Kleene Algebra with Tests
and the Static Analysis of Programs

Dexter Kozen
Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA

kozen@cs.cornell.edu

November 17, 2003

Abstract

We propose a general framework for the static analysis of programs
based on Kleene algebra with tests (KAT). We show how KAT can be
used to statically verify compliance with safety policies specified by se-
curity automata. We prove soundness and completeness over relational
interpretations. We illustrate the method on an example involving the
correctness of a device driver.

1 Introduction

Kleene algebra with tests (KAT) is an algebraic system for program specifica-
tion and verification that combines Kleene algebra, or the algebra of regular
expressions, with Boolean algebra. One can model basic programming language
constructs such as conditionals and while loops, verification conditions, and
partial correctness assertions. KAT has been applied successfully in substantial
verification tasks involving communication protocols, source-to-source program
transformation, concurrency control, compiler optimization, and dataflow anal-
ysis [2, 4, 5, 6, 11, 14]. The system is PSPACE-complete and deductively
complete for partial correctness over relational and trace models [12].

KAT has a rich algebraic theory with many natural and useful models:
language-theoretic, relational, trace-based, matrix. Because of its roots in
classical algebra and equational logic, KAT provides a mathematically rigor-
ous foundation that subsumes many previous approaches, recasting them in a
more classical algebraic framework. Hoare logic and program schematology are
two examples of major theories in computer science that can be given a more
classical treatment using KAT.

In this paper, we show how KAT provides a general framework for the static
analysis of programs. We give a general construction that shows how to use

KAT to statically verify compliance with safety policies specified by security
automata. We prove the soundness and completeness of the method over rela-
tional interpretations. These results further attest to the versatility of KAT as
a general framework for many verification tasks in computer science.

Security automata are a popular mechanism for the specification and en-
forcement of a large class of safety policies [16]. A security automaton is an
ordinary finite-state automaton in which certain states are designated as error
states. A transition to a new state may occur when a critical operation of a
program is executed. Any computation of a program containing a sequence of
critical operations that sends the automaton to an error state violates the policy
as specified by the automaton.

The following example is from [16]. Suppose we wish to specify that a
program may not sent a message out over the network after it has read the disk.
This restriction can be specified by the following automaton.

send read

start *»(_Q/ 8 @ cror

read send

Here the leftmost state indicates that the program has not yet read the disk.
This is the initial state. As long as the automaton is in this state, network
activity is permitted. Any read of the disk, however, causes a transition to
the second state, which indicates that the disk has been read. From this state,
further disk reads are allowed, but the program may not send a message out
over the net. Any attempt to do so causes a transition to the error state.

The automaton can be used for runtime enforcement of the security policy as
well as specification. The program code is instrumented to call the automaton
before all critical operations (ones that could change state of the automaton).
The automaton aborts the computation if the operation would cause a transition
to an error state.

This enforcement mechanism as described in [16] is purely a runtime mech-
anism. In this paper we describe a general method based on KAT for verifying
statically compliance with the policy as specified by the security automaton.
The method uses the KAT rules to propagate state information throughout the
program to all critical operations. If the verification is successful, an indepen-
dently checkable proof object is produced that can be used to certify that the
runtime checks are unnecessary. We prove a soundness theorem (Theorem 4.1)
that says that any program verified in this fashion satisfies the policy. There is
also a version with a simplified verification condition (Corollary 4.2) for when
the program is known to be total. We also prove a completeness theorem (The-
orem 5.1) that says that if the propositional abstraction of the program fails to
verify, then there is a relational interpretation in which the program is unsafe.
Finally, we illustrate the method on an example of [3] involving the verification
of a device driver.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [9, 7]. The axiom-
atization used here is from [10]. A Kleene algebra is an algebraic structure
(K, +, -, *, 0, 1) that is an idempotent semiring under +, -, 0, 1 such that p*q is
the <-least solution to ¢+ pz < x and ¢p* is the <-least solution to ¢+ zp < z.
Here < refers to the natural partial order on K: p < ¢ PN p+q=gq. Thisis a
universal Horn axiomatization.

The axioms for * say essentially that * behaves like the Kleene asterate
operator of formal language theory or the reflexive transitive closure operator
of relational algebra.

Standard models include the family of regular sets over a finite alphabet;
the family of binary relations on a set; and the family of n X n matrices over
another Kleene algebra. Other more unusual interpretations include the min,+
algebra, also known as the tropical semiring, used in shortest path algorithms,
and models consisting of convex polyhedra used in computational geometry.

The completeness result of [10] says that all true identities between regular
expressions interpreted as regular sets of strings are derivable from the axioms.
In other words, the algebra of regular sets of strings over a finite alphabet P is
the free Kleene algebra on generators P. The axioms are also complete for the
equational theory of relational and trace models.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [11] is just a Kleene algebra with an embedded
Boolean subalgebra. That is, it is a two-sorted structure (K, B, +, -, *, =, 0, 1)
such that

e (K, +, -, % 0,1)is a Kleene algebra,
e (B, +,-,7,0,1)is a Boolean algebra, and
e BCK.

Elements of B are called tests and are denoted b, c,d,... . The Boolean com-
plementation operator ~ is defined only on tests. Arbitrary elements of K are
denoted p, q,r,

The set of terms in the language of KAT over atomic actions P and atomic
tests B is denoted RExpp .

The while program constructs are encoded as in propositional Dynamic
Logic [8]:

def
p;q =Dpg
if b then p else ¢ def bp + bgq

while b do p % (bp)*D

The Hoare partial correctness assertion {b} p {c} is expressed in KAT in any
one of the following three equivalent forms:

bp < pc (1)
bp = bpc (2)
bpc = 0. (3)

The proof of the equivalence of these formulas is an elementary exercise in KAT;
see [12]. Because of the form (3), all Hoare-style rules of the form

(b pi{ery oo {ba}pud{ca}
{b} p {c}

are encoded as Horn formulas of the form

blplél:O—>...—>bnpn6n20—>bp620.

Horn formulas all of whose premises are of the form p = 0 are called Hoare
formulas, and KAT is deductively complete for the Hoare theory of relational
models [12]; that is, all relationally valid Hoare formulas are theorems of KAT.
This theory is also decidable in PSPACE.

See [10, 11, 12, 15] for a more detailed introduction to KA and KAT.

2.3 Trace and Relational Models
2.3.1 Kripke Frames

For applications in program verification, one usually interprets programs and
tests over a KAT consisting of sets of traces or binary relations on a set of states.
Both these classes of algebras are defined in terms of Kripke frames. A Kripke
frame over a set of atomic programs P and a set of atomic tests B is a structure
(K, mg), where K is a set of states, mg : P — 25K and mg : B — 2%, The
map myg specifies a canonical interpretation of the atomic actions and tests.

2.3.2 Relation Algebras

The set of all binary relations on a Kripke frame K forms a KAT under the
standard binary relation-theoretic interpretation of the KAT operators. The op-
erator - is interpreted as relational composition o, + as union, 0 and 1 as the
empty relation and the identity relation on K, respectively, and * as reflexive
transitive closure. The Boolean elements are subsets of the identity relation.
This is called the full relation algebra on K. One can define a canonical inter-
pretation [1k : RExpp g — 2EXK 1y

def
[plx = mk(p), peP
bl “ {(u.u) |uemi(b)}, be B,
extended homomorphically. A binary relation is regular if it is [plx for some
p € RExpp 5. The subalgebra consisting of all regular binary relations on K is
denoted Relx. We write REL F ¢ if ¢ is true in all Relg.

2.3.3 Trace Algebras

A trace in a Kripke frame K is a sequence SopoS1 - - - Sn—1Pn—15n, Where n > 0,
s; € K, p; € P,and (s;,8;4+1) € mg(p;) for 0 < i <n—1. The set of all traces in
K is denoted Tracesi. We denote traces by o, 7,.... The first and last states of
a trace o are denoted first(o) and last(o), respectively. If last(c) = first(r),
we can fuse o and 7 to get the trace o7. If last(o) # first(7), then o7 does not
exist. The label of the trace soposi -+ Sn—1Pn—1Sn is the string pg, ..., pn_1-

The powerset of Tracesi forms a KAT in which + is interpreted as set union,
- as the operation

AB {or | o€ A, 7€ B, last(o) = first(7)},

0 and 1 as @ and K, respectively, and A* as the union of all finite powers of A.
The Boolean elements are the subsets of K, the sets of traces of length 0. This
is called the full trace algebra on K. A canonical interpretation [Jx for KAT
expressions over P and B is given by

[plx < {spt | (s,t) € mx(p)}, p€ P

[61x % my(b), be B,

extended homomorphically. A set of traces is reqular if it is [plg for some KAT
expression p. The subalgebra of all regular sets of traces of K is denoted Trg.
We write TRE @ if ¢ is true in all Trg.

If A is a set of traces, define

Prefix(A) o {o |37 o7 € A}.

Lemma 2.1 Let p be any program expression and b any test expression. Then
[b1k - Prefix([plx) = Prefix([bplk).

Proof. For any o € Tracesg,

o € [blk - Prefix([plk) < o € Prefix([plk) and first(o) € [b1x
& 31 o7 € [plk and first(or) € [blk
& 31 o7 € [bplx
< o € Prefix([bplk).

2.3.4 Canonical Homomorphisms

If K, L are KATs with distinguished canonical interpretations I : RExpp p — K
and J : RExpp p — L, a homomorphism h : K — L is canonical if it commutes
with I and J. In particular, a homomorphism involving trace or relation algebras
on Kripke frames over P, B is canonical if it commutes with [Ix and [1.

An example of a canonical homomorphism is the map Ext : 2Trcesx —, 9K xK
defined by Ext : A — {(first(c),last(0)) | 0 € A}. As shown in [13, §3.6], this
is a KAT homomorphism, and Ext([plk) = [plk.

Lemma 2.2 The Hoare theories of trace algebras and relation algebras coincide.

Proof. By [13, Lemma 3.1], every trace algebra is isomorphic to a relation
algebra, so the Hoare theory of relation algebras is contained in the Hoare theory
of trace algebras.

For the other direction, suppose TR Er = 0 — p = ¢q. (Without loss of
generality, we can restrict ourselves to Hoare formulas with a single premise.)
Let K be an arbitrary Kripke frame. Let Ext : 2T2cesx _ 9K XK he the canonical
homomorphism described above. Note that for A C Tracesy, Ext(4) = & iff
A =g. Thus

[rMlg =0 = [rlxg =9 since [rlx = Ext([rlg) =@ iff [rlx =@
= [plx = [qlx since TREr=0—p=q
= [plk = [glxk since Ext([plk) = [plk.

Since K was arbitrary, we have REL F r = 0 — p = ¢. Thus the Hoare theory
of trace algebras is contained in the Hoare theory of relational algebras. O

2.3.5 Induced Subframes

Let (L, my) be a Kripke frame and let K be a subset of L. The induced subframe
on K is (K, mg), where
def
mi(8) < m(b) N K, be B, (4)

mic(p) € mp(p) N K2, peP. (5)

We say that a binary relation R on L preserves K if t € K whenever s € K and
(s,t) € R.

Lemma 2.3 ([13, Lemma 5.1]) Let (K, mg) be an induced subframe of (L, mp)
such that all atomic actions mp(p) preserve K.

(a) The map A — A N Tracesk for A C Tracesy, is a canonical KAT homo-
morphism Trp — Trg.

(b) The map A AN K? for A C L? is a canonical KAT homomorphism
ReIL — ReIK.
2.3.6 Coherence

Let K,L be Kripke frames over P,B. A function f : K — L is said to be
coherent if

(i) (s,t) € mu(p) = (f(s5), f(t)) € me(p), pe P
(ii) s e mg(b) & f(s) e mp(b), b € B.

Condition (i) implies that f can be extended to traces. Define f : Tracesx —
Tracesy, by

f(50p051 to Sn—lpn—lsn) d;f f(SO)pO.f(Sl) T f(sn—l)pn—lf(sn)-

The function f is said to be onto on traces if its extension f : Tracesx — Tracesy,
is onto.
For a coherent function f: K — L and A C Tracesy,, define

' (5 € Tracesk | f(o) € A},

714
Lemma 2.4 ([13, Lemma 5.3]) If f : K — L is coherent, then f~=' is a KAT
homomorphism on the full trace algebras of K and L, and its restriction to
the regular trace algebra Try, is a canonical homomorphism Try, — Tri. If in
addition f is onto on traces, then f~! is one-to-one, therefore f=%: Tr;, — Trg
s a canomnical isomorphism.

2.4 Precomputations

Let p € RExppp be a KAT expression representing a program. We define
by induction an expression PreComp(p) € RExpp p that describes the set of
precomputations of p.

Q.
-

€

PreComp(p) = 1+ p, p an atomic action

Q.
B

€

PreComp(b) = 1, b a test

PreComp(p + q) def PreComp(p) + PreComp(q)
PreComp(pq) def PreComp(p) + p - PreComp(q)
PreComp(p™*) def p™ - PreComp(p).

The expression PreComp(p) is meant to capture the prefixes of computa-
tions of the program p. However, the set [PreComp(p)]lk is not the same as
Prefix([pl k), the set of prefixes of traces in [plk in a Kripke frame K, although
the two sets are related. Note that PreComp(p) depends on the syntactic ex-
pression p and not just on its equivalence class modulo the axioms of Kleene
algebra.

The reason for the definition of PreComp(p) as given is to capture the prefixes
of nonhalting computations. For example, the program while true do p trans-
lates to the KAT expression (1p)*0, which is equivalent to 0; thus in any trace
algebra, the set of traces represented by this expression is empty. However,
PreComp((1p)*0) is equivalent to p*, which represents the set of traces cor-
responding to precomputations of the nonhalting program while true do p.
When verifying a program p, we will actually verify the extended program
PreComp(p). This will ensure that even if p does not halt, the safety condi-
tion will still be satisfied at all points in the computation.

The definition PreComp(b) = 1 for tests b is intentional. A test b can modify
a computation, but only in a position preceding another action. This can be
seen in the definition of PreComp(pg). The test 1 is always a prefix of a test b,
because that is the situation before b is executed. This definition ensures that
PreComp(0*) is equivalent to 1, which is as it should be.

Lemma 2.5 The following are theorems of KAT :
(i) 1 < PreComp(p)
(ii) p < PreComp(p)

(iii) PreComp(PreComp(p)) = PreComp(p).

Proof. These properties can be proved easily by induction on the structure
of p. O

Lemma 2.5(iii) says that the operator PreComp is a closure operator. We also
have

Lemma 2.6 In any Kripke frame K and for any KAT expression p,
(i) [PreComp(p)lxk is closed under trace prefiz; that is,
Prefix([PreComp(p)1x) C [PreComp(p)lx

(ii) Prefix([plx) € [PreComp(p)lk-.

Proof. Property (i) follows by induction on the structure of p. Property
(ii) is a consequence of (i), Lemma 2.5(ii), and the monotonicity of the Prefix
operator. O

3 Security Automata and KAT

Formally, a security automaton M = (Q, Peit, 6, S, E) for a program r over
atomic actions P and atomic tests B is an ordinary deterministic finite automa-
ton consisting of a finite set of states @, a finite input alphabet P.i C P, a
deterministic transition function § : Q X Pyt — @, a start state S € @, and a
set of error states E C (). The elements of P, are called critical operations.
These are the atomic actions that can cause a transition to another state in M.
We denote elements of Q by U, V,W,....

We can extend the automaton to allow noncritical operations by defining
5(U,p) ¥ U for p € P — Poyys.

To capture the information represented by states of a security automaton in
KAT, we introduce an atomic test U corresponding to each state U € @ and
premises

Uv =0, for U,V € Q,U#V
Up S p‘/a fOI‘p € Pcri‘m V= 5(Uap)
Up<pU, forp€ P — Peit.

~ o~
x 3 D
=z =

Premises (6) assert that it is impossible to be in two states of M simultane-
ously. State information is propagated forward through the code by means of
premises (7) and (8). The former says that for critical operations, the state
changes according to the transition function § of M, and the latter says that
for noncritical operations, the state does not change.

Assertions of the form (7) and (8) have useful alternative forms given by (1)
(3). These are various representations in KAT of the Hoare partial correctness
assertion {U} p {V'}. Because of the form (3), formulas with premises of this
form are Hoare formulas, therefore verifiable in PSPACE. The conjunction of
all premises (6)—(8) is denoted Ay.

The following lemma is useful in propagating state information in a program.

Lemma 3.1 The following are theorems of KAT.
(i) If bp < pc and dp < pe, then (b+d)p < p(c+ e).
(i) If bp < pc and bq < qd, then b(p+q) < (p+ q)(c+d).

(iii) Let B be a set of states of M, and let B’ be the smallest set of states
containing B and closed under p; that is, B’ is the smallest set of states
such that B C B’, and if U € B’, then §(U,p) € B'. Letb =B and
b =>"B'. Then Ay — bp* < p*b'.

Now let (K, mg) be a Kripke frame over alphabets P of atomic actions and
B of atomic tests. Let M = (Q, Peuit, 9, 8, E) be a security automaton over an
alphabet P.;; C P of critical actions. We can view M as a Kripke frame over
atomic actions P and atomic tests @ by defining

mar(p) L {(U,6(U,p) | U €Q}, pE Py 9)
mar(p) € {(U,U) |U€Q}, peP— Py (10)
my (U) € {U}, UeQ, (11)

We also use £ to denote the test) e

Let r be a program, which is just a term of KAT over P, B. We now define
what it means for r to be safe with respect to the security policy specified by
M.

First we form the instrumented frame K x M over atomic actions P and
atomic tests B U @ as follows (we assume that B N Q = ©&). The states of
K x M are ordered pairs (u,U), where u is a state of K and U is a state of
M. For critical atomic operations p € P, for noncritical atomic operations
q € P — P_, for atomic tests b € B, and for atomic tests U € @), define

mym(p) = {((w,U), (v, V) | (w,v) € mi(p), (U, V) €mu(p)} (12)
mic (@) € {((w V), (0, V) | (u,0) € mic(q), U=V} (13)
mpxnr (b)) € {(w,U) | uemg®), Ue Q) (14)
M (U) < {(uw,U) | u e K} (15)

In other words, a critical transition p € P causes a transition in both compo-
nents of the product, and a noncritical transition causes a transition in K but
not in M. A state (u,U) of the product satisfies an atomic test in B iff its first
component does and satisfies an atomic test in @ iff its second component does.

The instrumented frame K x M is formal means by which we run a program
r in K and the security automaton M simultaneously. The projection of a trace
onto the sequence of first components gives a trace in K, and the projection
onto the sequence of second components gives a corresponding trace in M. Both
components run according to the same sequence of atomic actions, as ensured
by (12) and (13).

A trace of K x M is erroneous with respect to M if it contains an error
state of M. Thus the non-erroneous traces are represented by the expression
(E ->° P)*E. Note that this is determined by the second components of the
states in the trace.

We say that a program r is safe in K with respect to M if

LS - PreComp(r)lxsxm € L(E->. P)*Elxkxn- (16)

The left-hand side represents the set of traces of the instrumented frame K x M
whose first components give a computation prefix of r in K and whose second
components represent a run of the security automaton M starting in its start
state. The inclusion (16) states that no such trace is erroneous.

Note that in any Kripke frame L, [(E-Y_ P)*E]1y is closed under Prefix;
that is,

Prefix(L(E - Y P)*E1L) € [(E-Y P)*ElL. (17)

Let m; and s denote the projections from elements of K x M to their
first and second components, respectively. It follows from (12)—(15) that 7 is
coherent in the sense of §2.3.6, ignoring tests in (). Similarly, 75 is coherent,
ignoring tests in B. Moreover, 71 is onto on traces, as shown in the following
lemma.

Lemma 3.2 For every trace p € Tracesg and every state U € Q, there is a
trace T € Tracesg xpr such that m1(7) = p and first(r) = (first(p), U).

Proof. For every (u,v) € mg(p) and U € Q, there is a state V € @, namely
0(U,p), such that ((u,U), (v,V)) € mgxn(p). The result follows by induction
on the length of p. a

Lemma 3.3 The operations 71'1_1 and Prefix commute. That is, for all A C
Tracesy, m; ' (Prefix(A)) = Prefix(r; ' (A)).

Proof. Let o € Tracesgxp and p € Tracesk such that 71 (o)p exists. Then

last(o) = (u,U) and first(p) = u for some (u,U). By Lemma 3.2, there is a
trace T € Tracesk x s such that first(7) = (u,U) and m1(7) = p. Thus o7 exists

10

and 1 (o7) = m1(0)m1 (1) = m1(0)p. From this argument it follows that
o €yt (Prefix(A)) < w1 (o) € Prefix(A)
< dpm(o)pe A
& Ar m(or) € A
& 3Ir o7 € 1y (A)
& o € Prefix(m 1(A)).
Since this holds for arbitrary o, the result follows. o

A program r over P, B is called total in K if [PreComp(r)1x C Prefix([rlx);

that is, if every trace of PreComp(r) in K is a prefix of a trace of r in K.
Lemma 3.4 Ifr is total in K, then r is total in the instrumented frame K x M .

Proof. Suppose [PreComp(r)lx C Prefix([r1x). Since 71 : Tracesgxpr —
Tracesy is coherent in the sense of §2.3.6, ignoring tests in @), we have

[PreComp(r)1xxa = 77 *([PreComp(r)1x) by Lemma 2.4

C 7y H(Prefix([rlx)) since 7, ! is monotone
= Prefix(n; ([r1k)) by Lemma 3.3
= Prefix([rlx <) by Lemma 2.4.

4 Soundness

Theorem 4.1 (Soundness) Let D be any set of premises over P, B, and let r
be a program over P, B. If

Ay — D — S -PreComp(r) < (E->. P)*E (18)

1s a theorem of KAT, then r is safe with respect to M in any Kripke frame K
whose regqular trace algebra Tri satisfies D.

Proof. Let K be a Kripke frame whose regular trace algebra Try satisfies
D. It suffices to show that Trg s, the trace algebra of the instrumented frame
K x M, satisfies Ap; and D, because then that model must satisfy the right-hand
side of (18), which says exactly that (16) holds.

For premises of the form (6), by (11), the only state of M satisfying the test
U is the state U, therefore [UV1); = &. Similarly, for premises of the form
(7) and (8), (9) and (10) ensure that UpV is the only trace in [Upls, where
V =6(U,p), therefore [Uply; = LUpV1ps. Thus Trys satisfies all the equations
in Ap. Restricting attention to formulas over P, @ (that is, ignoring tests in
B), since 3 is coherent, by Lemma 2.4 we have a canonical homomorphism 75 !
from Trps to Tri «as, therefore Try « s satisfies all the equations in Ay; as well.

11

Similarly, restricting attention to formulas over P, B (that is, ignoring tests
in @), since 7y is coherent, by Lemma 2.4 we have a canonical homomorphism
T ! from Trx to Trixar, therefore Trgxas satisfies all equations satisfied by
Trg; in particular, it satisfies D. a

In practice, this result can be simplified when the program is known to be
total. This gives a simpler verification condition that is easier to check, since
we do not have to deal with the precomputations of the program explicitly.

Corollary 4.2 Let D be any set of premises over P, B, and let v be a program
over P,B. If

Ay — D — Sr<(E-Y. P)*E (19)

1s a theorem of KAT, then r is safe with respect to M in any Kripke frame K
whose regular trace algebra Tri satisfies D such that r is total in K.

Proof. Let K be a Kripke frame whose regular trace algebra Try satisfies D
such that r is total in K. As in the proof of Theorem 4.1, Trx s satisfies Ay
and D, so by (19) we have

LSr1xxar € L(E-Y. P)*Elxxum- (20)
By Lemma 3.4, r is total in the instrumented frame K x M; that is,

[PreComp(r)1xxnr € Prefix(Lrlxxar)- (21)

Then

LS - PreComp(r)Ixxar
= [STk - [PreComp(r) 1k«
C [STkxns - Prefix(Crlxxa) by (21) and monotonicity of composition

= Prefix(LST1x x) by Lemma 2.1
C Prefix([(E - Y. P)*Elxxn) by (20) and monotonicity of Prefix
CLE-SP)*Elxxm by (17).

This inclusion is just (16), which was to be shown. m|

5 Completeness

In this section we prove the converse of Theorem 4.1: if the program r fails
to verify, then there is a relational interpretation of r in which the program is
unsafe. This is a kind of weak completeness theorem. It is weak in the sense that
in real applications, we are typically interested in a particular interpretation,
and the theorem does not say that that if r fails to verify, then r is unsafe in the
interpretation of interest. However, it does show that the method is as powerful
as it can be up to the level of expression represented by propositional Horn logic.

12

Of course, the completeness theorem can be made arbitrarily strong subject
to this restriction by choosing a sufficiently large set of premises D. The larger
D, the fewer models are available as counterexamples. Normally the style of
reasoning in KAT is to use the specific properties of the interpretation of interest
only to establish the validity of the premises D, thereafter reasoning purely
propositionally under those assumptions. This result fits well with that view
in that it characterizes the strength of the deduction system when it is used in
this way.

For completeness, we must also make the added assumption that the premises
in D are of the form p = 0 and that D is finite. This allows us to exploit the
completeness result for Hoare formulas over relational and trace models. This
is not a strong restriction, since most premises that arise in practice, including
all Hoare-style partial correctness assertions, are of this form.

Theorem 5.1 (Completeness) Let D be any finite set of premises of the form
p =0 over P, B, and let r be a program over P,B. If r is safe with respect to
M in all Kripke frames K whose trace algebra Try satisfies D, then (18) is a
theorem of KAT.

Proof. We prove the contrapositive. Suppose (18) is not a theorem of KAT.
Since KAT is complete for the Hoare theory of relation algebras [12, Theorem
4.1], and since this theory coincides with the Hoare theory of trace algebras
(Lemma 2.2), there exists a trace algebra Trx in which (18) is not satisfied.
Here K is a Kripke frame over atomic actions P and atomic tests B U (), where
as in the previous section we are assuming B N @) = @. Then Trg satisfies Ay
and D, but there exists a trace o of K such that

o€ [S-PreComp(r)lx — [(E - P)*Flg.
Let

det | U, ifue [Ulk, U € Q,
g(u) =

undefined, otherwise.

If g(u) exists, then it is unique, since Trx satisfies the premises (6). (One could
guarantee the existence of g(u) by including the premise > Q = 1 in A,s; but
this is not necessary for the result.) Let K’ be the induced subframe of K on the
set of states {u € K | g(u) exists}. Since Trk satisfies (7) and (8), the states of
K’ are closed under the actions of P; that is, if g(u) exists and (u,v) € mg(p),
then g(v) exists. Since o € [S-PreComp(r)lx, we have first(c) € [S1k,
therefore g(first(c)) = S and o € Tracesks. By Lemma 2.3(a),

[LS - PreComp(r)lx N Tracesg: = [LS - PreComp(r)] k-
[(E . Z P)*E]]K N Tracesg: = (E . Z P)*E]K/,
therefore

o € L[S -PreComp(r)lx — L(E-Y, P)*Elk:.

13

Now let K" be the Kripke frame over P, B obtained from K’ by ignoring the
interpretations of the tests Q. That is, mg~ (p) = mg/(p) and mg(b) = mg/ ()
for p € P and b € B, and mg~(U) is undefined for U € Q. Let K" x M be the
instrumented frame. Let f : K/ — K” x M be the map f(u) = (u,g(u)). It
follows easily from the definitions (12)—(15) that the map f is coherent in the
sense of §2.3.6. By Lemma 2.4, for any ¢, [qlx = f~'(Lqlx»), therefore

o € L[S -PreComp(r)lx — [(E-Y. P)*Elx
= fﬁl(ﬂ:S . PreComp(r)]]Kan) - fﬁl(I]:(F . ZP)*E]]K”XM)
= f_l(I]:S . Pl’ecomp(T’)]]K//XM — I]:(E ZP)*E]]K”X]\J)a

or in other words,
/(o) € LS - PreComp(r)Txcrar — L(E - 3 PY Fliorcar.

Thus 7 is not safe in K" with respect to M.

It remains to argue that Trg~ satisfies D. But Trg. satisfies any equation
over P, B satisfied by Trg, since the map [plx — [plk- is a homomorphism
Trx — Trgs by Lemma 2.3(a), and [plgxs = [plk~ for any p over P, B by
definition. o

6 An Example

The following example is from [3]. It is a code fragment from a device driver
consisting of a loop that alternately acquires and releases a lock on a resource.

do {
KeAcquireSpinLock() ;
nPackets0ld = nPackets;
if (request) {
request = request->Next;
KeReleaseSpinLock();
nPackets++;
}
} while (nPackets != nPackets01d);
KeReleaseSpinLock();

If the driver currently holds the lock and attempts to reacquire it, or if the
driver does not currently hold the lock and attempts to release it, the driver
will hang. Hence a precondition for safe execution of any acquire (respectively,
release) operation is that the driver does not (respectively, does) currently hold
the lock. The correct behavior is specified by the following automaton.

14

acquire

unlocked Q=——__ =) locked

release

error

The start state is the unlocked state.
Using the propositional abbreviations

kA KeAcquireSpinLock()

kR KeReleaseSpinLock()

n nPackets0ld = nPackets
U request = request->Next
m nPackets++

R request

B

nPackets == nPackets01ld

and the KAT encoding of the control structures

do p while C = p; (C;p)*;C
if Cthenp=C;p+C,

the program above becomes
kA;n; (R;u; kR;m + R); (B; kA;n; (Ryu; kR;m 4+ R))™; B; kR (22)

Let A be a new test representing the assertion that the driver is in the locked
state. The precondition for safe execution of kA (acquire) is A (unlocked), and
the precondition for safe execution of kR (release) is A (locked). In addition,
the resource is initially unlocked, so A is a global precondition.

To specify the correctness conditions, we can annotate the program above
by inserting before every occurrence of a critical operation kA or kR its precon-
dition for safe execution. This gives the annotated program

A;kA;n; (Ryu; A;kR;m + R); (B; A; kA;n; (R;u; A;kR;m + R))™; B; A; kR
(23)
The program is otherwise identical to (22).

To argue that the program is safe, we wish to show that the unannotated
program (22) and the annotated program (23) are equivalent. This would say
that the precondition for safe execution of any critical operation is guaranteed
to hold immediately before that operation, so that transition to the error state
is impossible. These preconditions become true in the first place by executing
other operations at other points in the program. For example, execution of a
kA (acquire) operation acquires the lock, therefore causes A to become true
immediately afterward. This assumption takes the form of a premise kA =

15

kA; A. Other operations such as n or u that do not affect the truth value of
A commute with it, giving rise to commutativity conditions A;n = n; A and
A;u = u; A. For this particular task, we postulate the following premises.

kA =FkA; A (24)
kR = kR; A (25)
B;m =B;m;B (26)
n=n;B (27)
Asn=mn;A (28)
Asu=u; A (29)
A;m=m; A (30)
B;u=u;B (31)
B:kR = kR; B (32)

These conditions have the following meanings. Condition (24) says that acquir-
ing the lock acquires it. Condition (25) says that releasing the lock releases it.
Condition (26) says that if two integer variables are equal and we increment
one, then they are no longer equal. Condition (27) says that assigning the value
of one variable to another makes them equal. Conditions (28)—(32) are commu-
tativity conditions. They say that the execution of the specified atomic action
does not affect the truth of the specified test. All these premises are self-evident
and follow from basic properties of the domain of computation.

Let € be the conjunction of (24)-(32). These are our premises. To show
that the program is safe, we wish to prove in KAT that the Horn formula

&= A;p<Aiq (33)

holds, where p and ¢ are the unannotated and annotated programs (22) and
(23), respectively. The prefix A in both programs is the global precondition
that states that initially the driver does not have the lock. This annotation
is necessary, because the first critical operation performed by the driver is an
acquire operation kA.

The formula (33) has been formally verified using the KAT-ML theorem
prover [1].

7 Future Work

The structure of security automata can be generalized to handle other types
of static analysis. For example, let L be an upper semilattice such that all
ascending chains are finite. This is called the ascending chain condition (ACC).
Elements are called types or abstract values. Associated with each atomic action
p is a strict, partial, finitely additive map f, : L — L called its transfer function.
The propagation of type information can be coded in KAT by premises Xp <
pfp(X). The ACC needed for *. It seems clear Java bytecode verification can
be handled in this way. We leave this question for future investigation.

16

Acknowledgements

Thanks to Kamal Aboul-Hosn and Fred B. Schneider for valuable comments.
This work was supported in part by NSF grant CCR-0105586 and by ONR, Grant
N00014-01-1-0968. The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of these organizations or
the US Government.

References

1]

2]

3]

[9]

[10]
[11]
[12]

[13]

Kamal Aboul-Hosn and Dexter Kozen. KAT-ML: An interactive theorem prover
for Kleene algebra with tests. In Boris Konev and Renate Schmidt, editors,
Proc. 4th Int. Workshop on the Implementation of Logics (WIL’03), pages 2—12.
University of Manchester, September 2003.

Allegra Angus and Dexter Kozen. Kleene algebra with tests and program schema-
tology. Technical Report 2001-1844, Computer Science Department, Cornell Uni-
versity, July 2001.

Thomas Ball and Sriram K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. Conf. Principles of Programming Languages
(POPL’02), pages 1-3. ACM, January 2002.

Adam Barth and Dexter Kozen. Equational verification of cache blocking in
LU decomposition using Kleene algebra with tests. Technical Report 2002-1865,
Computer Science Department, Cornell University, June 2002.

Ernie Cohen. Lazy caching in Kleene algebra.
http://citeseer.nj.nec.com/22581 .html.

Ernie Cohen. Hypotheses in Kleene algebra. Technical Report TM-ARH-023814,
Bellcore, 1993. http://citeseer.nj.nec.com/1688.html.

John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, 1971.

Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18(2):194-211, 1979.

Stephen C. Kleene. Representation of events in nerve nets and finite automata. In
C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3—41. Princeton
University Press, Princeton, N.J., 1956.

Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Infor. and Comput., 110(2):366-390, May 1994.

Dexter Kozen. Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems, 19(3):427-443, May 1997.

Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computa-
tional Logic, 1(1):60-76, July 2000.

Dexter Kozen. Some results in dynamic model theory. Technical Report 2002-
1882, Computer Science Department, Cornell University, October 2002. Science
of Computer Programming, to appear.

17

[14]

[15]

[16]

Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimiza-
tions using Kleene algebra with tests. In John Lloyd, Veronica Dahl, Ulrich Fur-
bach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luis Moniz Pereira,
Yehoshua Sagiv, and Peter J. Stuckey, editors, Proc. 1st Int. Conf. Computational
Logic (CL2000), volume 1861 of Lecture Notes in Artificial Intelligence, pages
568-582, London, July 2000. Springer-Verlag.

Dexter Kozen and Jerzy Tiuryn. Substructural logic and partial correctness.
Trans. Computational Logic, 4(3):355-378, July 2003.

Fred B. Schneider. Enforceable security policies. ACM Trans. Information and
System Security, 3(1):30-50, February 2000.

18

