Substructural Logic and Partial Correctness

DEXTER KOZEN
Cornell University

and
JERZY TIURYN
Warsaw University

We formulate a noncommutative sequent calculus for partial correctness that subsumes proposi-
tional Hoare Logic. Partial correctness assertions are represented by intuitionistic linear implica-
tion. We prove soundness and completeness over relational and trace models. As a corollary we
obtain a complete sequent calculus for inclusion and equivalence of regular expressions.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—
structured programming; D.2.4 [Software Engineering]: Program Verification—-correctness
proofs; D.3.3 [Software Engineering]|: Language Constructs and Features—control structures;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs—assertions; invariants; logics of programs; mechanical verification; pre- and postcon-
ditions; specification techniques; F.3.2 [Logics and Meanings of Programs|: Semantics of
Programming Languages—algebraic approaches to semantics; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs—control primitives; 1.1.1 [Algebraic Manipula-
tion]: Expressions and Their Representations—simplification of expressions; 1.1.3 [Algebraic
Manipulation]: Languages and Systems—special-purpose algebraic systems; 1.2.2 [Algebraic
Manipulation]: Automatic Programming—program modification; program synthesis; program
transformation; program verification

General Terms: Theory; Verification
Additional Key Words and Phrases: Dynamic logic, Hoare logic, Kleene algebra, Kleene algebra
with tests, linear logic, sequent calculus, specification, substructural logic

1. INTRODUCTION

In formulating logics for program verification such as Hoare Logic (HL), Dynamic
Logic (DL), or Kleene Algebra with Tests (KAT), it is tempting to treat tests
and correctness assertions as a uniform syntactic category. This temptation is
best resisted: although both are classes of assertions, they have quite different
characteristics. Tests are local assertions whose truth is determined by the current
state of execution. They are normally immediately decidable. The assertion x > 0,

Supported in part by NSF grant CCR-0105586, ONR, grant N00014-01-1-0968, and Polish KBN
Grant 7 T11C 028 20. The views and conclusions contained herein are those of the authors and
do not necessarily represent the official policies or endorsements, either expressed or implied, of
these organizations or the US Government.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2003 ACM 1529-3785/2003/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003, Pages 355-378. http://doi.acm.org/10.1145/772062.772066

2 : D. Kozen and J. Tiuryn

where x is a program variable, is an example of such a test. Tests occur in all modern
programming languages as part of conditional expressions and looping constructs.
Correctness assertions, on the other hand, are statements about the global behavior
of a program, such as partial correctness or halting. They are typically much richer
in expressive power than tests and undecidable in general.

DL does not distinguish between these two categories of assertions. The two are
freely mixed, and both are treated classically. For this reason, the resulting system
is unnecessarily complex for its purposes. The rich-test version of DL, in which one
can convert an arbitrary correctness assertion to a test using the operator ?, is ITi-
complete (see [Harel et al. 2000]). Even with systems that do make the distinction,
such as KAT, care must be taken not to inadvertently treat global properties as
local; doing so can lead to anomalies such as the Dead Variable Paradox [Kozen
and Patron 2000].

One major distinguishing factor between tests and correctness assertions that
may not be immediately apparent is that the former are classical in nature, whereas
the latter are intuitionistic. For example, the DL axiom

(p1lqlb = [p; qlb
can be regarded as a noncommutative version of the intuitionistic currying rule
p—q—b=pAqg—b

Godel [1933] first observed the strong connection between modal and intuitionistic
logic, foreshadowing Kripke’s [1963; 1965] formulation of similar state-based seman-
tics for these logics (see [Artemov 2001]). Kripke models also form the basis of the
standard semantics of DL (see [Harel et al. 2000]), although as mentioned, DL does
not realize the intuitionistic nature of partial correctness.

In this paper we give a sequent calculus S that clearly separates partial correct-
ness reasoning into its classical and intuitionistic parts. The system can be viewed
as a substructural logic. These logics result from restricting the structural rules
(weakening, exchange, contraction) in various ways. The interested reader is re-
ferred to [Restall 2000] for a thorough introduction to substructural logics. We will
explain later how some of the structural rules of the present system are restricted.
In Section 4, where we introduce the system, we will explain why we view partial
correctness reasoning in S as intuitionistic rather than classical.

The system has two syntactic categories: programs and formulas. Tests com-
prise the intersection of these two categories. Tests are boolean combinations of
propositional variables. Reasoning about tests uses classical logic.

Programs are represented by regular expressions. They are formed from atomic
programs and tests with help of composition ®, nondeterministic choice @, and
iteration *. The notation for the program connectives ® and @ is chosen to stress
their relationship to the well known linear logic connectives: multiplicative con-
junction ® and additive disjunction @ (see [Girard 1987]). As could be expected,
® in our formalism is noncommutative.

Formulas are built from tests and programs using implication. Intuitively, for-
mulas represent weakest preconditions or box formulas of DL. There is a syntac-
tic restriction: an implication p — ¢ may only be formed from a program p on
the left and a formula ¢ on the right. Hence the general form of a formula is

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 3

p1 — p2 — + -+ — pp — ¢, where p1, ..., p, are programs and c is a test. Because of
this restriction and because of the severe restrictions on structural rules regarding
programs, implication has a linear flavor. Also, due to the form of the rules of
inference for handling implication, it follows that implication is intuitionistic.

Sequents of the system are of the form ' ¢, where I' is a sequence of programs
and formulas and ¢ is a formula. The sequence T is called an environment. Pro-
grams and formulas are treated differently, as can be seen from the structural rules.
There is a weakening rule for formulas, but only a very restricted weakening for
programs: they can be inserted only in front of the environment. The contraction
rule, although absent in the system, is derivable for formulas, but it is not derivable
for programs. There is no exchange rule, although some weak forms of it can be
derived. There is a co-contraction rule: a program of the form p™ already present
in the environment can be duplicated. Troelstra [1992, p. 25] remarks that contrac-
tion has more dramatic proof-theoretic consequences than weakening when added
to Linear Logic.

The system has introduction rules for implication on the left and on the right of
F. Due to the asymmetrical structure of sequents, each of the program connectives
has introduction and elimination rules exclusively on the left side of F-. In this sense,
the system is neither in the style of natural deduction (introduction/elimination on
the right), nor in the style of the Gentzen calculus (introduction on the left and on
the right). As mentioned earlier, the system has three structural rules and a cut
rule.

The paper is organized as follows. In Section 2 we introduce the syntax of the
language of System S. In Section 3 we give relational and trace semantics for this
logic and show how the logic captures partial correctness. In Section 4, which is
the main technical part of the paper, we introduce the rules of System S and estab-
lish its basic properties needed later in the proof of the completeness result. The
completeness proof relies on results from Kleene algebra. A relationship between
System S and Kleene algebra, together with some properties used in the proof
of completeness, are presented in Section 4.2. As a corollary (Proposition 4.13),
we obtain a complete sequent calculus for inclusion and equivalence of regular ex-
pressions. In Section 4.3 we show two examples of valid rules for reasoning about
partial correctness assertions which are not derivable in Hoare logic but are deriv-
able in System S. Section 5 is devoted to the soundness of S and Section 6 to its
completeness over both classes of models.

We mention that our two equivalent semantics of Section 3 are both special cases
of a more general approach to the semantics of noncommutative Linear Logic via
quantales [Yetter 1990]. We restrict our attention to two special kinds of quantales:
sets of traces and binary relations. Our completeness result is thus stronger than
it would be for the more general semantics based on arbitrary quantales.

2. SYNTAX

The syntax of S comprises several syntactic categories. These will require some
intuitive explanation, which we defer until after the formal definition. In particular

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

4 : D. Kozen and J. Tiuryn

we distinguish between two kinds of propositions, which we call tests and formulas.

tests b,c,d... b ::= (atomic tests) |0 |b— ¢

programs p,q,7,... p = (atomic programs) | b|p @ q|p @ q|p"
formulas 0, ... pu=blp—p

environments I',A,... Tu=¢|D,p|T, ¢

sequents Tk

In the above grammar, — is called linear implication, ® is a noncommutative
multiplicative connective called tensor, ® is a commutative additive connective
called disjunction, and T is a unary operation called positive iteration. We use
brackets where necessary to ensure unique readability. We abbreviate b — 0 by b,
Oby 1, p® qby pg, and 1 ® p* by p*.

Several formalisms, such as PDL [Fischer and Ladner 1979] and KAT [Kozen
1997], are based on * rather than . We can freely move between the two languages
since * and t are mutually definable:

*

p" = 1a@pt pt *

= pp".
For this reason, models for one language can be viewed as models for the other.

We base S on * instead of * because the resulting deductive system is cleaner—it
contains no contraction rule!. This is perhaps due to the fact that T can be viewed
as a more primitive operation than *.

A test is either an atomic test, the symbol 0 representing falsity, or an expression
b — c representing classical implication, where b and c are tests. We use the
symbols b, ¢, d, ... exclusively to stand for tests. The set of all tests is denoted B.
The sequent calculus to be presented in Section 4 will encode classical propositional
logic for tests.

A program is either an atomic program, a test, or an expression p @ ¢, p ® q,
or pT, where p and ¢ are programs. We use the symbols p,q,r,... exclusively to
stand for programs. The set of all programs is denoted P. As in PDL [Fischer
and Ladner 1979], the program operators can be used to construct conventional
procedural programming constructs such as conditional tests and while loops.

A formula is either a test or an expression p — ¢, read “after p, ¢,” where
p is a program and ¢ is a formula. Intuitively, the meaning is similar to the DL
modal construct [p]ly. The operator — associates to the right. We use the symbols
p,1, ... to stand for formulas.

Environments are denoted T', A, An environment is a (possibly empty) se-
quence of programs and formulas. The empty environment is denoted e. Intuitively,
an environment describes a previous computation that has led to the current state.

Sequents are of the form I' F ¢, where I' is an environment and ¢ is a formula. We
write ¢ for e - . Intuitively, the meaning of I" - ¢ is similar to the DL assertion
[[']p, where we think of the environment I' = ... p,...;%,... as the rich-test
program - -« ;p;--- ;7;--- of DL.

1n fact, one of the natural rules for * is a co-weakening rule, which is a strong form of a contraction
rule.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 5

3. SEMANTICS
3.1 Guarded Strings

Guarded strings over P,B were introduced in [Kaplan 1969] (see also [Kozen and
Smith 1996]). We review the definition here.

Let B={by,...,bx} and P = {p1,...,pm} be fixed disjoint finite sets of atomic
tests and atomic programs, respectively. An atom of B is a program ¢; - - - £ such
that ¢; is either b; or b;. We require for technical reasons that the ¢; occur in this
order. An atom represents a minimal nonzero element of the free Boolean algebra
on B. We denote by Ag the set of all atoms of B. For an atom « and a test b, we
write a < b if @ — b is a classical propositional tautology.

A guarded string is a sequence

0 = QpqoQq * " Op—1G9n—10n,

where n > 0, each «; € Ag, and ¢; € P. We define first(c) = o and last(o) = a,.
If last(o) = first(7), we can form the fusion product or by concatenating o

and 7, omitting the extra copy of last(o) = first(7) in between. For example, if

o = apf and T = Bqv, then o7 = apfqy. If last(o) # first(7), then o7 does

not exist. The notation o7 for fusion product should not be misinterpreted as

concatenation of strings; the latter operation is not defined for guarded strings.
For sets X, Y of guarded strings, define

XoY ¥ {or|0eX, €Y, last(o) = first(r)}
X0 g, xmt & ox o xm,
Although fusion product is a partial operation on guarded strings, the operation o
is a total operation on sets of guarded strings. If there is no existing fusion product
between an element of X and an element of Y, then X oY = &.
Each program p denotes a set GS(p) of guarded strings:

GS(p) o {apf | o, 0 € Ag}, p atomic
GS(b) o {aoe Ag | a < b}, b atest
GS(p @ q) & GS(p) U GS(q)
GS(p®q) < GS(p) o GS(g)
aspt) € | Gsim

n>1

It follows that GS(p*) = U,;>o GS(p)". A guarded string o is itself a program, and
GS (o) ={0}. -

A set of guarded strings over P,B is regular if it is GS(p) for some program
p. The regular sets of guarded strings form the free Kleene algebra with tests on
generators P, B [Kozen and Smith 1996]; in other words, GS(p) = GS(q) iff p = ¢
is a theorem of KAT.

LEMMA 3.1. The regular sets of guarded strings are closed under the Boolean
operations.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

6 : D. Kozen and J. Tiuryn

PrOOF. Closure under @ and union are explicit by means of the constructs 0 and
@. It was shown in [Kaplan 1969, Theorem 5] (see also [Kozen and Smith 1996]) that
for any program p, there is an equivalent program p such that GS(p) = GS(p) =
R(p), where R(p) is the regular set of strings over the alphabet P UB U {b | b € B}
denoted by p under the usual interpretation of regular expressions. For example,
ifw=(pp ® - ® pn)*, we might take @ = (b(p1 @ --- @ pm))*b, where
b= (by ®b1) - (bx @ bg). The set GS(w) = GS(W) = R(®) is the set of all
guarded strings.

It remains to show closure under complement; closure under intersection follows
by the De Morgan laws. Let p’ be an expression such that R(p’) = R(w) — R(p).
The expression p’ exists since the regular sets of strings over P U B U {b | b € B}
are closed under the Boolean operations. Then R(p’) is a set of guarded strings
since R(w) is, and

O

3.2 Trace Models

Traces are similar to guarded strings but more general. They are defined in terms
of Kripke frames. A Kripke frame over P,B is a structure (K, mg), where

my : P — 28XK mg : B — 2K,

Although syntactically every test is a program, the primitive test symbols B and
primitive program symbols P are disjoint sets, so there is no ambiguity in the
definition of m.

Elements of K are called states. A trace in K is an alternating sequence of
states and primitive program symbols soqosi - - - Sp—1G¢n—15n, where n > 0, s, € K,
gi € P, and (s;,8;41) € mg(g) for 0 < i < n — 1. The first and last states of o
are denoted first(o) and last(o), respectively. If last(o) = first(7), we can fuse o
and 7 to get the trace or. If last(o) # first(r) then o7 does not exist. A trace
$040S1 * * * Sp—1Gn—15n 18 acyclic if the s; are distinct. The model K is acyclic if all
traces are acyclic. It is no loss of generality to restrict attention to acyclic models;
every model is equivalent to an acyclic model obtained by “unwinding” the original
model (see [Harel et al. 2000, p. 132] for an explicit construction).

If X and Y are sets of traces, define

Xoy & {or|oce X, 7€Y, last(c) = first(r)}
x0 € g xrtt € x o xn,

Tests, programs, formulas, and environments are interpreted as sets of traces ac-

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 7

cording to the following inductive definition:

[plx def {spt | (s,t) € mg(p)}, p atomic
[k & mg(b), b atomic
[0lx & o
Ip®qdx < [plk U [glx
[p®qdx < [plx o [alx
x| Doag
n>1
[p — Ik L {s | V7 first(r) = s and 7 € [plx = last(r) € [plx}
[elx ¥ K

[T,Alx = M1k o [Alk.
It follows that
[blx = K — [bIk
[1lx = K
[p*1x = |J [l

n>0

Every trace o has an associated guarded string gs(o) defined by

def
g5(5040S1 * - Sn—1qn—15n) = Q0001 - ** Ap—1Gn—10n,

where «; is the unique atom of B such that s; € [a;]1x. The atom «; is unique
because for each b € B, exactly one of s; € [blx or s; € [b]x. Thus gs(o) is
the unique guarded string over P, B such that o € [gs(c)lx. The guarded string
gs(o) is unique, because for any guarded string BopoS1 -« - Bim—1Pm—10m, any trace
in [Bopofi - Pm—-1Pm—18mlx must be of the form soposi - Sm—1Pm—15m such
that s; € [6;1x, 0 <i<m.

The sequent I't ¢ is walid in the trace model K if for all traces ¢ € [Tk,
last(o) € [plk; equivalently, if [T1x C [T, ¢lx. A sequent is valid if it is valid
in all trace models over P and B.

Guarded strings (Section 3.1) are just traces of a Kripke frame G whose states
are atoms of B with

mo(p) € Ag x Ag, peP
ma(b) < {a|a<b}, beB.
In the notation of this section, GS(p) would be denoted [pl¢-.

The relationship between trace semantics and guarded strings is given by the
following lemma.

LEMMA 3.2. In any trace model K, for any program p and trace 7, 7 € [plk
iff es(t) € GS(p). In other words, [plx = gs~1(GS(p)). The map X — gs~1(X)
is a KAT homomorphism from the algebra of regular sets of guarded strings to the
algebra of regular sets of traces over K.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

8 : D. Kozen and J. Tiuryn

PrOOF. Induction on the structure of p. O

3.3 Relational Models

Kripke frames (K, mg) also give rise to relational models. In a relational model,
tests, programs, formulas, and environments are interpreted as binary relations on
K. Tests and formulas denote subsets of the identity relation.

[plx ot mg(p), p atomic
blx < {(s,8) | s € mg(b)}, b atomic
[0lx ¥ o
[p & qlk o [plx U [qlk
p®qlx © Iplxo lglx
"l = g
n>1
[p— @l = {(s,9) |Vt (s,1) € Dl = (11) € Lok}
el % {(s,8)] s € K}

[[Alx = [Tk o [Alg,
where o denotes ordinary relational composition. It follows that
Bl = {(s,5)] (s,5) & [bxc}
[11x = {(s,s)|se€ K}
p*lx = U [ply.

n>0
Writing s E ¢ for (s,s) € [¢lk, the defining clause for p — ¢ becomes
sEp— @ & Vit (s,t) € [plk = tE o,

thus the meaning of p — ¢ is essentially the same as the meaning of the box formula
[ply of DL.

The sequent I' ¢ is valid in the relational model on (K, mg) if for all s,¢ € K, if
(s,t) € [Tk, then (t,t) € [wlk; equivalently, if the DL formula [T is true in all
states under the rich-test semantics [Fischer and Ladner 1979], where the environ-
ment I'=...,p,...,9,...Iisinterpreted as the rich-test program --- ;p;--- ;97?;---.

3.4 Relationship between Trace and Relational Models

The following theorem and corollary establish the connection with the standard
relational semantics of DL.

THEOREM 3.3. The map
Ext: X — {(first(o),last(o)) | 0 € X}

taking sets of traces on K to binary relations on K commutes with [1x and [k ;
that is, Ext([Elx) = [Elk for any test, program, formula, or environment E.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 9

PROOF. The proof is a straightforward induction on syntax, using the fact that
Ext commutes with the operators U and o on sets of traces and binary relations. [

COROLLARY 3.4. Validity over relational models is the same as wvalidity over
trace models.

PROOF. Suppose that T'F ¢ is valid in the trace model over K. If (s,t) € [T']k,
then there exists a trace 7 € [T']1x such that s = first(7) and ¢ = last(r). By the
assumption, [T'1x C [T, plk, thus t € [plk and (¢,t) € [plk. This says that
I'F ¢ is valid in the relational model over K.

Conversely, suppose that I' ¢ is valid in the relational model over K. If 7 €
[Tk, then (first(r),last(7)) € [[1x. By the assumption, (last(r),last(r)) €
[olk, thus last(r) € Lplk. This says that I'F ¢ is valid in the trace model over
K. O

4. A DEDUCTIVE SYSTEM
The rules of System S are given in Figure 1. All rules are of the form

NiFer ... Thlon
'ty

The sequents above the line are the premises and the sequent below the line is the
conclusion. Since programs cannot occur positively on the right hand side of -, the
system has introduction and elimination rules on the left of F.

We will use the notation I' ¢ ambiguously as both an object and a meta-
assertion. As an object it denotes a sequent, i.e. a sequence of symbols over the
appropriate vocabulary. As a meta-assertion it says that the sequent I' - ¢ is prov-
able in S. In particular, I'¥ ¢ means that the sequent I' - ¢ is not provable in S.
The proper interpretation should always be clear from context.

Let us briefly explain some of the rules of S. The rule (test-cut) implies the
classical nature of tests. The rule (I ™) says that if p is partially correct with
respect to the precondition ¢ and the postcondition ¢, and if v is an invariant
for p, then the iteration pT is also partially correct with respect to the same pre-
and postconditions. So this is clearly related to a standard rule of Hoare logic.
Recall that, as far as relational models are concerned, validity of a sequent I'F ¢
means that for every pair of states s, t, if I" transforms s to ¢, then ¢t must satisfy .
Since formulas that occur as elements of ' act as filters (i.e., as partial identities
on states that satisfy them), it follows that we can always insert a formula in any
place in the environment, since it can only reduce the number of reachable states,
thereby not affecting the validity of the sequent. Thus the full weakening rule
(W) for formulas is sound. On the other hand, for the same reason, a program
can be inserted soundly only at the begining of the environment. This explains the
difference between (W) and (W p).

A rule is admissible if for any substitution instance for which the premises are
provable, the conclusion is also provable. The proof of the conclusion may depend
on the structure of the expressions substituted for the metasymbols appearing in
the rule or on the proofs of the premises. To show admissibility, it suffices to derive
the conclusion in S augmented with the premises as extra axioms, considering the
metasymbols appearing in the rule as atomic symbols in the object language. Any

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

10 : D. Kozen and J. Tiuryn

Axiom (b is a test): Arrow Rules:
bHb R —) %
Test-cut Rule (b is a test): i (I-) %
(test-cut) Loa '}?OA I;Db’ Al
Introduction Rules: Elimination Rules:
1) Tonars ®9) Toasre
e G G Y
(10) T,0,AF¢ (B2 @) %
Structural Rules: Cut Rule:
wo R
(W2) pr;:)w
(ce™) F};:?’:;’*A,AF fs@

Fig. 1. Rules of System S

such derivation will then be uniformly valid over all substitution instances. For
example, the following contraction rule

L, h, A
S N
is admissible in S. Indeed, below is a derivation of the conclusion from the premise
of (C).
e
C (Wp), (W)
Lykd U, g, Ao
AN)

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

(cut)

Substructural Logic and Partial Correctness . 11

where the sequent v - ¢ is derivable by Lemma 4.2. Note that the above derivation

depends on I". Also, as can be seen from the proof Lemma 4.2, the derivation of
1 1) depends on 1.
4.1 Basic Properties

LEMMA 4.1. The rule
1, AR
E1l et S
(E1) | VAN)

18 admissible.

PrOOF. We have the following derivation. Note that I',0, A+ ¢ is an instance
of (I0).

I'1,AFe T,0,Ak¢p

1_‘, AL o (test-cut)
O
LEMMA 4.2. The rule and sequent
pry .
mono) ——— (ident F
() ooy oy ldent) ofe

are admissible.

PrOOF. The following diagram gives a proof of (mono).

A
P,y
p—ppty
p—=ypkFp—v
The identity sequent (ident) follows by induction on the structure of ¢ using
(mono). The basis bF b is an instance of the axiom. O

(W p)
I—)
R —)

LEMMA 4.3. The rules
'kp—op (W 0) r'~o
Cipkoyp I',pkO

are admissible.

Proor. For (ER —), we have ¢+ ¢ by Lemma 4.2. The following figure gives
the remainder of the derivation.

1

(W p)
pyke
L (W p), (W)
Lpobe o
'btp—e Tip—oppkp
(cut)
T,pkop

To derive (W 0), the sequent I', 0, p 0 is an instance of (I 0). Applying (cut)
to this and the premise I' - 0 yields the desired conclusion. [

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

12 : D. Kozen and J. Tiuryn

The rule (ER —) plays the role of Modus Ponens. It is clearly an elimination rule
on the right. We cannot write a real Modus Ponens rule in the present system, since
a programs cannot stay to the right of k. If this were allowed, (ER —) and Modus
Ponens would have been easily interderivable. See also the proof of Lemma 4.4.

We wish to pause and discuss briefly why we view partial correctness reasoning
in S as intuitionistic rather than classical. It is not immediately obvious, since
formulas are of the form p; — --- — p, — b, where p1,...,p, are programs and
b is a test. In particular, formulas are not closed under implication. But we can
argue that the implication in the formula p — ¢ has an intuitionistic flavor by
considering the rules that introduce implication. Rule (R —) is a typical rule of
introduction of implication on the right of . Rule (I —) is not so typical, but it
can be shown that this rule is derivable from (ident), (ER —), (W v¢), (W p),
and (cut) as follows.

i ndCAR Bl RPN
p—,pki

LW Y), (W p) Lo, Abe o
Lp—¢,phy Lp—dp A o

Ip—vY,p, Ak

Since each of the rules used in the above derivation clearly has an intuitionistic
flavor, it follows that (I —) has as well.
Next we show that S is powerful enough to prove all classically valid tests.

LEMMA 4.4. For tests b, c, the sequent bl c is derivable in S whenever b — c is
a classical propositional tautology.

PROOF. It is well known (see [Harel et al. 2000; Johnstone 1987]) that the fol-
lowing proof system is complete for classical propositional logic:

Fb Fb—c
MP)
(K) Fb—c—1b
(S) Fb—oc—d) —(b—c)—(b—d)
(DN) Fb—b

We show that (MP)-(DN) are derivable in S. For (MP),

Fb—c
Fb bl-c
Fe

(ER —)
(cut)

For (K),

bbb
b,ckb
Fb—c—b

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

(W)
R—-), (R—)

Substructural Logic and Partial Correctness . 13

For (S),

d-d

c,d-d
c—d,cHd
b,c—d,ctd

b—c—d,bckd
b—c—d,b—cbkd

Fb—-c—d) —(b—c)— (b—d)

Finally, for (DN),

(W)
I-)

(W)
T—)
T—)

R =), (R—=), (R—)

5,0Fb bEbD
1-)

0T gy 2 (W)
b—0,b0 bbb
— (test-cut)
:I— b (R)
Fb—b
This completes the proof. O
LEMMA 4.5. The rule
. opEy
iter) ———
(iter) e, pt o

is admissible.
PROOF. Immediate from (I) by taking ¢ = ¢. O

LEMMA 4.6. The rules
Ip—q—9,Abyp
Lipg— ¢, Ak
Iipg— v, Al g
Tip—qg— v, Ak

(curry)

(uncurry)

are admissible.

PRrOOF. By straightforward derivations involving (cut), it suffices to show that
both pqg — Y Fp — q— ¢ and p — ¢ — ¢ F pqg — 1. For the former, starting with
pq — Pt pg— 1, apply (ER —) and (E ®) to get pg — ¥, p, ¢t 1, then apply
(R —) twice. For the latter, starting with ¢ - 1, apply (W p) twice to get p, g, ¥ F 1,
then apply (I —) twice to get p — ¢ — 1, p,qF 1. The result then follows from
(1) and (R —). O

LEMMA 4.7. Every ¢ is provably equivalent to some p — 0 in the sense that
pFp—0andp— 0F .

PrOOF. The formula ¢ — --- — ¢, — b is equivalent to ¢; ---¢,b — 0. The
proof of this fact is quite easy using Lemma 4.6 and is left to the reader. O
4.2 Relation to Kleene Algebra

We show in this section that S induces a left-handed Kleene algebra structure on
programs. The main result of this section, Proposition 4.13, relates provability in

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

14 : D. Kozen and J. Tiuryn

System S with containment of regular sets of guarded strings. It plays the key role
in the completeness proof of System S (Theorem 6.1).

Recall that a Kleene algebra (KA) is an idempotent semiring such that p*q is the
least solution to g+pz < z and gp™ is the least solution to ¢+zp < z. Equivalently,
a Kleene algebra is a structure (K, +, -, *, 0, 1) satisfying the following axioms.

p+g+r)=(p+q +r
p+q=q+p
p+0=p+p = p
p(gr) = (pa)r
Ip=pl = p
plg+7)=pg+pr
(p+a)r=pr+qr

Op=p0 = 0
L+pp* = 14p"p = p (1)
pr<z — pfr<zx (2)
xp<z — ap* <. (3)

Boffa [1990; 1995], based on results of Krob [1991], shows that for the equational
theory of the regular sets, the right-hand rule (3) is unnecessary. We will call an
idempotent semiring satisfying (1) and (2) a left-handed Kleene algebra. Boffa’s
result says that for regular expressions p and ¢, R(p) = R(q) iff p = ¢ is a logical
consequence of the axioms of left-handed Kleene algebra, where R is the usual
interpretation of regular expressions as sets of strings.

More specifically, Krob [1991] shows that the classical equations of Conway [1971],
along with a certain infinite but independently characterized set of axioms, logically
entail all identities of the regular sets over P. The classical equations of Conway
are the axioms of idempotent semirings, the equations (1), and the equations

(p+a)* = """
p* = p
(pa)* = 1+ p(ap)*q
Pt = (") (L +p)" T n>0.
Boffa [1990; 1995] actually shows that these equations plus the rule

p’=p—>p-=1+p (4)

—which, the reader will note, is neither left- nor right-handed—imply all the axioms
of Krob, therefore the classical equations of Conway plus Boffa’s rule (4) are com-
plete for the equational theory of the regular sets over P. The classical equations
and Boffa’s rule are all easily shown to be theorems of left-handed KA.

Our first task is to extend these results to Kleene algebra with tests (KAT) and
guarded strings. First let us recall that Kleene algebra with tests is a Kleene algebra
with an embedded Boolean subalgebra. Formally, it is a two-sorted algebra

(Kv Ba +, *7 _a Oa 1)

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 15

such that

—(K, +, -, *, 0, 1) is a Kleene algebra
—(B, +, -, 7, 0, 1) is a Boolean algebra
—(B, +, -, 0, 1) is a subalgebra of (K, +, -, 0, 1).

LEMMA 4.8. Left-handed KAT is complete for the equational theory of the regular
sets of guarded strings over P and B. In other words, for every pair of programs
p,q in the language of KAT, GS(p) = GS(q) if and only if the equation p = q is a
logical consequence of the axioms of left-handed KAT.

ProoOF. We adapt an argument of [Kozen and Smith 1996], in which the same
result was proved for KAT with both the left- and right-hand rule. It was shown
there that for any program p, there is an equivalent program p such that

(i) p=pis a theorem of KAT, and

(ii) GS(p) = R(p), where R(p) is the regular set of strings over the alphabet
PUBU{b|be B} denoted by p under the usual interpretation of regular
expressions.

In other words, any p can be transformed by the axioms of KAT to another program
p such that the set of guarded strings denoted by p is the same as the set of strings
denoted by p.

Now to show completeness of KAT over guarded strings, [Kozen and Smith 1996]
argued as follows. Suppose GS(p) = GS(g). Then

R(p) = GS5(p) = GS(p) = GS(q) = GS(q) = R(a).

Since KA is complete for the equational theory of the regular sets, p = ¢ is a theorem
of KA. Combining this with (i) for p and ¢ implies that p = ¢ is a theorem of KAT.

To adapt this to the present situation, we observe that p = ¢ is a theorem of
left-handed KA by the results of Boffa and Krob. Thus in order to complete the
proof, we need only ascertain that the right-hand rule (3) is not needed in the proof
of p = p. This does not follow from Boffa’s and Krob’s results, since the argument
is in KAT, not KA. However, a perusal of [Kozen and Smith 1996] reveals that the
proof of p = p uses neither the left- nor the right-hand rule, but can be carried out
using only the classical equations of Conway and the axioms of Boolean algebra. [

We now describe the left-handed KAT structure induced by S. For programs p, ¢
we define p C ¢q if ¢ — ¢ F p — ¢ is admissible; that is, if ¢ — ¢+ p — ¢ is provable
for all ¢. Define p = ¢ if p C ¢ and ¢ C p. The relation C is a preorder, therefore
= is an equivalence relation and C is a partial order on =-classes. Reflexivity is
(ident) (Lemma 4.2) and transitivity follows from a single application of (cut).
The relation C is a proof-theoretic approximation of the relation of containment of
the input-output relations denoted by programs p,q. Indeed, if in all models the
meaning of p is always contained in the meaning of ¢, then for every post-condition
, if p is partially correct with respect to ¢, then so is ¢q. In other words, the sequent
q— pkp— @ is valid. It turns out that this approximation is strong enough to
induce a left-handed KAT structure on =-classes of programs.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

16 : D. Kozen and J. Tiuryn

LEMMA 4.9. The operators & and ® are monotone with respect to C. That is,
ifpCq, thenp®rCq®r, prCqr, and rp C rq.

ProOOF. The rules (E1 @), (E2 ®), and (I ®) imply that p ® ¢ is the C-least
upper bound of p and ¢ modulo =. The monotonicity of & follows by equational
reasoning:

pEq = pCgdrandrCqg®r = pErCgdr.

For ®, we must show that if ¢ — ¢oFp — ¢ for any ¢, then gr — ok pr — ¢
and rq — k- rp — ¢ for any . Using (cut), (curry), and (uncurry) (Lemma
4.6), it suffices to show that ¢ = r - pbFp—r —pandr - qg—pkr—p—o
for any . The former is immediate from the assumption, and the latter follows
from (mono) (Lemma 4.2). O

LEMMA 4.10. If pC q and qq C q, then p™ C q.
PrOOF. Certainly pq C ¢ by monotonicity. Then
qg—obpg—

(ER —)
q— e
———— (E®)
4=PrPp =@ pp y 4z @Paty o
g ephe g epbg—0 ah
+E
2 A PN

g—pFpt—o
O

LEMMA 4.11. Let P/= denote the set of =-equivalence classes. The operations
@, ®, and ™ are well defined on P /=, and the quotient structure (P/=,®, ®,*,0,1)
is a left-handed KA.

PrOOF. We must argue that all the following properties hold:

poger)=poqg er p(gr) = (pg)r
POI=qDp Ip=pl=p
pe0=p Op=p0=0
pPOP=p 1@ pp* =p*
plg®r)=pq®pr 1ep'p=p*
(p®q)r=praqr peCq=p*qCyq.

These are just the laws of left-handed KA written with the symbols of S.
To derive the distributive law

plg®r) T pq® pr,

first from (ER —), (E1 @), and (E ®), one can derive pg @ pr — ¢, p,qt ¢ from
pq ® pr — pkpg ® pr — @. Similarly, one can derive pg ® pr — @, p,r - ¢ using
(E2 @) instead of (E1 @). Then

pg®pr—o,p,qt pq D pr— p.p,ro
PgOPr— o pgdrkp

pg@pr—ebplger) — ¢

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Te)
1®), (R—)

Substructural Logic and Partial Correctness . 17

All the other axioms of idempotent semirings follow in an equally straightforward
manner. Since @ and ® are monotone with respect to C (Lemma 4.9), they are
well defined on =-classes.

The inequality p*p™ C pT follows from (CC T) by:

pt—pbpt — o

T T - (ER —)
Foar e
p Yp P T 1), (R —)

pt—obptpt — o

The inequality p C p* follows from (E T) in a similar fashion. Monotonicity of
* and * then follow from Lemma 4.10 by equational reasoning:

pCqg=pCqtandqtgt Cqt =pT Cqt

pCg=p'=10ptClaq" =4"
We now prove the KA identities involving *. Arguing equationally, we have
poppt C ptoptpt C ptopt C pT,

and similarly p @ pTp C pT. For the opposite inequalities we will use Lemma, 4.10.
Clearly we have p C p @ pp*. We also have pp C pp™, pppt C pp™, pp™p C pp™
and ppTppT C ppT, hence

(pepp)p@ppt) C ppt C poppt.

By Lemma 4.10, pt C p @ pp™. Since the opposite inequality was already estab-
lished, we have p* = p @ pp™.

Now we can show that 1 @ pp* = p*:
p¥ =1ep" = 1opoppt = 1opAaph)

=160 pp*.
The identities pt = p @ pTp and 1 @ p*p = p* are obtained in a similar fashion.

It remains to show pg C ¢ = p*q T ¢. This is established by the following
derivation:

q— oFpg—

—_—
Y/ Ak AP
g opate o
[— p,pkq—
1—7vy"9=% W 1)) q sO]jrq 1 (iter)
q— o, 1qg— q—p,pFqg—p

Te)

—p, 1] thg—
d Ld P & L (ER —), (I®), (R—)

g—eFl@phg—o

O

LEMMA 4.12. If b — ¢ is a classical tautology, then b C c¢. Thus the tests form
a Boolean algebra modulo =.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

18 : D. Kozen and J. Tiuryn

PrROOF. We have ¢ — ¢, bF ¢ by the axiom bF ¢ and the weakening rule (W),
and we have ¢ — ¢, ck ¢ by (ER —). The desired conclusion ¢ — ¢+ b — ¢ then
follows from (cut) and (R —). O

Combining Lemmas 4.11 and 4.12 and the fact that the regular sets of guarded
strings form the free KAT on generators P and B, we have

PROPOSITION 4.13. The structure (P/=, B/=, ®, ®, *, 7, 0, 1) is a left-handed
KAT and is isomorphic to the algebra of regqular sets of guarded strings over P and
B. Thus for any programs p and q, p C q iff GS(p) € GS(q) and p = q iff
GS(p) = GS(q).

PROOF. In order to show that (P/=, B/=, ©, ®, *, 7, 0, 1) is a left-handed
KAT, by Lemmas 4.11 and 4.12, it remains to show that ® coincides in B/= with
the greatest lower bound and that @ coincides with the least upper bound. The
greatest lower bound in B/= of two equivalence classes with representatives b and
¢ is the equivalence class of b — ¢, while their least upper bound is the equivalence
class of b — ¢. Hence we have to prove the following two equivalences.

b@dec=b—c (5)

bc=0—70) (6)

We start with (5). Since b — b — ¢ is a propositional tautology, it follows from
Lemma 4.4 that bl b — c is derivable. Hence

(b—c)—pkF(b—c)—o

. b Dok o)
c) c
_ bkb—e wy Lo zebocre o
(b—c)— @,bFb—c (b—>c)—>go,b,b—>cl—go("

(b—c)— bl
In a similar way, since ¢ — b — ¢ is a propositional tautology, we derive the sequent
(b — ¢) = ¢, ck . Hence, by (I®) and (R —), we obtain
(b—c)—pFb®c—p
ie. b®cCb— e
The opposite inequality is established by the following derivation.
bdc—pFbdc—p

bdec— p,bdchk
bzfgc_)swz@c:@(m” b@cjw ck@w(m@)
Dec—p,bDc SO(EJ@) 2 (W)
bdc— bl 1) bdc— o bcke 1)
b®c— @,b—c,bko bEBc—><p,5—>c,5l—<p(t recut)

b®c— p,b—cho

= (R —)
bdec—pk(b—c)—p
This proves (5).
For the proof of C in (6) let us observe that b — ¢ — (b — ©) is a propositional
tautology. Hence by Lemma 4.4 and (ER —) we obtain

b,ck(b— o).

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 19

The rest of the derivation follows.

b—?)—pbb—-0) =y

- (ER—>)
bek(b—c b e b—or
028 (wyy L2920l 29F0 o we
(b—72) — ¢, bct(b—7¢) (b—>5)—>so,b,c,(b—>5)w(o
b e b,k
éi_w)_)wb ¢ I—SO I®)
—C)— p,b®c
(7) @ 2 r

(b—¢) —epFbc—o

For the opposite inequality, let us observe that (b —¢) — b and (b —7¢) — ¢
are propositional tautologies. Hence by Lemma 4.4 and (W ¢), we can assume
bc— p,(b—2)Fbandb® c— ¢, (b — ¢)F c. Therest of the derivation follows.

b@c—pFb®@c—p

ER —
b®c—>gp,b®cl—<p(];®))
b® ,b,ck

- CPT Y we

bc—p,(b—0)Fb b®c— v, (b—70),bckyp

(cut)

boc—p,(b—0)kFc b®c— @, (b—7),ckp

b@c—p,(b—72)Fp

(cut)

(R —)
bc—pk(b—7t) —p

It remains to argue that the quotient structure (P/=, B/=) and the algebra of
regular sets of guarded strings over P and B are isomorphic. By Lemma 4.8, KAT
and left-handed KAT have the same equational theory, thus the guarded string
algebra, being the free KAT on generators P, B [Kozen and Smith 1996], is also the
free left-handed KAT on generators P, B. Since the structure (P/=, B/=) is a left-
handed KAT, it satisfies all the equations of left-handed KAT under its canonical
interpretation, thus GS(p) = GS(q) implies p = q.

Conversely, suppose p C q. Then ¢ — ¢+ p — ¢ for all formulas ; in particular,
q — bk p — b for atomic b not occurring in p or ¢. By the soundness of System S
(Theorem 5.1 below), this sequent is valid in all relation algebras. In the notation of
Dynamic Logic [Harel et al. 2000], this sequent is expressed [([q]1b)?] [plb, which
is equivalent to [g]1b — [plb. By [Harel et al. 2000, Exercise 5.3, p. 188], [plx C
[¢lk in all relational models of all Kripke frames K. Since the guarded string
model is isomorphic to a relational model [Kozen and Smith 1996, Lemma 5],

GS(p) € GS(¢). O

4.3 Incompleteness of Hoare Logic

The partial correctness assertion {b} p {c} of HL is encoded in S by the formula
b — p — c. The Hoare-style rule

{b1}p1{c1}, ..., {bn} oo {cn}
) @

is encoded by the sequent

by > p1—ciy... by = pn—cn Fb—p—ec

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

20 : D. Kozen and J. Tiuryn

It follows from Theorem 6.1 that all relationally valid rules of this form are derivable
in S; this is false for HL (see [Kozen 2000; Kozen and Tiuryn 2001]). We give two
examples of this situation. First let us remark that every relationally valid partial
correctness assertion {b} p{c} is derivable in Hoare logic. Recall that we are dealing
with a propositional formalism, hence the incompleteness arguments for first-order
Hoare logic do not apply here. Derivability in Hoare logic of relationally valid
partial correctness assertions follows from a more general result. It is shown in
[Kozen and Tiuryn 2001, Theorem 4.1] that every relationally valid rule (7) in
which the programs p1, ..., p, are atomic is derivable in Hoare logic. Since a single
partial correctness assertion is a special case of rule (7) for n = 0, the above remark
follows. Thus we have to look for examples of relationally valid rules (7) with non-
atomic premises. One such rule, mentioned in [Kozen and Tiuryn 2001], that is
relationally valid but not derivable in Hoare logic is

{0} p*{c} (8)
{o}p{c}
The sequent of S corresponding to (8) is b — (1 ® p*) — ck-b — p — c. Hereis a
derivation of this sequent:
Qopr)—c-@oph)—c
1lapt)—c1@ptte
1oph)—e,pthe
1@ph) —cpke
b,(L®pt) —epte
b— (1®pt) —ebpte
b—(1®pt)—ckb—p—c

(E2 @)

E™

(W)

I-)

(R =), (R—=)

The first sequent in the above derivation is an instance of (ident) (Lemma 4.2).
Another example of a relationally valid rule which is not derivable in HL is

{d} if b then p else p {c})

{d}p{c} '
The reason that the above rule cannot be derived is the same as for (8): it is easy
to show by induction on proofs in Hoare logic that no conclusion with an atomic
program can be derived from non-atomic premises. The program if b then p else p

is encoded in S by bp @ bp. Here is a derivation in S of the sequent corresponding
to the rule (9):

(bp@gp)ﬁcl—(bp@gp)ﬁc(ER) (bp@gp)ﬁcl—(bp@gp)ﬁc(ER)
(bp@bp)_—> c,bp®bpkc (B1) (bp@bp)_—> c,bp_@ bptc (B2)
(bp @ bp) — ¢, bptc ®5) (bp ® bp) — c,bptc ®5)

(bp © bp) — ¢, b,pkc (bp @ bp) — ¢,b,pkc

(bp & bp) — ¢,ptc
bp ®bp) — ckp—c
/4 /4 D

(test-cut)

(R—)

(mono)

d— (bp@®bp) »ckFd—p—c

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 21

5. SOUNDNESS

THEOREM 5.1. If 'k ¢ is provable, then it is valid in all trace and relational
models.

ProoOF. By Corollary 3.4, we need only to show soundness over trace models.
This is easily established by induction on proofs in S with one case for each proof
rule. We argue the cases (cut) and (I —) explicitly.

For (cut), we need to show that

I[Fv A]]K g I[Fa Aa SD:UK

under the assumptions

M1k € [T,¢1k
[T,¢,Alx € [T, A olk.
Using monotonicity of o,

[T, Alx

= [k o [Alx

C [I,¥]k o [Alk

= [T,9,Alx

C [Ty, A olk

= [MIx o [¥Ix o [A, oIk

C [MTIxo [11x o [A,]k

I[F]]K o ":A) SOJ]K
= I[Fa Aa SD:UK

For (I —), we want to show that if
[T,p,¢,Alx C last™'(Lelk),
then
[T,p— ¢,p,Alx C last™'([plk).
It suffices to show that

[p — Ylgo lplxk C [plk o [YPlk.

N

But
7€ [p—Ylko [plx
< first(r) € [p — Y1k and 7 € [plk
= 7 € [plk and last(7) € [Y1x
& 7€ [plk o [Ylk.
The other cases are equally straightforward. O

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

22 : D. Kozen and J. Tiuryn

6. COMPLETENESS

THEOREM 6.1. If T'¥ ¢, then there exist an acyclic trace model K and a trace
o € [Tk such that last(c) € [plk.

PrOOF. By Lemma 4.7, we can assume without loss of generality that ¢ is of the
form p — 0. The proof proceeds by induction on the length of I'. For the basis of the
induction, suppose I' is empty, so that ¥ p — 0. Then p # 0. By Proposition 4.13,
GS(p) # @. Construct a Kripke frame K consisting of a single acyclic trace o
such that gs(o) € GS(p). By Lemma 3.2, 0 € [plk. Then first(c) € [c]lx and
first(o) € [p — 0lk.

For the induction step in which the environment ends with a program, say
T,p¥ o, we have T' ¥ p — ¢ by (ER —). Applying the induction hypothesis, there
exist an acyclic trace model K and traces o and 7 such that o € [Tk, last(c) =
first(7), 7 € [plk, and last(r) € [plx. Then or € [T,plx and last(or) &
[plk.

Finally, we argue the induction step in which the environment ends with a for-
mula, say I'; ¥ ¥ ¢. By Lemma 4.7, we can rewrite this as I';,q — 0¥ p — 0. Let
w be an expression representing the set of all guarded strings (see Lemma 3.1).
Let r and s be programs such that GS(r) = GS(p) N GS(qw) and GS(s) =
GS(p) — GS(qw). These programs exist by Lemma 3.1, and GS(p) = GS(r @ s).
By Proposition 4.13, we can replace p by r & s to get I',;,¢q — 0¥ r & s — 0. By
(R—),T,g—0,r® s¥O0, and by (I®), either I',¢g — 0,7¥0 or I',g — 0,5 0.
But it cannot be the former, since I', ¢ — 0, ¢, w - 0, therefore I';¢g — 0F qw — 0,
and by Proposition 4.13, r C qw, therefore by (cut), I',;¢g — 0Fr — 0.

Thus it must be the case that I',q — 0,s#0, so I',¢g — 0¥ s — 0. By weaken-
ing we have I'¥ s — 0. Then by the induction hypothesis, there exist an acyclic
trace model K and traces ¢ € [[']x and 7 € [s1x such that last(o) = first(7).
Construct a trace model M consisting only of the acyclic trace o7. By Lemma 3.2,
7 & Lqwl, therefore no prefix of 7 is in [¢lys. Then last(c) € Lg — 01y, there-
fore 0 € [T, g — 01p;. Moreover, last(o) € [p — 01, since last(o) = first(r)
and 7 € [ply. O

7. CONCLUSIONS AND FUTURE WORK

It has recently been shown that deciding whether a given sequent is valid is PSPACE-
complete [Kozen 2001]. Several interesting questions present themselves for further
investigation.

(1) The completeness proof relies on the results of Boffa [1990; 1995], which are
based in turn on the results of Krob [1991]. Krob’s proof is fairly involved, com-
prising an entire journal issue. One would like to have a proof of completeness
based on first principles.

(2) The relative expressive and deductive power of S compared with similar systems
such as KAT, PDL, and PHL is not completely understood. S is at least as
expressive as PHL and the equational theory of KAT, and apparently more so,
since it is not clear how to express general sequents @1, p1, P2, - .- Prn_1, Pn - Y
in PHL or KAT. On the other hand, it is not clear how to express general Horn
formulas of KA such as pr = z2q — p*z = ¢* in S.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

Substructural Logic and Partial Correctness . 23

(3) Application of the linear implication operator — is limited to programs on the
left-hand side and formulas on the right-hand side. It would be interesting
to see whether more general forms correspond to anything useful and whether
the system can be extended to handle them. The operator — is a form of
residuation (see [Pratt 1990; Kozen 1994]), and this connection bears further
investigation. Also the issue of cut elimination in such a more general system
seems to be an interesting problem. A more general implication would possibly
allow the formulation of a system more in the style of Gentzen than System S.

(4) We would like to extend S to handle liveness properties and total correctness.

(5) We would like to undertake a deeper investigation into the structure of proofs
with an eye toward establishing normal form and cut elimination theorems. It
can be shown that the sequent (b @ b) — @ F ¢ cannot be derived in S with-
out both (cut) and (test-cut). Presumably it cannot be derived without
(test-cut). We do not know whether there are valid sequents that are not

derivable in S without (cut).

ACKNOWLEDGMENT

We thank Riccardo Pucella for pointing out an error in an earlier draft and the
anonymous reviewers for their valuable comments.

REFERENCES

ARTEMOV, S. 2001. Explicit provability and constructive semantics. Bull. Symbolic Logic 7, 1
(March), 1-36.

Borra, M. 1990. Une remarque sur les systéemes complets d’identités rationnelles. Informatique
Théoretique et Applications/Theoretical Informatics and Applications 24, 4, 419-423.

BorrA, M. 1995. Une condition impliquant toutes les identités rationnelles. Informatique
Théoretique et Applications/Theoretical Informatics and Applications 29, 6, 515-518.

CoNwAY, J. H. 1971. Regular Algebra and Finite Machines. Chapman and Hall, London.

FI1SCHER, M. J. AND LADNER, R. E. 1979. Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18, 2, 194-211.

GIRARD, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1-102.

GODEL, K. 1933. Eine Interpretation des intuitionistischen Aussagenkalkiils. Ergebnisse eines
mathematischen Kolloquiums 4, 39-40. Reprinted in: S. Feferman, ed., Collected Works of
Kurt Godel, v. 1, New York, Oxford University Press, 1986.

HAREL, D., KozeN, D.; AND TIURYN, J. 2000. Dynamic Logic. MIT Press, Cambridge, MA.

JOHNSTONE, P. 1987. Notes on Logic and Set Theory. Cambridge Mathematical Textbooks.
Cambridge University Press.

KapLAN, D. M. 1969. Regular expressions and the equivalence of programs. J. Comput. Syst.
Sci. 3, 361-386.

KozgN, D. 1994. On action algebras. In Logic and Information Flow, J. van Eijck and A. Visser,
Eds. MIT Press, 78-88.

KozeN, D. 1997. Kleene algebra with tests. Transactions on Programming Languages and Sys-
tems 19, 3 (May), 427-443.

KozgN, D. 2000. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic 1, 1
(July), 60-76.

KozgN, D. 2001. Automata on guarded strings and applications. Tech. Rep. 2001-1833, Computer
Science Department, Cornell University. January.

KozeN, D. AND PATRON, M.-C. 2000. Certification of compiler optimizations using Kleene algebra
with tests. In Proc. 1st Int. Conf. Computational Logic (CL2000) (London), J. Lloyd, V. Dahl,

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

24 . D. Kozen and J. Tiuryn

U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
Eds. Lecture Notes in Artificial Intelligence, vol. 1861. Springer-Verlag, London, 568-582.

KozeN, D. AND SMITH, F. 1996. Kleene algebra with tests: Completeness and decidability. In
Proc. 10th Int. Workshop Computer Science Logic (CSL’96), D. van Dalen and M. Bezem,
Eds. Lecture Notes in Computer Science, vol. 1258. Springer-Verlag, Utrecht, The Netherlands,
244-259.

Kozen, D. AND TIURYN, J. 2001. On the completeness of propositional Hoare logic. Information
Sciences 139, 3—4, 187-195.

KRIPKE, S. 1963. Semantic analysis of modal logic. Zeitschr. f. math. Logik und Grundlagen d.
Math. 9, 67-96.

KRIPKE, S. 1965. Semantical analysis of intuitionistic logic I. In Formal Systems and Recursive
Functions, J. N. Crossley and M. A. E. Dummett, Eds. North-Holland, 92—130.

KroB, D. 1991. A complete system of B-rational identities. Theoretical Computer Science 89, 2
(October), 207-343.

PraTT, V. 1990. Action logic and pure induction. In Proc. Logics in Al: European Workshop
JELIA °90, J. van Eijck, Ed. Lecture Notes in Computer Science, vol. 478. Springer-Verlag,
New York, 97-120.

RESTALL, G. 2000. An Introduction to Substructural Logics. Routledge.

TROELSTRA, A. S. 1992. Lectures on Linear Logic. CSLI Lecture Notes, vol. 29. Center for the
Study of Language and Information.

YETTER, D. N. 1990. Quantales and (noncommutative) linear logic. J. Symbolic Logic 55, 41-64.

Received September 2001; revised June 2002; accepted June 2002

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

