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Set constraints are inclusion relations between expressions denoting sets of
ground terms over a ranked alphabet� They are the main ingredient in set�
based program analysis ���������	��
��������	
� In this paper we describe
a constraint logic programming language clp�sc� over set constraints in
the style of Ja�ar and Lassez ���
� The language subsumes ordinary logic
programs over an Herbrand domain� We give an e�cient uni�cation algo�
rithm and operational� declarative� and �xpoint semantics� We show how
the language can be applied in set�based program analysis by deriving ex�
plicitly the monadic approximation of the collecting semantics of Heintze
and Ja�ar �����	
�

� Introduction

Set constraints are inclusion relations between expressions denoting sets of
ground terms over a ranked alphabet �� The language of set constraints con�
tains the usual Boolean operators along with a set operator f for each n�ary
f � � with interpretation

f�A�� � � � � An� � ff�t�� � � � � tn� j ti � Ai� � � i � ng �

In set�based program analysis 	
�������
��������
��
�� set constraints are used
to represent monadic properties of program variables� all interdependencies
are ignored� Although information is lost� enough is retained to allow useful
program optimization and type inference� and the resulting systems remain
decidable 	����
���������
�����

Heintze and Ja�ar 	�
� and Heintze 	��� apply set�based program analysis in
both the imperative and logic programming settings� They �rst give a least
�xpoint characterization of the sets of valuations of program variables that can
occur at each point in a program during execution� this is called the collecting
semantics� These sets are of course nonrecursive� They then give a monadic
approximation to the collecting semantics in which variable dependencies are
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ignored� This gives a superset of the actual set of values� but one can still derive
useful inferences about program behavior� and the sets of values obtained are
recursive� The monadic approximation has a least �xpoint characterization
almost identical to the characterization of the collecting semantics� except
that the basic operators are interpreted as set operators�

One might desire a language in which algorithms in set�based program anal�
ysis can be easily expressed� In this paper we introduce a logic programming
language clp�sc� for this purpose� The language clp�sc� is a constraint
logic programming language in the style of Ja�ar and Lassez 	��� using set
constraints over an Herbrand domain�

Sets of ground terms satisfy many nice algebraic properties� An axiomatiza�
tion of these properties was proposed in 	��� �see x��� below�� Models of these
axioms are called termset algebras� The axioms of termset algebra are rem�
iniscent of the Clark axioms for Herbrand domains� in fact� constraint logic
programming over set constraints and conventional logic programming over
Herbrand domains have much in common� In many ways� one can think of
clp�sc� as an intermediate stage between logic programming over an Her�
brand domain and constraint logic programming in general�

The language clp�sc� subsumes ordinary logic programming over an Her�
brand domain� since ground terms can be identi�ed with singleton sets� and
singleton sets are de�nable in clp�sc��

There have been several previous approaches to augmenting logic program�
ming languages with sets� Jayaraman and Plaisted 	��� present a language
in the equational programming style which combines relational� subset� and
equational assertions� Operational and �xpoint semantics are given� A collect
all property is posed as part of the semantics� which plays the same role as
minimal models or least �xpoints in logic programming� Kuper 	��� presents
a language with two types of objects� individuals and sets� and a membership
predicate� Program clauses

A �� �x� � X� � � ��xn � Xn B�� � � � � Bm�

are allowed� where the Xi are terms denoting �nite sets� Kuper mentions a
suitable treatment of negation as an important open problem� Dovier et al�
	��� present a language with membership and equality predicates for �nite sets
and a constructor with for adding new elements to sets� Constraints are used
in the uni�cation process� Stolzenburg 	������ introduces a logic programming
language with �nite sets in which membership is dealt with via constraints�
These approaches concentrate on the set uni�cation problem�

Our approach di�ers from these in several ways� We have only one type of
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object� namely sets of ground terms� and no explicit membership predicate�
Single ground terms are identi�ed with singleton sets� and the membership
predicate is encoded using the subset predicate� The domain of computation
consists of all regular sets of ground terms� including in�nite regular sets� Any
such set can be uniquely speci�ed by a �nite collection of set constraints� All
Boolean operations� including negation� are allowed� Negations are dealt with
using a generalized DeMorgan law�

Fr�uhwirth et al� 	��� have also shown how to express the monadic approxi�
mation using logic programs� However� their approach is quite di�erent� they
transform a given logic program into another logic program such that the lat�
ter computes exactly the monadic approximation of the former� They work
with a conventional logic programming language over an Herbrand domain
and do not discuss set constraints�

The present paper is organized as follows� In x�� we review the basic theory
of set constraints� In x�� we describe the syntax of the language clp�sc� and
give three equivalent semantics� operational� �xpoint� and declarative� In x
�
we discuss techniques for solving set constraints� including the de�nition of
a useful normal form� In x�� we give a uni�cation algorithm based on the
constraint satisfaction algorithm of 	��� as well as some heuristics which may
improve performance� Finally� in x
� we show how the language can be applied
in set�based program analysis by deriving explicitly the monadic approxima�
tion to the collecting semantics of Heintze and Ja�ar 	����
��

� Set Expressions and Set Constraints

Let � be a �nite ranked alphabet consisting of symbols f � each with an as�
sociated arity� Symbols in � of arity �� �� �� �� and n are called nullary�
unary� binary� ternary� and n�ary� respectively� Nullary elements are often
called constants� The set of elements of � of arity n is denoted �n� The use
of any expression of the form f�x�� � � � � xn� in the sequel carries the implicit
assumption that f is of arity n�

The set of ground terms over � is denoted T�� This is the smallest set such
that if t�� � � � � tn � T� and f � �n� then f�t�� � � � � tn� � T�� If X � fx� y� � � �g
is a set of variables� then T��X� denotes the set of terms over � and X�
considering the elements of X as symbols of arity ��

Let B � ��� �� � � �� �� be the usual signature of Boolean algebra� Other
Boolean operators such as � �set di�erence� and � �symmetric di�erence� are
de�ned from these as usual� Let � � B denote the signature consisting of the
disjoint union of � and B� A set expression over variables X is any element of
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T��B�X�� The following is a typical set expression�

f�g�x � y���g�x � y�� � a

where f � ��� g � ��� a � ��� and x� y � X� A Boolean expression over X is
any element of TB�X��

A positive set constraint is a formal inclusion s 	 t� where s and t are set
expressions� We also allow equational constraints s � t� although inclusions
and equations are interde�nable� s 	 t is equivalent to s � t � t� and s � t is
equivalent to s� t 	 �� A negative set constraint is the negation of a positive
set constraint� s � t or s 
� t�

We interpret set expressions over the powerset �T� of T�� This forms an algebra
of signature � � B� where the Boolean operators have their usual set�theoretic
interpretations and elements f � �n are interpreted as functions

f � ��T��n� �T�

f�A�� � � � � An� � ff�t�� � � � � tn� j ti � Ai� � � i � ng � ���

Later� we will restrict our attention to the subalgebra Reg� of regular subsets
of T��

A set valuation is a map � � X � �T� assigning a subset of T� to each variable
in X� Any set valuation � extends uniquely to a �� � B��homomorphism � �
T��B�X� � �T� by induction on the structure of set expressions in the usual
way� We say that the set valuation � satis�es the positive constraint s 	 t
if ��s� 	 ��t�� and satis�es the negative constraint s � t if ��s� � ��t�� We
write � j� � if the set valuation � satis�es the constraint �� A system C of
set constraints is satis�able if there is a set valuation � that satis�es all the
constraints in C� in this case we write � j� C and say � is a solution of C�

��� Axioms of Termset Algebra

In 	���� the following axiomatization of the algebra of sets of ground terms
was introduced�

f�� � � � x � y� � � �� � f�� � � � x� � � �� � f�� � � � y� � � �� ���

f�� � � � x� y� � � �� � f�� � � � x� � � ��� f�� � � � y� � � �� ����
f��

f��� � � � � �� � � �
�

f��� � � � � �� � g��� � � � � �� � � � f 
� g ���






f�x�� � � � � xn� � ��
n�
i��

�xi � �� �
�

and the axioms of Boolean algebra� The ellipses in ��� and ��� indicate that
the explicitly given arguments occur in corresponding places� and that implicit
arguments in corresponding places agree� Models of these axioms are called
termset algebras�

The standard interpretation �T� forms a model of these axioms� Another model
is given by the subalgebra Reg� of regular subsets of T��

Some immediate consequences of these axioms are

f�� � � � �� � � �� � � ���

f�� � � ��x� � � �� � f�� � � � �� � � ��� f�� � � � x� � � �� ���

f�� � � � x� y� � � �� � f�� � � � x� � � ��� f�� � � � y� � � �� ���

f�� � � � x � y� � � �� � f�� � � � x� � � �� � f�� � � � y� � � �� ����

x 	 y� f�� � � � x� � � �� 	 f�� � � � y� � � �� � ����

One particularly important consequence is the generalized DeMorgan law�

�f�x�� � � � � xn��
�
g ��f

g��� � � � � �� �
n�
i��

f��� � � � � �� �z �
i��

��xi� �� � � � � �� �z �
n�i

� � ����

This law is useful in pushing occurrences of the negation operator � down
to the leaves of a term� This law can be justi�ed intuitively as follows� The
expression f�x�� � � � � xn� denotes the set of all ground terms with head symbol
f and ith subterm satisfying xi� A term is not of this form if either its head
symbol is not f �hence the �rst clause on the right hand side of ����� or its
head symbol is f � but its ith subterm does not satisfy xi for some i �hence the
second clause on the right hand side�� Formally� the law can be derived from
the termset algebra axioms by purely equational reasoning�

� clp�sc�

In this section we describe a logic programming language clp�sc�� a con�
straint logic programming language in the style of Ja�ar and Lassez 	��� over
set constraints� We describe the syntax of the language and give three equiva�
lent semantics� operational� declarative or model�theoretic� and �xpoint� The
equivalence of these three semantics follows from standard results and tech�
niques of constraint logic programming 	����
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��� Examples

Before describing the syntax and semantics of the language clp�sc�� here are
some sample programs to whet the intuition�

� Consider the clauses

sng�a��

sng�f�x�� � � � � xn�� �� sng�x��� � � � � sng�xn��

for all constants a � � and function symbols f � � of arity n 
 �� The goal
sng�x� succeeds i� x is a singleton set�

� For the goal empty�x� to succeed i� x is the empty set�

empty����

� For the goal nonempty�x� to succeed i� x is not the empty set�

nonempty�x� �� y 	 x� sng�y��

� For the goal equal �x� y� to succeed i� x and y are equal as sets�

equal �x� x��

� For the goal unequal �x� y� to succeed i� x and y are unequal as sets�

unequal �x� y� �� nonempty�x� y��

� For the goal dbl �x� to succeed i� x is a doubleton set�

dbl �y � z� �� unequal �y� z�� sng�y�� sng�z��

� For the goal atleast� �x� to succeed i� x contains at least two elements�

atleast� �x� �� y 	 x� dbl �y��

Ordinary logic programming over the Herbrand domain T� is subsumed� since
ground terms can be identi�ed with singleton sets� which are de�nable using
sng�x�� The membership predicate is encoded using the subset predicate� Neg�
ative constraints are also obviated by the use of sng�x�� using the fact that a
set is nonempty i� it includes a singleton subset �although this in itself does
not give a decision procedure for negative constraints��

��� Syntax of clp�sc�

Let � � fp� q� r� � � �g be a ranked alphabet of relation symbols not containing
� or 	 � each with a �xed �nite arity� Let �n denote the set of elements of �






of arity n� An atomic formula is an expression of the form p��u�� where p � �n

and �u � u�� � � � � un is an n�tuple of set expressions� A program clause is either

A�

A �� B�� � � � � Bn�

where A is an atomic formula and the Bi are either atomic formulas or pos�
itive set constraints� A program � is a set of program clauses� A query is an
expression of the form

�� B�� � � � � Bn�

where the Bi are either atomic formulas or positive set constraints�

��� Regular Sets

A subset of T� is regular if it is described by a �nite tree automaton� equiva�
lently� if it is some set x� described by a system of simultaneous set equations
of the form

x� � s��x�� � � � � xm�

x� � s��x�� � � � � xm�
���

xm � sm�x�� � � � � xm�

����

in which each variable xi occurs on the left hand side of exactly one equa�
tion and each right hand side is a disjunction of set expressions of the form
f�y�� � � � � yn�� where f � �n and yi � fx�� � � � � xmg� � � i � n� It can be proved
by induction on the depth of terms that any such system has a unique solution
�see 	����� The family of regular sets over � is denoted Reg�� For example� the
system

x � a � g�y� y � g�x� ��
�

has the unique regular solution

��x� � fgn�a� j n eveng ��y� � fgn�a� j n oddg �

Gilleron et al� 	��� have shown that every satis�able system of set constraints
has a regular solution� i�e� one in which all variables are interpreted as regular
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sets� We give an alternative proof of this fact below �Theorem ���

For our domain of computation we take the family Reg� of regular subsets of
T�� We contend that this domain in the present context is analogous to the
Herbrand universe in ordinary logic programming� One might alternatively
consider the sets represented by the family of ground set expressions� i�e�
elements of T��B� However� this set is too small� because there are satis�able
systems of set constraints with no solution in T��B� ��
�� for example� On the
other hand� the entire power set of T� is too big� since there are subsets of T�
that are not represented by any �nite system of set constraints�

The choice of the regular sets as domain of computation allows us to think con�
veniently in terms of a generalized notion of substitution� if A is any expression
involving the set variables �x � x�� � � � � xn� and if �d � d�� � � � � dn is an n�tuple
of regular sets described uniquely by a �nite system C of set constraints of the
form ����� then the �substitution instance A	�x� �d� can be expressed syntacti�
cally by conjoining C and A�

The domain of regular sets also satis�es the two fundamental desiderata for
constraint logic programming languages as set forth in 	���� namely�

� Every element of the domain is the unique solution of a �nite or in�nite
family of constraints� In fact� every regular set is the unique solution of a
�nite family of constraints of the form �����

� Every element not satisfying a constraint C satis�es some constraint C � such
that the conjunction C�C � is unsatis�able� This property follows immedi�
ately from the fact that every regular set is the unique solution of a single
constraint obtained by combining the constraints �����

m�
i��

�xi � si�x�� � � � � xm��� � �

��	 Operational Semantics

In the following� C� C� denote �nite systems of set constraints� B�B� �nite lists
of atomic formulas� p an element of �n� �s� �t n�tuples of set expressions� and �
a program�

Following 	���� our operational semantics involves sequences of one�step deriva�
tions of the form

p��s�� B� C ���� �s � �t� B� B�� C� C� ����
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which reduces the goal on the left hand side to the goal on the right hand side
whenever

� there is a fresh instantiation

p��t� ��B�� C��

of a program clause in � obtained by substituting new variables� and
� the constraint system �s � �t� C� C � is satis�able�

There is no implied ordering of the atomic formulas in a goal� any one may be
chosen for expansion at any time�

We say that the query

��B� C� ��
�

succeeds if there is a sequence

B� C ��
�
� C � ����

of such one�step derivations eliminating all atomic formulas� and C� is satis�
�able� Here ���� denotes the re!exive transitive closure of ���� � If � is a set
valuation� we say that the query ��
� succeeds with � if there is a derivation
���� with � j� C�� Note that � also satis�es the original constraint system C�

��
 Declarative Semantics

Let

"� fp� �d� j n 
 �� p � �n� �d � Regn�g �

The set " corresponds to the Herbrand base of ordinary logic programming�

We consider �rst�order structures M with carrier Reg�� set operations and
relations ������ �� ���� 	 with their usual interpretations� f � � with set�
theoretic interpretation ���� and interpretations of relation symbols in � spec�
i�ed by some subset "M of "� If � � X � Reg�� we write

M� � j��

ifM satis�es the �rst�order formula � under valuation � in the ordinary sense
of �rst�order logic� We writeM j� � ifM satis�es the clauses in the program
�� considered as universally quanti�ed Horn clauses of �rst�order logic�
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��� Fixpoint Semantics

For # 	 "� let T��#� be the set of all p� �d� � " such that there exists a
program clause

A ��B�� � � � � Bm� C�

in � and a set valuation � � X � Reg� such that

� Bi	�x����x�� � #� � � i � m
� � j� C� and
� p� �d� � A	�x����x���

The map T� � �� � �� is monotone with respect to set inclusion� therefore
by the Knaster�Tarski Theorem has a least �xpoint "�� LetM� be the model
speci�ed by "� as described in x���� i�e�� "M� � "��

The following results assert the equivalence of these three semantics� The
proofs are standard� using results and techniques of logic programming and
constraint logic programming 	����

Lemma � The set "M is a pre�xpoint of T� �i�e�� T��"M� 	 "M
 if and
only if M j� ��

By the Knaster�Tarski Theorem� the least pre�xpoint of T� is also its least
�xpoint� It follows that M� is the minimal model of ��

Theorem � Let B be a �nite list of atomic formulas� C a �nite system of
set constraints� �d � d�� � � � � dm � Reg�� � a partial set valuation such that
��xi� � di� � � i � m� where �x � x�� � � � � xm is a list of variables including
all those occurring in B and C� and D a system of set constraints of the form
���
 de�ning the substitution 	�x� �d� uniquely�

The following statements are equivalent�

�i
 M�� � j� B � C�
�ii
 the query ��B� C� succeeds with some extension �� of ��
�iii
 the query ��B� C�D� succeeds�
�iv
 � j� C� and for every clause Bi in B� Bi	�x� �d� � "��
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� E�cient Constraint Solving

	�� Atomic Form and Hypergraphs

In this section we describe a convenient normal form for systems of con�
straints called atomic form� This normal form corresponds to the combina�
torial method of 	������� involving hypergraphs� It is also strongly related to
the automata�theoretic approach of 	����
� and to the approach of 	�� involving
�nite models of monadic logic�

De�nition � A system of set constraints is in atomic form if

� the variables are partitioned into two disjoint sets U and X� called the atoms
and primary variables� respectively�

� there is a subset Ef ��u� 	 U for each f � �n and �u � Un� and
� there is a subset P �x� 	 U for each x � X�

such that the system consists of constraints

�
u�U

u � � ����

u � v � � � for distinct u� v � U ����

f��u� 	
�

u�Ef �	u


u ����

x �
�

u�P �x


u � x � X ����

where any f��u� appears on at most one left hand side of a constraint of the
form ���
� We take Ef ��u� � U for expressions f��u� not appearing on the
left hand side of any constraint ���
� this implicitly asserts the redundant
constraint f��u� 	 ��

The tuple �U� X� E� P � speci�es a system of set constraints in atomic form�
where U is the set of atoms� X the set of primary variables� E speci�es the
maps Ef � Un � �U � and P gives the sets P �x��

The clauses ���� and ���� say that the atoms form a �nite partition of T��
As in 	����� we can regard such a system as a hypergraph on vertices U with
hyperedge relations

Ef � Un� �U �

��



one for each f � �n� For constants a � ��� Ea is a subset of U � unary
g � �� give rise to ordinary binary edge relations� binary f � �� give rise
to ternary hyperedge relations� etc� This structure can also be regarded as a
nondeterministic �nite tree set automaton 	����
��

De�nition � ���	
 The hypergraph corresponding to a system of set con�
straints in atomic form is said to be closed if every Ef ��u� is nonempty� The
hypergraph is said to have a closed induced subhypergraph if there is a subset
V 	 U such that for every f � �n and every n�tuple �u � V n� the set Ef ��u�
intersects V �

The notion of closure is captured axiomatically by �
� 	����

De�nition � A run is a map � � T� � U such that for all f�t�� � � � � tn� � T��

��f�t�� � � � � tn���Ef ���t��� � � � � ��tn�� � ����

The run � corresponds to an in�nite run of a tree set automaton in the
automata�theoretic approach of 	����
��

The following theorem was proved in 	���

Theorem � ���	
 Let C � �U� X� E� P � be a system of set constraints in
atomic form considered as a hypergraph as described above� The following three
statements are equivalent�

�i
 C has a closed induced subhypergraph�
�ii
 there exists a run � � T� � U �
�iii
 C is satis�able�

Proof sketch
 �i� � �ii� The existence of a closed induced subhypergraph
on atoms V allows us to assign an atom ��t� � V to each ground term t � T�
inductively such that ���� holds�

�ii� � �iii� Given a run �� a set valuation � satisfying C can be obtained by
setting

��x� � ����P �x�� ��u� � ����fug� � ����

�iii�� �i� Given valuation � satisfying C� take V � fu � U j ��u� 
� �g� �

If there is a closed induced subhypergraph not containing some atom u� then u
is not needed to construct a run �� and its removal does not a�ect satis�ability�
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We will often �but not always� want to annihilate such atoms� This is done
formally by imposing the extra set constraint u � �� then using property ���
and Boolean algebra to construct an equisatis�able system in atomic form in
which the atom u does not appear� For each occurrence of u on the left hand
side of a constraint ����� by ��� that constraint is immediately satis�ed and
may be deleted� Any other occurrence of u may then be deleted� since it only
appears in disjunctions� We are left with a smaller system in atomic form�

	�� Reduction to Atomic Form

Every system of set constraints can be put into atomic form e�ectively with at
most an exponential increase in size� Here is an algorithm� which is essentially
the same as the normal form algorithm of 	���

Let X be the set of variables appearing in the original system� These are the
primary variables�

Algorithm � �i
 Replace any subexpression f�t�� � � � � tn� by x and add con�
straints

x� f�y�� � � � � yn� ��
�

yi� ti � � � i � n �

where x� y�� � � � � yn are new auxiliary variables� This is called !attening�
Repeat until the system consists of purely Boolean constraints and con�
straints of the form ��	
�

�ii
 Replace each constraint of the form ��	
 by two inclusions

f�y�� � � � � yn� 	 x �f�y�� � � � � yn� 	�x � ����

�iii
 Apply the generalized DeMorgan law ���
 to the left hand side of ��

 to
get the equivalent inclusion

�
g � �
g �� f

g��� � � � � �� �
n�
i��

f��� � � � � �� �z �
i��

��yi� �� � � � � �� �z �
n�i

� 	 �x �

then rewrite this as separate inclusions

g��� � � � � �� 	 �x � g 
� f

f��� � � � � �� �z �
i��

��yi� �� � � � � �� �z �
n�i

� 	 �x � � � i � n �

All constraints are now either purely Boolean or of the form

��



f�x�� � � � � xn� 	 x ��
�

where x� x�� � � � � xn are positive or negative literals or the constant ��

�iv
 Let Y be the set of variables in use at this point� This includes the primary
variables X and all auxiliary variables added in step �i
� Let B be the
set of purely Boolean constraints on Y constructed in step �i
� Introduce
a new set of variables U called atoms� one for each atom of the free
Boolean algebra on generators Y modulo B� equivalently� one for each
truth assignment to Y satisfying B� For x � Y � let P �x� be the set of
all u � U such that the truth assignment corresponding to u satis�es x�
Replace the constraints B with the constraints ���
� ���
� and ���
 for
each x � Y �

�v
 In constraints of the form ���
� replace each positive literal x with
S
u�P �x
 u�

each negative literal �x with
S
u ��P �x
 u� and each occurrence of the con�

stant � with
S
u�U u� Apply ��
 to express each left hand side as a union of

expressions of the form f�u�� � � � � un�� Separate each resulting constraint

�
	u�A

f��u� 	
�
u�E

u

into a �nite collection of constraints

f��u� 	
�
u�E

u � �u � A �

�vi
 Collect all constraints with the same left hand side�

f��u� 	
�
u�E

u � E � E �

and let Ef ��u� �
T
E� Replace these constraints with the single equivalent

constraint ���
�
�vii
 Remove all constraints of the form ���
 for auxiliary variables� i�e� those

in Y �X� They are no longer needed �and trivially satis�able if the rest
of the system is
�

The resulting system is in atomic form and is equivalent to the original�

One can still reduce the size of the system by annihilating atoms u that are
inaccessible in the automata�theoretic sense� since they will never be chosen
in the construction of the run � in Theorem �� Formally�

�viii
 Let W be the smallest set closed under the following operation� if �u � W n

then Ef ��u� 	 W � Annihilate all atoms u � U �W � If U has a closed
induced subhypergraph on atoms V � then the induced subhypergraph on
atoms V �W is also closed� therefore by Theorem � the new system is
satis�able i� the old one was�

�




	�� Testing Satis�ability

If the system C of set constraints in atomic form is not closed� then there is
some constraint of the form

f�u�� � � � � un� 	 � � ����

Property �
� then implies that any satisfying valuation must have ui � � for
some i� � � i � n� We can pick some ui and annihilate it as described above�
However� if some Eg��u� � fuig� then this last action causes the right hand
side of another constraint ���� to vanish� in which case the process must be
repeated� If this process ever stabilizes in a system in atomic form in which
every Ef ��u� is nonempty� then we have found a closed induced subhypergraph�
and by Theorem 
 the system is satis�able�

The choice of ui to annihiliate is inherently a nondeterministic process� No
algorithm that is signi�cantly more e$cient in the worst case is likely to be
found� since the general satis�ability problem is nondeterministic exponential�
time complete 	����� and even NP �complete when the system is in atomic
form� However� if there are no operators of arity two or greater� then there is
no nondeterministic choice to be made and the process becomes deterministic�
This is the essence of the proof of the result of 	�� that the satis�ability problem
can be solved in deterministic exponential time in this case�

Even in the presence of operators of arity two or greater� the following greedy
heuristic may be useful in improving performance� always annihilate the ui
that removes the largest number of constraints ���� with � on the right hand
side�

Aiken 	�� also suggests the following heuristic� keep track of atoms that are
necessary to the solution� For example� if �u � u�� � � � � un are all necessary
and Ef ��u� � fu�g� then u� is necessary� Necessary atoms should never be
annihilated� Initially� few� if any� atoms will be necessary� However� as choices
are made about which atoms to annihilate� the set of necessary atoms will
increase� leading to more deterministic search in later steps�

	�	 Regular Solutions

In this section we give an alternative proof of a result of Gilleron et al� 	��� that
we can restrict our attention to regular solutions of systems of set constraints�
This result is essential in the semantics of clp�sc��

��



Theorem � ����	
 Every satis�able system of set constraints has a regular
solution�

PROOF
 Let C be a satis�able system of set constraints in atomic form� By
Theorem 
� the associated hypergraph contains a closed induced subhyper�
graph� i�e�� one can annihilate atoms u to obtain an equisatis�able system
in atomic form in which all Ef ��u� are nonempty� Now perform the following
steps in order�

�i� Delete all atoms but one from each Ef ��u��
�ii� Annihilate all atoms except those appearing on the right hand sides of

inclusions �����
�iii� Combine all constraints ���� with the same right hand side u into a single

constraint whose left hand side is the disjunction of the left hand sides
of all constraints with right hand side u�

�iv� Change all inclusions to equalities�

Each step in the above process strengthens the system �annihilation of u is
tantamount to adding the constraint u � ��� so any solution of the resulting
system is also a solution of the original system C� The resulting system of
equations ���� is of the form ����� which has a unique regular solution �see
	����� Moreover� every f��u� occurs in exactly one equation ����� this implies
that ���� and ���� hold as well�

This procedure constructs a closed subhypergraph �not necessarily induced�
in which all Ef��u� are singletons� which can be viewed as a deterministic tree
set automaton� �

� E�cient Uni�cation

In constraint logic programming� uni�cation is just conjunction of constraints�
In our case� however� we wish to maintain constraints in atomic form for
the sake of e$ciency� We show in this section an e$cient way to unify two
constraint systems C� D in atomic form into a new constraint system E in
atomic form that is equivalent to the conjunction of C and D� This is done
in two steps� the �rst� a common re�nement step in which atoms from C
and D are paired� and a minimization step in which inaccessible atoms are
annihilated and equivalent atoms coalesced�

�





�� Common Re�nement

Let C � �UC� XC� EC� P C� and D � �UD� XD� ED� PD� be two systems of
set constraints in atomic form with disjoint sets of atoms� We unify C and D
by forming their coarsest common re�nement� The resulting system will be in
atomic form and will be equivalent to the conjunction of C and D�

For u � UC and v � UD� let uv denote a new variable which is formally the
ordered pair �u� v� but represents the conjunction u � v� De�ne the system
E � �UE � XE � EE � P E� as follows�

UE �
�

x�XC�XD

��P C�x�� PD�x�� � ��UC � P C�x��� �UD � PD�x���� ����

XE �XC �XD ����

EE
f �u�v�� � � � � unvn� � �EC

f �u�� � � � � un�� ED
f �v�� � � � � vn�� � UE ����

P E�x��

������	
�����


�P C�x�� PD�x�� � UE � x � XC �XD

�P C�x�� UD� � UE � x � XC �XD

�UC � PD�x�� � UE � x � XD �XC �

����

This de�nition can be justi�ed as follows� To obtain ����� we start by taking
the atoms of the coarsest common re�nement to be conjunctions of pairs of
atoms� one from C and one from D� Some of these atoms will be immediately
annihilated� however� due to the constraints ����� If x � XC �XD� then the
two constraints of the form ���� involving x� one from C and one from D�
imply that

�
u�PC�x


u�
�

v�PD�x


v �

or equivalently that uv � � for u � P C�x� and v 
� PD�x� or for u 
� P C�x�
and v � PD�x�� These uv are annihilated� giving the de�nition of UE as it
appears in �����

To justify ����� each constraint of the form ���� for C� say

f�u�� � � � � un� 	
�

u�EC

f
�	u


u �

and the constraint

��



�
v�UD

v��

for D combine using ��� to give constraints

f�u�v�� � � � � unvn� 	
�

u � EC

f
�	u


uv � UE

uv � ����

Constraints of the form

f�u�v�� � � � � unvn� 	
�

v � ED

f
�	v


uv � UE

uv ����

are obtained in a symmetric fashion by switching C and D in the de�nition�
Combining constraints ���� and ���� with like left hand sides� we obtain the
constraint

f�u�v�� � � � � unvn� 	
�

u � EC

f
�	u


v � ED

f
�	v


uv � UE

uv �

The justi�cation for ���� is similar�


�� Minimization

As we progress down in the search tree� repeated uni�cations may result in a
proliferation of extraneous atoms� This can be countered by the following pro�
cess� which attempts to identify redundancy by �i� deleting inaccessible atoms�
and �ii� identifying equivalent atoms� The technical notions of inaccessible and
equivalent are de�ned formally below� This construction is analogous to re�
ducing the number of states in a deterministic or nondeterministic �nite state
automaton by forming the quotient modulo a suitable equivalence relation�

De�nition � Let C�D be systems of set constraints in atomic form over pri�
mary variables X� We call C and D equivalent if for any solution � of C there
is a solution 	 of D such that ��x� � 	 �x� for all x � X� and vice versa�

De�nition � Let C � �UC� X� EC� P C� and D � �UD� X� ED� PD� be systems
of set constraints in atomic form over primary variables X� A homomorphism
h � C � D is a map h � UC � UD such that

��



P C�x�� h���PD�x�� ��
�

h�EC
f �u�� � � � � un���ED

f �h�u��� � � � � h�un�� � ����

Lemma �� Let C � �UC� X� EC� P C� and D � �UD� X� ED� PD� be systems
of set constraints in atomic form over primary variables X� and let h � C � D
be a homomorphism� Then C and D are equivalent�

PROOF
 Given a run � � T� � UC for C� de�ne


�h � � � T� � UD � ��
�

A brief argument involving ���� and ���� shows that 
 is a run for D�

Conversely� given a run 
 � T� � UD for D� de�ne a run � � T� � UC for C
satisfying ��
� inductively� suppose 
�ti� � h���ti��� � � i � n� Then


�f�t�� � � � � tn�� � ED
f �
�t��� � � � � 
�tn��

�ED
f �h���t���� � � � � h���tn���

�h�EC
f ���t��� � � � � ��tn��� �

so there exists u � EC
f ���t��� � � � � ��tn�� such that h�u� � 
�f�t�� � � � � tn���

Setting ��f�t�� � � � � tn�� � u� we have

h���f�t�� � � � � tn���� 
�f�t�� � � � � tn�� �

In either case� by ��
� we have


�t� � PD�x���h���t�� � PD�x�

�� ��t� � P C�x� �

thus


���PD�x��� ����P C�x�� �

As argued in Theorem 
� the left and right hand sides of this equation are
components ���� of set valuations satisfying D and C� respectively� �

De�nition �� Let C � �U� X� E� P � be a system in atomic form� An equiv�
alence relation � on U is called a congruence if the following two conditions
hold�

�i
 if u � v and u � P �x�� then v � P �x��

��



�ii
 if ui � vi� � � i � n� then for all u � Ef �u�� � � � � un� there exists v �
Ef �v�� � � � � vn� such that v � u�

Theorem �� Let C � �U� X� E� P � be a system in atomic form with no
inaccessible atoms in the sense of step �viii
 of Algorithm �� The congruences
on C and homomorphic images of C are in one�to�one correspondence up to
isomorphism�

PROOF
 We �rst show how to construct a quotient system modulo a con�
gruence� This system will be a homomorphic image of C under the canonical
map taking an atom to its congruence class�

Let� be a congruence on U � Associate a new variable 	u� with the��congruence
class of u� De�ne

U �� f	u� j u � Ug

P ��x�� f	u� j u � P �x�g

E�
f�	u��� � � � � 	un��� f	u� j u � Ef �u�� � � � � un�g �

The set E�
f �	u��� � � � � 	un�� is well�de�ned by De�nition ���ii�� Moreover� 	u� �

P ��x� i� u � P �x�� the left�to�right implication depends on De�nition ���i��

Now consider the system C�� of constraints

�
�u��U �

	u� � � ����

	u� � 	v� � � � 	u� 
� 	v� ����

f�	u��� � � � � 	un�� 	
�

�u��E�

f
��u� �������un�


	u� ����

x �
�

�u��P ��x


	u� � x � X �
��

This system is in atomic form� and the canonical map u �� 	u� is a homomor�
phism C � C���

Conversely� any homomorphism h � C � D induces a congruence on C by
taking u � v if h�u� � h�v�� This operation is inverse to the quotient con�
struction� �

It follows immediately from Lemma �� that the system C and its quotient C��
are equivalent in the sense of De�nition ��

��



A congruence can be de�ned on U by setting u � v if for all f � �� �u� �v� and
x�

u � P �x��� v � P �x�

Ef��u� u� �v� � Ef ��u� v� �v� �

However� this congruence is by no means optimal� The following construction�
analogous to the standard minimization algorithm for �nite automata� may
give a better solution in some cases�

The algorithm marks unordered pairs of atoms fu� vg as inequivalent� All pairs
are initially unmarked� If u � P �x� and v 
� P �x� for some x� mark fu� vg�
Now repeat the following two steps until there are no more marks�

�i� If �u � u�� � � � � un� �v � v�� � � � � vn� and Ef ��u� contains an element u such
that all pairs fu� vg for v � Ef ��v� are marked� then nondeterministically
choose some distinct pair fui� vig� � � i � n� and mark it�

�ii� If fu�wg is marked but neither fu� vg nor fv�wg is marked� nondeter�
ministically choose either fu� vg or fv�wg and mark it�

When done� unmarked pairs are equivalent�

Any nondeterministic execution of this process results in a congruence� and
all maximally coarse congruences �resulting in minimal homomorphic images�
are achieved by some execution� Moreover� if � contains no symbols of arity
two or greater� then step �ii� can be dispensed with� since in this case step
�i� is deterministic and automatically results in a transitive relation� In this
case the entire process is deterministic and gives the unique maximally coarse
congruence� resulting in the unique minimal homomorphic image� Very fast
algorithms are available for this case 	������

� An Application

In program analysis and compiler optimization� one often wishes to determine
information such as whether a given variable can take on a given value at
a given point in the program� Of course this is undecidable in general� but
it is often possible to describe a superset of the values a variable can take
on at a given point� and this approximate information may still be useful in
performing optimizations�

Heintze and Ja�ar 	�
� introduced the technique of monadic approximation in
which variable interdependencies are ignored� See 	��� for a thorough intro�

��



duction to this technique and examples of its application to imperative and
logic programs�

In this section we show how clp�sc� can be used to give a concise character�
ization of the monadic approximation for a simple imperative programming
language consisting of the following constructs�

x �� e simple assignment

if x � y then p else q conditional

while x � y do p while loop

p� q sequential composition

The test x � y in the conditional and while loop can be replaced by x 
� y or
any similar test� Programs in this language are called while programs�

This example is included in order to illustrate how a language like clp�sc�
might be applied in program analysis� As a general tool� the language as
de�ned here is somewhat limited by the fact that it does not include certain
constructs used in program analysis� such as projections and more general
conditional expressions� Extending the language to handle these constructs
constitutes a worthwhile topic for further investigation�

��� Collecting Semantics

The collecting semantics associates with each point in the program the set of
valuations of program variables that can occur at that point during execution�
Following Heintze 	���� we describe here the collecting semantics for while
programs�

Let p be a while program and let X be the set of program variables occurring
in p� We associate with each subprogram q two points� one just before and
one just after q� Each such point is labeled with a letter a� b� c� � � � We denote
by %a the set of valuations � � X � fvaluesg of program variables that ever
occur at point a during execution�

Heintze 	��� gives a system of set inclusions whose least solution characterizes
the sets %a exactly� These are given in Figure �� In that �gure�

%	x �� e�� f�	x���e�� j � � %g

%	x � y�� f� � % j ��x� � ��y�g

%	x 
� y�� f� � % j ��x� 
� ��y�g

��



x �� e

� �
a b

%a	x �� e� 	 %b

if x � y then p else q

� �� ���

a
b c de

f

%a	x � y� 	 %b

%a	x 
� y� 	 %d

%c � %e 	 %f

while x � y do p

� ���

a
b c
d

%a	x � y� 	 %b

%a	x 
� y� 	 %d

%c 	 %a

p � q

��
ab

%a 	 %b

Fig� �� The collecting semantics of while programs

and �	x��� denotes the valuation that agrees with � everywhere except pos�
sibly x� and the value of �	x��� at x is ��

If s is the starting point of the program� then we set %s � f��g� where �� is
some initial valuation�

��� Monadic Approximation

Heintze 	��� shows that the monadic approximation to the collecting semantics
can be computed as the least solution to the same set of equations as in Figure
�� except that the meaning of %a is altered to ignore dependencies among
variables� Whereas %a is a collection of valuations � � X � fvaluesg� we
de�ne b%a to be a set valuation� i�e� a mapping

b%a � X� �fvaluesg

that assigns a set of values to each program variable at point a� Under the
new interpretation�

b%	x �� e�� b%	x� b%�e��

��



b%	x � y��

��	
�

b%	x� b%�x� � b%�y�� y� b%�x� � b%�y�� � if b%�x� � b%�y� 
� �


x�� � otherwise

b%	x 
� y��

�������������	
������������



x�� � j b%�x�j � j b%�y�j � �� b%�x� � b%�y�

b% � j b%�x�j � j b%�y�j � �� b%�x� 
� b%�y�

b%	y� b%�y�� b%�x�� � j b%�x�j � �� j b%�y�j � �

b%	x� b%�x�� b%�y�� � j b%�x�j � �� j b%�y�j � �

b% � j b%�x�j � �� j b%�y�j � � �

Here jAj denotes the cardinality of A� b%	x�A� denotes the map that agrees withb% everywhere except possibly x� and the value of b%	x�A� at x is A� and b%�e�
is the set of values denoted by the expression e under the set�theoretic inter�
pretation of the operators� where the variables occurring in e are interpreted
by b%� The inclusions 	 of Figure � are interpreted pointwise�

The de�nitions of b%	x � y� and b%	x 
� y� may seem rather complicated�
Intuitively� b%	x � y� is the minimal set valuation approximating the collection
of valuations

f� j ��x� � ��y� and �z � X ��z� � b%�z�g �

The set b%	x � y� can be constructed as follows�

�i� Form the maximal set of valuations % of which b% is an approximation�
This is just the direct product

%�
Y
z�X

b%�z� � f� j �z � X ��z� � b%�z�g �

�ii� Intersect % with the diagonal set

f� j ��x� � ��y�g

to obtain the set %	x � y� as de�ned above� �Any other reasonable test
can be used here��

�iii� Take

b%	x � y� �
x � X�f��x� j � � %	x � y�g �

the so�called cartesian closure of %	x � y� 	�
�� This is the smallest set
valuation approximating %	x � y��

�




This construction is illustrated in the following diagram�

y

x
�
�
�
�
�
�
�
�
�
�

�

b%	x � y�

� b%

�I
��x� � ��y�

The construction of b%	x 
� y� is similar� except that the set f� j ��x� 
� ��y�g
is used in step �ii��

One can show that b%a�x� is a superset of the set f��x� j � � %ag of the values
assigned to x under the old interpretation� i�e�� the monadic interpretation is
a safe approximation to the collecting semantics� See Heintze 	��� for further
details�

Below we give a clp�sc� program to compute the monadic approximation to
the collecting semantics� In this program� the formula

ma��x� ppq� �y�

asserts that if the set variables �x � x�� � � � � xn are instantiated with sets of
values for the program variables �also denoted �x � x�� � � � � xn�� then after
executing program p� the �nal sets of values assigned to the program variables
under the monadic approximation are given by the values of the set variables
�y � y�� � � � � yn� The expression ppq denotes the representation of program p in
some suitable encoding�

ma��x� pxi �� e��x�q� x�� � � � � xi��� e��x�� xi��� � � � � xn��

ma��x� pif b then p else qq� �y � �z� ��

test��x� pbq� �u�� ma��u� ppq� �y��

test��x� p�bq� �v�� ma��v� pqq� �z��

ma��x� pwhile b do pq� �z� ��

�u � �x � �y�

test��u� pbq� �v�� ma��v� ppq� �y��

test��u� p�bq� �z��

ma��x� pp� qq� �z� �� ma��x� ppq� �y�� ma��y� pqq� �z��

test ��x� px � yq� ��� �� empty�x � y��

test ��x� px � yq� � � � � x � y� � � � � x � y� � � �� �� nonempty�x � y��

test ��x� px 
� yq� ��� �� x � y� sng�x�� sng �y��

��



test ��x� px 
� yq� �x� �� unequal �x� y�� sng�x�� sng �y��

test ��x� px 
� yq� � � � � x� � � � � y � x� � � �� �� sng�x�� atleast� �y��

test ��x� px 
� yq� � � � � x� y� � � � � y� � � �� �� atleast� �x�� sng�y��

test ��x� px 
� yq� �x� �� atleast� �x�� atleast� �y��

If p is a program� the query

��ma����x��� � � � � ���xn�� ppq� �y��

will instantiate the variables �y with the sets of possible �nal values of the pro�
gram variables under the monadic approximation to the collecting semantics�
assuming that the initial values are given by the valuation ���
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