if D�t��� �� �
unde�ned � otherwise

thus

��b��q�� ��� � ��b��t� ���
� b��t� ���	�
� t���	�

� t��� �

Therefore t � tM�
�ii� �� �i� For any term automatonM and �� �
 ��� a straightforward

inductive argument shows that

b��q�� ��� � b��b��q�� ��� �� �
thus

tM �� � ���tM����

� �����b��q�� ����
� �����b��b��q�� ��� ���
� tM�

�

whereM� isM with start state b��q�� �� �if it exists� instead of q�� If b��q�� ��
does not exist� then tM�� has empty domain� Thus tM has no more subterms
than there are states of M�

The equivalence of �i� and �iii� is proved in ���� �

� Types

Types are terms over the ranked alphabet � � f�����g� where� is binary
and �� � are nullary� Over this signature� every D�t� � f�� �g�� At the risk
of ambiguity� we omit the superscript T� on the derived operators �T�� �T��
�T� and use in�x notation for �� thus we write s� t for the term with left

��

subterm s and right subterm t� and � and � for the singleton terms with
the corresponding labels�

The �nite types F� are ordered naturally by the following inductively de�
�ned binary relation �FIN� This relation captures the natural type inclusion
or coercion order in that it is covariant in the range and contravariant in the
domain of a function type�

De�nition � The order �FIN is the smallest binary relation on F� such that

�i� � �FIN t �FIN � for all �nite t�

�ii� if s� �FIN s and t �FIN t� then s� t �FIN s�� t��

�

We remark that the converse of De�nition
�ii� holds as well� since F� is a
free algebra�

In order to handle recursive types� we need to extend the ordering �FIN to
in�nite types in a natural way� Much of the e�ort in Amadio and Cardelli�s
paper ��� is devoted to this task� Their de�nition� which involves in�nite
sequences of �nite approximations� is given later �De�nition ���� Here we
give a simpli�ed de�nition that does not involve approximations �De�nition
���� We will eventually show �Theorem ��� that the two de�nitions are
equivalent�

De�nition �
 The parity of �
 f�� �g� is the number mod � of ��s in ��
The parity of � is denoted
�� A string � is said to be even if
� � � and
odd if
� � �� �

De�nition �� Let �� be the linear order

� �� � �� �

on �� and let �� be its reverse

� �� � �� � �

For s� t
 T�� de�ne s � t if s��� ��� t��� for all �
 D�s� � D�t�� �

��

Lemma �� The relation � is a partial order on T�� and agrees with �FIN

on F�� In particular� for any s� t� s�� t��

�i� � � t � �

�ii� t � � if and only if t � �

�iii� � � t if and only if t � �

�iv� s� t � s� � t� if and only if s� � s and t � t��

Proof� First we show that � is a partial order� Re�exivity is trivial� since
��� is a partial order�

For transitivity� suppose s � t � u� Let �
 D�s��D�u�� Surely 	
 D�t��
and if � is a proper pre�x of � in D�t�� then

� � s��� ��� t��� ��� u��� � � �

so t��� � �� therefore � is not a leaf of D�t�� Since 	
 D�t� and no proper
pre�x of � is a leaf of D�t�� we must have �
 D�t�� But then

s��� ��� t��� ��� u��� �

thus s��� ��� u��� by the transitivity of ���� Since � was arbitrary� s � u�
For antisymmetry� assume s � t � s� Let �
 D�s�� Arguing as above�

we must have �
 D�t�� thus D�s� � D�t�� and by symmetry�D�t� � D�s��
For any �
 D�s� � D�t�� we have

s��� ��� t��� ��� s��� �

thus s��� � t���� Since s and t have the same domain and agree on the
intersection of their domains� they are equal�

We next establish the properties �i�!�iv� in turn�
�i� For any t� we have 	
 D�t� and ��	� �� t�	� �� ��	��
�ii�� �iii� follow immediately from �i� and antisymmetry�
�iv� For if� suppose s� � s and t � t� and let �
 D�s � t� � D�s� � t���

If � � 	� we have

�s� t��	� � �s�� t���	� � �

��

so

�s� t��	� ��� �s�� t���	� �

If � � ��� then �
 D�s� � D�s�� and

�s�� t����� � �s� � t������

� s����

��� s���

� �s� t�����

� �s� t���� �

therefore

�s� t���� ��� �s�� t����� �

If � � ��� then �
 D�t� � D�t�� and

�s� t���� ��� �s�� t�����

by a similar argument�
For only if� assume that s � t � s� � t�� Let �
 D�s� � D�s��� Then

��
 D�s� t� � D�s� � t��� therefore

s��� � �s� t�����

������ �s�� t������

� s���� �

thus s���� ��� s���� Since � was arbitrary� s� � s� A similar argument
shows that for arbitrary �
 D�t��D�t�� we have t��� ��� t����� thus t � t��

Finally� we show that the orders �FIN and � agree on �nite types� i�e��
s � t if and only if s �FIN t� We proceed by induction on the structure of s
and t� If s � � or t � � then the result follows from �i�� If t � � then the
result is immediate from �ii�� and if s � � then the result is immediate from
�iii�� The remaining case

s� t � s� � t� �� s� t �FIN s� � t�

follows immediately from �iv� and the induction hypothesis on the subterms�
�

�

In order to de�ne Amadio and Cardelli�s order� we have to consider �nite
approximations to in�nite terms� This is done using a truncation operator�

De�nition �� Let g � �� � f���g� For any term t� we de�ne a �nite term
tjgk� the level
k truncation of t with respect to g� as follows�

D�tjgk� � f�
 D�t� j j�j � kg

tjgk��� �

�
t��� � if j�j
 k�
g��� � if j�j � k�

�

In otherwords� tjgk is obtained by truncating the term t at depth k and rela�
beling the leaves according to g�

For example� let

AC��� �

�
� � if � even�
� � if � odd�

The truncation operator jACk is the one employed by Amadio and Cardelli
���� It has the nice property that tjACk �FIN tjACk��� although this property
turns out not to be essential� The following lemma shows that the particular
function g chosen in the de�nition of the truncation operator is irrelevant for
our purposes�

De�ne s �k t if s��� ��� t��� for all �
 D�s� � D�t� such that j�j
 k�
Note that g is not mentioned in this condition�

Lemma �� For any function g � �� � f���g� terms s and t� and k
 ��

sjgk � tjgk i� s �k t �

Proof� Suppose sjgk � tjgk� If �
 D�s� � D�t� and j�j
 k� then �

D�sjgk� � D�tjgk� and

s��� � sjk��� ��� tjk��� � t��� �

Conversely� suppose s �k t� If �
 D�sjk� � D�tjk� and j�j
 k� then
�
 D�s� � D�t� and

sjk��� � s��� ��� t��� � tjk��� �

and if �
 D�sjk� � D�tjk� and j�j � k� then sjk��� � tjk��� � g���� �

�	

De�nition �� Amadio�Cardelli�s order �AC is de�ned as

s �AC t �� sjACk �FIN tjACk for all k
 ��

�

By Lemmas �� and �	� this de�nition is independent of the choice of trun�
cation operator�

Theorem �	 The relations � and �AC agree�

Proof� For any terms s and t�

s � t �� s �k t for all k
 �

�� sjACk � tjACk for all k
 �� by Lemma �	

�� sjACk �FIN tjACk for all k
 �� by Lemma ��

�� s �AC t �

�

� An Algorithm

In this section we give an algorithm to decide whether s � t for two given
regular types s and t� Assume s and t are given by term automata M and
N respectively over the ranked alphabet � � f�����g� If s and t are given
by other means� say by simultaneous equations as in ���� then results of ���
can be used to obtain the automata in linear time as described in Lemma
of Section
�

Recall from De�nition �� that s � t i� s��� ��� t��� for all �
 D�s� �
D�t�� Equivalently� s �� t i� the set

f�
 D�s� � D�t� j s��� ���� t���g ���

is nonempty� We show that the set ��� is a regular subset of f�� �g�� and
describe a conventional �nite automatonA �in the sense of ���� over the input
alphabet f�� �g that accepts exactly this set�

De�ne

A � �QA� f�� �g� qA� � �
A� FA�

where�

��

	 QA � QM �QN � f�� �g are the states of A�

	 qA� � �qM� � qN� � �� is the start state of A�

	 �A � QA � f�� �g � QA is the partial function which for b� i
 f�� �g�
p
 QM� and q
 QN gives

�A��p� q� b�� i� � ��M�p� i�� �N �q� i�� b�
i�

where � denotes mod � sum�

	 the set of accept states of A is

FA � f�p� q� b� j �M�p� ��b �
N �q�g �

According to this de�nition� �A��p� q� b�� i� is de�ned if and only if �M�p� �
�N �q� � �� The automaton A is nondeterministic only in the sense that
the state �p� q� b� has no i�successors if either �M�p� or �N �q�
 f���g� If
�M�p� � �N �q� � �� then the i�successor of �p� q� b� is de�ned and is unique�

Theorem �
 The automaton A accepts the set ����

Proof� Extend the partial function �A to a partial function

b�A � QA � f�� �g� � QA

inductively as usual�

b�A�p� 	� � pb�A�p� �i� � �A�b�A�p� ��� i� �
By de�nition� � is accepted by A i� b�A�qA� � �� exists and is in FA�

We show by induction that for any �
 f�� �g�� p
 QM� q
 QN � and
b
 f�� �g�

b�A��p� q� b�� �� � �b�M�p� ��� b�N �q� ��� b�
�� � ���

�Of course� the use of the equality symbol � to compare expressions involving
partial functions bears the extra semantic condition that the left hand side is

��

de�ned if and only if the right hand side is� This is an implicit but important
part of our equational arguments��

For the basis � � 	� we have

b�A��p� q� b�� 	� � �p� q� b�

� �b�M�p� 	�� b�N �q� 	�� b�
	� �

For the induction step�

b�A��p� q� b�� �i� � �A�b�A��p� q� b�� ��� i�
� �A��b�M�p� ��� b�N �q� ��� b�
��� i�

� ��M�b�M�p� ��� i�� �N �b�N �q� ��� i�� b�
��
i�

� �b�M�p� �i�� b�N �q� �i�� b�
��i�� �

"From ��� we have that the domain of the partial function

���b�A��p� q� b�� ��
is the intersection of the domains of ���b�M�p� �� and ���b�N �q� ��� This says
that any string � accepted by A must lie in the set

D����b�A�qA� � ��� � D����b�M�qM� � ��� � D����b�N �qN� � ���
� D�s� � D�t� �

For such strings ��

� is accepted by A �� b�A�qA� � ��
 FA

�� b�A��qM� � qN� � ��� ��
 FA

�� �b�M�qM� � ��� b�N �qN� � ��� ��
��
 FA

�� �b�M�qM� � ��� b�N �qN� � ���
��
 FA

�� �M�b�M�qM� � ��� ���� �N �b�N �qN� � ���

�� s��� ���� t��� �

Thus A accepts the set ���� �

To decide whether s � t� we construct the automaton A and ask whether
it accepts a nonempty set� i�e�� whether there exists a path from the start

��

state to some �nal state� This can be determined in linear time in the size
of A using depth �rst search�

The automaton A has � � jQMj � jQN j states and at most two transition
edges from each state� Thus the entire algorithm takes no more than O�jsj�jtj�
time� where jsj and jtj are the sizes of the representations of the regular terms
s and t� We have shown

Theorem �� The subtype relation for recursive types can be decided in time
O�n���

This result generalizes to an arbitrary signature of type constructors� each
having for every argument a given polarity�

Acknowledgements

This work was supported by the Danish Research Academy� the National
Science Foundation� the John Simon Guggenheim Foundation� the U�S� Army
Research O�ce through the ACSyAM branch of the Mathematical Sciences
Institute of Cornell University under contract DAAL�
�
��C������ and the
Danish Research Council under the DART Project ������� ��
�� An earlier
version of this paper appeared as � ��

References

��� Roberto M� Amadio and Luca Cardelli� Subtyping recursive types� In Proc�

��th Symp� Princip� Programming Lang�� pages �������� ACM� January �����

��� Luca Cardelli� Amber� In Combinators and Functional Programming Lan�

guages� Proc� ��th Summer School School of the LITP� volume ��� of Lect�
Notes in Comput� Sci� Springer�Verlag� May �����

��� Luca Cardelli� Typeful programming� In Lect� Notes for the IFIP Advanced

Seminar on Formal Methods in Programming Language Semantics� �����

��� Luca Cardelli and Peter Wegner� On understanding types� data abstraction�
and polymorphism� Computing Surveys� ������������� December �����

��� Bruno Courcelle� Fundamental properties of in
nite trees� Theor� Comput�

Sci�� ���������� �����

�

��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory�

Languages� and Computation� Addison�Wesley� �����

��� Dexter Kozen� Jens Palsberg� and Michael I� Schwartzbach� E
cient inference
of partial types� In Proc� ��rd Symp� Found� Comput� Sci�� pages ��������
IEEE� October �����

��� Dexter Kozen� Jens Palsberg� and Michael I� Schwartzbach� E
cient recursive
subtyping� In Proc� �	th Symp� Princip� Programming Lang�� pages ��������
ACM� January �����

��� Patrick M� O�Keefe and Mitchell Wand� Type inference for partial types is
decidable� In Proc� ESOP
��� European Symposium on Programming� volume
��� of Lect� Notes in Comput� Sci�� pages �������� Springer�Verlag� �����

���� Satish Thatte� Type inference with partial types� In Proc� International

Colloquium on Automata� Languages� and Programming ����� volume ��� of
Lect� Notes in Comput� Sci�� pages �������� Springer�Verlag� �����

�

