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A resultant is a purely algebraic criterion for determining whether a �nite

collection of polynomials have a common zero� It has been shown to be a useful

tool in the design of e�cient parallel and sequential algorithms in symbolic

algebra� computational geometry� computational number theory� and robotics�

We begin with a brief history of resultants and a discussion of some of

their important applications� Next we review some of the mathematical back�

ground in commutative algebra that will be used in subsequent sections� The

Nullstellensatz of Hilbert is presented in both its strong and weak forms� We

also discuss brie�y the necessary background on graded algebras� and de�ne

a�ne and projective spaces over arbitrary �elds� We next present a detailed

account of the resultant of a pair of univariate polynomials� and present e��

cient parallel algorithms for its computation� The theory of subresultants is

developed in detail� and the computation of polynomial remainder sequences is

derived� A resultant system for several univariate polynomials and algorithms

for the gcd of several polynomials are given� Finally� we develop the theory

of multivariate resultants as a natural extension of the univariate case� Here

we treat both classical results on the projective �homogeneous	 case� as well

as more recent results on the a�ne �inhomogeneous	 case� The u
resultant of

a set of multivariate polynomials is de�ned and a parallel algorithm is pre�

sented� We discuss the computation of generalized characteristic polynomials

and relate them to the decision problem for the theories of real closed and

algebraically closed �elds�

����
Introduction

The subject of this chapter is the computation of resultants� A resul�

tant is a purely algebraic criterion for determining whether a �nite collection

of polynomial equations has a common solution� expressed in terms of the

coe�cients of these polynomials� The investigation of such criteria belongs

historically to the branch of mathematics known as elimination theory� the

goal of which was to solve systems of polynomial equations by successive elim�

ination of variables� Fundamental aspects of this project were developed by

Hermann� Hilbert� Kronecker� Lasker� Macaulay and Noether at the turn of

this century� marking the beginning of a fusion of algebra and geometry which

later found fuller expression in the development of algebraic geometry�
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Much of the fundamental work in elimination theory was pursued at a

time when constructive methods in mathematics prevailed� In fact� the osten�

sible goal of the theory
solving systems of polynomial equations
had such

obvious practical signi�cance that the e�ciency of algorithms was already a

concern� Macaulay expressed this point of view in his ���� tract The Alge


braic Theory of Modular Systems when he wrote that the current body of

knowledge in elimination theory

might be regarded as in some measure complete if it were admit�

ted that a problem is �nished with when its solution has been

reduced to a �nite number of feasible operations� If however the

operations are too numerous or too involved to be carried out in

practice the solution is only a theoretical one
 and its importance

then lies not in itself� but in the theorems with which it is asso�

ciated and to which it leads� Such a theoretical solution must be
regarded primarily as a preliminary and not the �nal stage in the

consideration of the problem�

The study of algorithms in elimination theory has not yet reached its ��nal

stage�� provably optimal algorithms are still lacking� Nevertheless� contempo�

rary ideas in algorithm design and complexity are continually being brought

to bear� and the most e�cient sequential and parallel algorithms for these

problems have been discovered during the last decade�

The theory of resultants rests on the well known Nullstellensatz of

Hilbert� which relates the algebra of the ring of polynomials over indeter�

minates x�� � � � � xn with coe�cients in an algebraically closed �eld k �denoted

k�x�� � � � � xn�	 and the geometry of the space kn of n�tuples of elements of k�

For example� over the complex numbers C� the Nullstellensatz asserts that m

polynomials f�� � � � � fm with complex coe�cients have no common solutions

in Cn exactly when there are m additional polynomials g�� � � � � gm such that

f�g� � f�g� � � � �� fmgm � � �

The foundation of elimination theory lies in the fact that the existence or

nonexistence of these gi�s can be determined solely by examining the coe��

cients of the fi�s� and that an algebraic criterion can be constructed uniformly

once the degrees of these polynomials are speci�ed� From this observation the

notion of a resultant arose
a polynomial in the coe�cients of the given poly�

nomials which vanishes exactly when a common solution exists�
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Stated in this way� it might seem that the resultant yields no more than

a decision procedure for the existence of solutions
 but the fact that it provides

a purely algebraic criterion extends its usefulness signi�cantly� Resultants can

be used in constructing solutions to systems of equations� both symbolically

and numerically �by approximation	� They have been employed successfully

in the design of e�cient parallel and sequential algorithms in symbolic algebra�

computational geometry� and computational number theory� and have found

important practical applications in solid modeling and robotics�

������ Outline of this Chapter

This chapter presents parallel algorithms to compute the resultants of both

univariate and multivariate polynomials�

We begin in x������ with a review of some of the mathematical back�

ground in commutative algebra that will be required� including the necessary

facts regarding graded algebras� and a�ne and projective spaces over arbi�

trary �elds� The Nullstellensatz of Hilbert is presented in both its strong and

weak forms�
In x������� we give a detailed account of the construction of the resul�

tant of a pair of univariate polynomials� The treatment is also extended to

deal also with several polynomials in a single variable� In exploring properties

of these calculations� the theory of subresultants is developed in detail� and

an e�cient parallel algorithm for the computation of polynomial remainder

sequences is derived in a natural way� We discuss the applications of subresul�

tants in parallel greatest common divisor �gcd	 algorithms and in computing

the extended Euclidean scheme� These algorithms have played a major role

in the recent development of parallel methods in real geometry� For example�

the algorithm of Ben�Or� Kozen and Reif ���� which gives an e�cient parallel

decision procedure for questions in the theory of real closed �elds� employs

a variety of parallel resultant�based techniques
 the extension and corrected

analysis by Renegar ���� makes essential use of multivariate resultants� pre�

sented in x������ below� Although a complete discussion of these applications

is beyond the scope of this chapter� our presentation should be su�cient to

enable the interested reader to pursue more advanced topics in the literature�

References to such applications are provided at the end of this chapter�

In x������� the theory of multivariate resultants is developed as a natural

extension of the univariate case� Here we treat both classical results on the
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projective �homogeneous	 case� as well as more recent results on the a�ne

�inhomogeneous	 case� In this section our presentation is necessarily more

abbreviated� Some statements whose proofs rely on deep algebraic or geomet�

ric arguments are not explored in detail� However� the general strategy for

obtaining the desired algorithms from these results is explored fully�

Constructions involving multivariate resultants have played a large role

in the development of e�cient sequential algorithms during the past decade�

but only within the last few years have special cases of these results con�

tributed signi�cantly to the improvement of parallel algorithm design� The

u
resultant of a set of n polynomials in n variables is perhaps the most impor�

tant tool here� and we present a simple parallel algorithm for its computation�

We also discuss the computation of so�called generalized characteristic poly


nomials and demonstrate how they aid in adapting resultants for the homoge�

neous case to the inhomogeneous case� These techniques have been developed

recently in the design of parallel algorithms for deciding questions in the theo�

ries of real closed and algebraically closed �elds and for eliminating quanti�ers

in these theories� Although an exposition of such applications is beyond the

scope of this chapter� we have tried to gather together the fundamental results

of the modern and classical theories and present them in su�cient detail to

enable the interested reader to pursue the more recent work in this area�

Many of the problems considered in this chapter are ultimately reduced

to computations in linear algebra� such as the computation of determinants

or characteristic polynomials� A variety of e�cient parallel algorithms are

known for these problems and are discussed in detail elsewhere in this volume

���� and in ����� We also do not analyze the processor e�ciency of these

algorithms� This information can be found in ���� or in the references�

������ Mathematical Preliminaries
This section presents much of the necessary mathematical background

from commutative algebra and ring theory necessary for the following sections�

We assume some familiarity with linear algebra and parallel algorithms in

linear algebra as presented in ���� ���� The material on graded rings and

projective spaces is used later in x������ to develop the theory of multivariate

resultants and is not necessary for the understanding of univariate resultants�

Omitted proofs in this section can be found in any standard text on algebra

or algebraic geometry� such as �����
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Unless otherwise noted� k will denote an algebraically closed �eld of

arbitrary characteristic� In general� lower case Roman letters will denote

variables and lower case Greek letters will denote elements of the �eld k� We
write x for a sequence of elements or variables x�� � � � � xn� If x is a sequence of n

variables and E � �e�� � � � � en	 is a multi�index� we write xE for the monomial

xe�� xe�� � � �xenn � If R is a ring� then R�x� denotes the ring of polynomials in the

variables x with coe�cients in R�

�������� Polynomial Rings and Ideals

Let R � k�x�� � � � � xn�� An ideal of R is a subset I of R closed under

addition and under multiplication by elements of R� A basis for an ideal I is

a set of polynomials B which generates I in the sense that every f � I can

be written

f � g�f� � � � �� gmfm

for some f�� � � � � fm � B and g�� � � � � gm � R� When an ideal has a �nite

basis� we say that it is �nitely generated and write �f�� � � � � fm	 for the ideal

generated by the polynomials f�� � � � � fm�

THEOREM ���� Hilbert Basis Theorem

Every ideal I � R is �nitely generated� In other words� every I is of

the form �f�� � � � � fm	 for some polynomials f�� � � � � fm � R�

De�ne the 
total� degree of a monomial
Qn

i�� x
ei
i � R to be

Pn

i�� ei�

The degree of a polynomial f � R is the maximum degree of any term of f �

We write Re for the subset of all polynomials in R of degree at most e � ��

Each Re is in fact a vector space over k of dimension

�
e� n

n

�
� We take as

a basis for Re the set of all monic �i�e�� with leading coe�cient �	 monomials

of degree at most e�

fxe�� xe�� � � �xenn j e� � e� � � � �� en � eg �

�������� Geometric Background

In this section we assume that k is an algebraically closed �eld� For

example� k may be C� the �eld of complex numbers�
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We denote by An
x the space of n�tuples elements of k� called the n


dimensional a�ne space over k with coordinate functions x � x�� � � � � xn� We

write An and omit the subscript when the coordinates are understood� For

f�� � � � � fm � R� de�ne

V �f�� � � � � fm	 � f� � kn j f���	 � � � � � fm��	 � �g �

the set of common zeros of these polynomials in An� A set of this form is

called algebraic� A principle link between the geometry of algebraic sets in

An and the ideal structure of the polynomial ring R is given by Hilbert�s

Nullstellensatz� or �theorem of the zeros�� To state the Nullstellensatz in its

so�called weak form� we let K be an arbitrary sub�eld of the algebraically

closed �eld k and consider the polynomial ring R� � K�x�� � � � � xn� � R� Let

us begin with the case n � �� where a proof of the weak form of Hilbert�s

theorem is more familiar� We know that any pair of univariate polynomials

f� and f� have a common solution in k exactly when they have a nontrivial

greatest common divisor �gcd	� i�e� a gcd which is a non�constant polynomial�

Since K�x�� is a Euclidean ring� the Euclidean Algorithm for computing gcds

works here and implies that there exist additional polynomials g�� g� � R�

such that

g�f� � g�f� � gcd�f�� f�	 �

So a necessary and su�cient condition for the existence of a common zero

of f� and f� is that there are no polynomials g� and g� � R� such that

g�f��g�f� � �� The Euclidean algorithm itself provides a sequential decision

procedure in this case�

The Nullstellensatz provides an analogue of this result for the case of

multivariate polynomials� in which the polynomial ring R is not Euclidean and

the existence of a nontrivial gcd is not a necessary condition for the existence

of common zeros�

THEOREM ���� Hilbert�s Nullstellensatz 
weak form�

Let n � � and let R � K�x�� � � � � xn�� For f�� � � � � fm � R� there exist

elements ��� � � � � �n � k algebraic over K such that

f����� � � � � �n	 � � � � � fm���� � � � � �n	 � �

if and only if �f�� � � � � fm	 �� R�
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From the de�nition of ideals we know that I � R exactly when � � I�

so as an immediate corollary of the Nullstellensatz we obtain the following

criterion for deciding when a set of polynomials in R has no common zero�

THEOREM ����

Let f�� � � � � fm � R� Then

V �f�� � � � � fm	 � � � � � �f�� � � � � fm	 �

Now if f�� � � � � fm are polynomials in R� then we know that they have

no common algebraic zeros exactly when � � �f�� � � � � fm	� or in other words

when there exist additional polynomials g�� � � � � gm � R such that

g�f� � g�f� � � � �� gmfm � � �

The strong form of the Nullstellensatz tells us more about the relation

between the ideal I and its zero set V �I	�

THEOREM ���� Hilbert�s Nullstellensatz 
strong form�

Let I � R be an ideal and let f � R� Then f vanishes on every point

in V �I	 if and only if fm � I for some m � ��

This theorem will be useful in de�ning a homogeneous analogue of the Null�

stellensatz in the next section�

�������� Homogeneous Polynomials

The following facts are used only in the development of multivariate

resultants in x������ below� Our presentation parallels that of the previous

sections� de�ning graded rings of homogeneous polynomials and a homoge�

neous version of the Nullstellensatz�

�������� Graded Algebras

A graded ring is a ring S together with a collection fSe j e � �g of sub�

groups of the additive group of S such that

	 S �
L�

e�� Se� and
�

�The direct sum �
L

� signi�es that every element of S can be written uniquely as a sum

of the form
P

�

i��
fi where each fi � Si and all but a �nite number of these fi�s are zero�
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	 SdSe � Sd�e for all d� e � ��

An element f � S is called homogeneous if f � Se for some e � �� For I � S

an ideal� de�ne Ie � I 
 Se� The ideal I is called a homogeneous ideal if it is

generated by its homogeneous elements�

I �
�M
d��

Id �

or equivalently� if I has a basis of homogeneous elements ���� x������

A typical example of a graded ring
and the one on which we focus in

x������
is the polynomial ring S � R�x�� � � � � xn�� which can be graded in the

following way� A polynomial f � R�x�� � � � � xn� is said to be homogeneous of

degree e if every term of f has total degree e and homogeneous if it is homoge�

neous of some degree� We de�ne Se to be the collection of all polynomials in

S which are homogeneous of degree e� Since any polynomial f � S of degree

e can be written uniquely as a sum

f � f� � f� � f� � � � �� fe

where each fi is homogeneous of degree i� it follows that S is a graded ring�

When R is a �eld� it is a simple exercise to show that each subgroup Se is

in fact a vector space over R� In this case� we take the set Me of all monic

monomials of degree e�

Me � fxe�� xe�� � � �xenn j e� � e� � � � �� en � eg �

as a basis for the R�vector space Se� We write ne �

�
e� n

n

�
� jMej�

�������� Projective Spaces

The n�dimensional projective space Pn
x is the set of

�
��equivalence classes

of points in An��
x � f��� � � � � �	g� where

���� � � � � �n	
�
� ���� � � � � �n	

if there exists a nonzero � � k such that �i � ��i� � � i � n� Note that

each point in Pn is just a line through �but excluding	 the origin in An��� To



���� Introduction 	

more easily distinguish between points in a�ne and projective spaces� we write

��� � �� � � � � � �n	 for the ��equivalence class of a�ne points f����� � � � � ��n	 j

� � k and � �� �g�

Let S � k�x�� � � � � xn� be graded as in x������� Then f � S is homoge�

neous of degree e exactly when

f����� � � � � ��n	 � �ef���� � � � � �n	

for all ��� � � � � �n and � � k� This implies that the zero sets of homogeneous

polynomials respect ��equivalence classes� and it is meaningful to speak of the

points in projective space that are the zeros of a homogeneous polynomial�

Note that the a�ne point ��� � � � � �	 is a zero of every homogeneous polynomial

and consequently has no counterpart in projective space�

The a�ne space An is embedded in the projective space Pn under the

standard embedding

���� � � � � �n	 
� �� � �� � � � � � �n	 �

The only points of Pn not in the image of this map are the points of the

so�called hyperplane at in�nity�

f�� � �� � � � � � �n	 j not all �i � �� � � i � ng �

For any homogeneous ideal I � S� we will de�ne

V �I	 � f� � Pn j f��	 � � for all f � Ig �

the zero set of I in Pn� As in the a�ne case� the geometry of Pn is related

to the ideal structure of the graded ring S by the Nullstellensatz� now in a

homogeneous form�

THEOREM ���� Homogeneous Nullstellensatz

Let I � S be a homogeneous ideal and let f � Se for some e � �� Then

f vanishes on every point in V �I	 if and only if fm � I for some m � ��

As in the a�ne case� we can use this theorem to de�ne necessary and su�cient

conditions for the emptiness of V �I	 for any homogeneous ideal I of S� The

previous criterion that � � I is still su�cient but no longer necessary� The
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di�erence arises because there is no projective counterpart of the a�ne point

��� � � � � �	�

THEOREM ����

Let f�� � � � � fm be homogeneous polynomials in S and let I � �f�� � � � � fm	�

Then V �I	 � � if and only if Id � Sd for some d � ��

In particular� since Sd is generated by the monomial basis Md as a vector

space over k� it su�ces to show that all monomials of degree d are in I� i�e�

that Md � Id�

����
Univariate Resultants

In this section we develop the classical univariate or Sylvester resultant�

an algebraic condition on the coe�cients of a pair of univariate polynomials

that determines whether they have a common root�

������ The Sylvester Matrix and the Resultant of
Two Univariate Polynomials

Let k be an algebraically closed �eld and x an indeterminate� Consider

two univariate polynomials f� g � k�x� of degree deg f and deg g� respectively�

f�x	 �

deg fX
i��

�ix
i

g�x	 �

deg gX
i��

	ix
i �

Arrange the coe�cients of f and g in staggered columns to form a square

matrix � as in the following �gure� with deg g columns of coe�cients of f and

deg f columns of coe�cients of g� The �gure illustrates the case deg f � �
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and deg g � ��

� �

�
��������������

�� � � � 	� � � � �

�� �� � � 	� 	� � � �

�� �� �� � 	� 	� 	� � �

�� �� �� �� 	� 	� 	� 	� �

�� �� �� �� 	� 	� 	� 	� 	�
�� �� �� �� � 	� 	� 	� 	�
� �� �� �� � � 	� 	� 	�
� � �� �� � � � 	� 	�
� � � �� � � � � 	�

�
�������������	


 �z �
deg g


 �z �
deg f

�����	

DEFINITION

The matrix � is called the Sylvester or resultant matrix of f and g� and

its determinant det � is called the resultant of f and g�

THEOREM ����

The univariate polynomials f and g have a common root in k if and only

if � is singular� i�e� if and only if the resultant of f and g vanishes�

PROOF

Equivalently� we must show that � is singular i� f and g have a nontrivial

gcd� or in other words i� the degree of the lcm 
 of f and g is strictly

less than deg fg � deg f � deg g�

Let k�x�d denote the space of polynomials in k�x� of degree at most

d� This is a vector space of dimension d� � over k with standard basis

�� x� � � � � xd� The spaces k�x�deg g���k�x�degf�� and k�x�deg f�deg g�� are

both vector spaces of dimension deg f � deg g� and under the standard

basis the matrix � denotes the linear map

� � k�x�degg�� � k�x�degf�� � k�x�degf�deg g��

� �s� t	 
� sf � tg �
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If � is singular� then the kernel of � is nontrivial� Thus there exist

nonzero s� t with deg s � deg g and deg t � deg f such that sf � �tg�

Then 
 divides sf � �tg� so its degree is strictly less than deg f �deg g�

Conversely� if deg 
 � deg f � deg g� then � �
f
�� �

g
	 � ker�� thus � is

singular�

The resultant of two univariate polynomials can be computed in NC

using Csanky�s algorithm ���� in characteristic � or Berkowitz� ��� or Chistov�s

��� algorithm in arbitrary characteristic
 see �����

DEFINITION

Consider the coe�cients of f and g as indeterminates a � adeg f � � � � � a��

b � bdeg g� � � � � b�� Then the determinant of � is a polynomial in k�a� b� of

degree deg f �deg g� This polynomial is called the resultant polynomial�

For any specialization �� 	 of the indeterminates a� b with �deg f �� � and

	deg g �� � giving polynomials f� g � k�x�� the value of the resultant polynomial

on �� 	 is the resultant of f and g�

������ Subresultants� Polynomial Remainder
Sequences� and the Extended Euclidean

Scheme

An important application of resultants is in the calculation of the poly


nomial remainder sequences �PRS	 that accrue from the execution of the

Euclidean algorithm� Coe�cients of elements of the PRS can be expressed as

signed quotients of products of minors of the Sylvester matrix ���� This holds

as well for the elements of the extended Euclidean scheme �EES	� of which the

PRS forms a part� Thus all coe�cients of elements of the PRS and EES can

be computed in NC ��� ���� In this section� we describe this algorithm and

prove its correctness�

The basic fact on which the Euclidean algorithm rests is that for any

pair of polynomials f and g �� �� there exist a unique quotient q � k�x� and

remainder r � k�x� such that deg r � deg g and f � qg � r� The Euclidean

algorithm calculates the sequence f� � f � f� � g� f�� f�� � � �� fn� fn�� � ��
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where for � � m � n � �� fm is the remainder obtained by dividing fm�� by

fm��� The polynomial fn is the last nonzero polynomial in the sequence and

is the gcd of f and g� This sequence is known as the polynomial remainder

sequence �PRS	 of f and g�

DEFINITION

For � � m � n��� let qm � k�x� be the quotient obtained in the division

of fm�� by fm��� thus

fm � fm�� � qmfm�� �

Consider the polynomials s�� s�� � � � � sn� sn�� and t�� t�� � � � � tn� tn�� de


�ned by

s� � � t� � �

s� � � t� � �

sm � sm�� � qmsm�� tm � tm�� � qmtm��

for � � m � n � �� The collection of all these polynomials fm� sm� tm�

and qm is known as the extended Euclidean scheme 
EES� of f and g�

The signi�cance of sm and tm is given in the following lemma�

LEMMA ����

Assume that deg g � deg f � For � � m � n� ��


i� deg sm � deg g � deg fm��


ii� deg tm � deg f � deg fm��


iii� smf � tmg � fm�

Moreover� sm and tm are the unique polynomials s and t such that


a� deg s � deg g � deg fm


b� deg t � deg f � deg fm


c� sf � tg and fm have the same degree and leading coe�cient�

PROOF
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Statements �i�iii	 are easily proved by induction on m� These proper�

ties also imply that sm and tm satisfy �a�c	� Thus it remains to show

uniqueness�

We note that

deg gm � deg fm�� � degfm��

� � for all m

deg sm � deg�qmsm��	

� deg sm��

� deg sm�� for all m � �

degtm � deg�qmtm��	

� degtm��

� degtm�� for all m � �

Let s and t be any polynomials satisfying �a�c	� �Under assumption �c	�

the statements �a	 and �b	 are equivalent� so we will only need to use

one�	 We have

deg sm�sf � tg	 � deg sm � deg fm�� by �c	

� deg g by �i	 �

deg s�smf � tmg	 � deg s � deg fm by �iii	

� deg g by �a	 �

Subtracting� we get

deg�sm�sf � tg	 � s�smf � tmg		 � deg�smt� stm	g

� deg g �

which is possible only if stm � smt� But an easy inductive argument

shows that sm and tm are relatively prime
in fact

smtm�� � tmsm�� � ���	m
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therefore there exists a polynomial u such that s � usm and t � utm�

Then

sf � tg � usmf � utmg

� ufm �

But by �c	� it must be that u � �� therefore s � sm and t � tm�

At this point we are ready to de�ne subresultants� For � � d � deg g���

let �d be the �deg f � deg g � �d	 � �deg f � deg g � �d	 submatrix of �

obtained by deleting the last d columns of coe�cients of f � the last d columns

of coe�cients of g� and the last �d rows� The following �gure illustrates �d

for deg f � �� deg g � �� and d � ��

�d �

�
������

�� � 	� � �

�� �� 	� 	� �

�� �� 	� 	� 	�
�� �� 	� 	� 	�
�� �� 	� 	� 	�

�
�����	


 �z �
deg g�d


 �z �
deg f�d

�����	

Under the standard basis� �d represents the linear map

�d � k�x�degg�d�� � k�x�degf�d�� � k�x�deg f�deg g��d��

� �s� t	 
� the quotient obtained in the division of sf � tg by xd�

DEFINITION

The matrix �d is called the dth subresultant matrix of f and g� and its

determinant det�d is called the dth subresultant of f and g�

THEOREM ����

The matrix �d is nonsingular if and only if d � deg fm for some fm in

the PRS� In this case� the vector of coe�cients of sm and tm forms the

unique solution x of the nonsingular system

�dx � ��� � � � � �� am	
T � �����	



�
 Chapter ��� Parallel Resultant Computation

where am is the leading coe�cient of fm�

PROOF

Note that d � deg g� If d �� deg fr for any r� let m be the largest number

such that deg fm�� � d� Then � � m � n� �� and by Lemma �����

deg sm � deg g � deg fm�� � deg g � d

deg tm � deg f � deg fm�� � deg f � d

deg�smf � tmg	 � deg fm � d �

so �sm� tm	 � ker�d� therefore �d is singular�

Now suppose that d � deg fm� Then �d�sm � tm	 � am� the leading coef�

�cient of fm� therefore the vector x of coe�cients of sm and tm satis�es

�����	� Moreover� by Lemma ����� sm and tm are unique� therefore �d

is nonsingular�

This theorem gives rise to an NC algorithm for calculating all elements

of the EES�

ALGORITHM ����

Extended Euclidean Scheme

Input� Given polynomials f and g�

Output� The extended Euclidean scheme for f and g�

�� For each d � deg g� compute the dth subresultant det �d� The d for which

�d is nonsingular are exactly the degrees of the fm in the PRS�

�� For each d � deg fm� m � �� solve the nonsingular system

�dx � ��� � � � � �� �	T � �����	

This gives the coe�cients of s�m � sm
am

and t�m � tm
am

� 
We do not yet

know am��

	� Compute f �m � s�mf � t�mg� This is the monic associate fm
am

of fm�

�� Divide f �m�� by f �m�� using Algorithm ���� below� 
Alternatively� solve

equation 
����� using the dth subresultant matrix of f �m�� and f �m����
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This gives a constant bm and polynomial pm such that

bmf
�
m � f �m�� � pmf

�
m�� �

�� Compute

am �



a�b�b�b	 � � � bm � m even

a�b�b�b
 � � � bm � m odd
�����	

qm �
am��
am��

pm �����	

fm � amf
�
m

sm � ams
�
m

tm � amt
�
m �

The computations in Step � are justi�ed by the following argument� In

Step �� we computed bm and pm such that

bm
am

fm �
fm��
am��

� pm
fm��
am��

�

thus by the uniqueness of quotient and remainder�

bmam��
am

fm � fm�� �
am��
am��

pmfm��

� fm�� � qmfm��

� fm �

whence follow �����	 and the recurrence

am � bmam��

with solution �����	�

The solution vector to �����	 computed in Step � is the last column of

���
d

� which by Cramer�s rule is the last column of the adjoint of �d divided

by det �d� This indicates that all the coe�cients of s�m and t�m are signed

quotients of minors of the Sylvester matrix�

Algorithm���� can be implemented inNC using standard tools for linear

algebra �see ���� ���	�
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������ Polynomial Division with Remainder

Let f� g be polynomials� deg g � deg f � and let q and r be the quotient

and remainder respectively obtained in the division of f by g� Algorithm ����

suggests an NC algorithm for polynomial division with remainder� compute

the subresultants to �nd d � deg r� then solve �����	 with �d�

However� this algorithm has two serious liabilities�

	 It requires the computation of all the subresultants�

	 It requires divisions in k�

The latter becomes a major problem when the coe�cients of f and g are inde�

terminates� Algorithm ���� expresses the coe�cients of q and r as quotients

of polynomials in the coe�cients of f and g� This is so even when the divisor

g is monic� in which case the coe�cients of q and r are polynomial functions of

the coe�cients of f and g rather than rational functions� In the computation

of the multivariate resultant to be presented in x������� it will be essential

to have a polynomial division algorithm for monic g that does not use any

divisions in k� but only the ring operations � and ��

Here we give a resultant�style algorithmused by Canny ��� that alleviates

these problems� The algorithm is based on the following theorem�

THEOREM ����

Let m � deg f � deg g � �� the dimension of �deg g��� If g is monic�

then the coe�cient of xm�i in q is

���	i det �
�i���
deg g�� � � � i � m �

where det �
�i�
deg g�� is the ith principal minor 
determinant of the upper

left i � i submatrix� of �deg g���

PROOF

Let

f �

deg fX
i��

�ix
i q �

deg qX
i��


ix
i

g �

deg gX
i��

	ix
i r �

deg rX
i��

�ix
i
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Note that deg q � m � �� The equation r � f � qg is expressed in the

�deg f � �	�m linear system

�
����������������

�
 � � � �

�� 	� � � �

�
 	� 	� � �

�	 	� 	� 	� �

�� 	� 	� 	� 	�
�� 	� 	� 	� 	�
�� 	� 	� 	� 	�
�� � 	� 	� 	�
�� � � 	� 	�
�� � � � 	�

�
���������������	

�
������

�

�
�
�
�
�
�
�
�

�
�����	 �

�
����������������

�

�

�

�

�

��
��
��
��
��

�
���������������	

�����	

here illustrated for the case deg f � �� deg g � �� and deg r � �� The

�rst m rows of this matrix comprise �deg g���

Now consider the m�m system obtained by taking the �rst m� � rows

of �����	 and last row ��� �� � � � � �	�

�
������

�
 � � � �

�� 	� � � �

�
 	� 	� � �

�	 	� 	� 	� �

� � � � �

�
�����	

�
������

�

�
�
�
�
�
�
�
�

�
�����	 �

�
������

�

�

�

�

�

�
�����	 �����	

and let A be the m � m matrix in �����	� Certainly A is nonsingular�

since its determinant is ���	m��� The inverse of A is given by Cramer�s

rule� the i� jth entry of A�� is

���	i�j
detAj�i

detA
� ���	i�j�m�� detAj�i �

where Aj�i is the �m � �	 � �m � �	 submatrix obtained from A by

dropping the jth row and ith column� In particular� the last column of

A��� which by �����	 is the vector ����
m��� � � � ��
�	
T � contains

���	i�� detAm�i � � � i � m �
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But note that for this particular matrix�

detAm�i � detA�i���

� det ��i���
deg g�� � � � i � m �

Thus for � � i � m�


m�i � ����	i�� det�
�i���
deg g��

� ���	i det��i���
deg g�� �

Using Theorem ����� we can give the following simple division�free algo�

rithm for polynomial division with remainder when the divisor is monic�

ALGORITHM ����

Polynomial Division with Remainder

Input� Polynomials f and g� deg f � deg g� g monic�

Output� Polynomials q and r such that f � qg � r�

�� Compute the principal minors of �deg g���

�� Set


m�i � ���	i det�
�i���
deg g�� � � � i � m �

where m � deg f � deg g � �� Then 
j is the coe�cient of xj in q�

	� Set r � f � qg�

If g is not monic� then divisions are inevitable� However� we can apply

Algorithm ���� to the monic associate of g� then adjust q afterward by dividing

by the leading coe�cient of g�

All operations can be implemented in NC � The principal minors of

�deg g�� can be computed without division using Berkowitz� ��� or Chistov�s

��� algorithm�



���� Univariate Resultants ��

������ A Resultant System for Several Univariate
Polynomials

The constructions of x������ and x������ can be modi�ed to yield NC

algorithms for testing whether a set of univariate polynomials has a common

root and for computing their gcd� We reduce these problems to the case

of two univariate polynomials over a larger �eld� In x������ below� we will

show that in the presence of a source of randomness� these algorithms have

implementations that are no less e�cient than the algorithms of x������ and

x������ for two polynomials�

Let f�� � � � � fn � k�x�� Let y be a new indeterminate� and consider the

bivariate polynomial

f�x� y	 � f��x	 � f��x	y � f��x	y
� � � � �� fn���x	y

n�� � �����	

We regard f as a polynomial in the indeterminate x with coe�cients in the

transcendental extension k�y	 of k� Thus it makes sense to consider the gcd

of f and fn over k�y	�x��

LEMMA ����

The gcd of f and fn is the same as the gcd of f�� � � � � fn� In other words�

f� fn and f�� � � � � fn generate the same principal ideal in k�y	�x��

PROOF

Let g be the monic gcd of f�� � � � � fn in k�x� and let h be the monic gcd

of f and fn in k�y	�x�� Certainly g divides h� since g divides f and fn�

To show that h divides g� it su�ces to show that h divides f�� � � � � fn�

Since h divides fn and h is monic� h � k�x�� For � � i � n� let qi and ri

be the quotient and remainder� respectively� obtained in the division of

fi by h in k�x�� Then f � qh� r� where

q �
n��X
i��

qiy
i

r �
n��X
i��

riy
i �

and the degree of r as a polynomial in k�y	�x� is less than deg h� Since h

divides f in k�y	�x�� r must be identically zero as a polynomial in k�y	�x��
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Since y is transcendental� r is also identically zero as a polynomial in

k�x� y�� Thus ri � � and h divides fi� � � i � n�

Now form the Sylvester matrix � of f and fn� The entries of � are

polynomials in k�y� of degree at most n � �� and the resultant det� is a

polynomial in k�y� of degree at most �n� �	 � deg fn�

THEOREM �����

The polynomials f�� � � � � fn have a common root in k if and only if det�

vanishes identically�

PROOF

The polynomials f�� � � � � fn have a common root in k i� they have non�

trivial gcd� By Lemma ����� this occurs i� f and fn have a nontrivial

gcd in k�y	�x�� i�e� if f and fn have a common root in the algebraic

closure of k�y	� By Theorem ����� this occurs i� the resultant of f and

fn vanishes identically�

This gives rise to the following NC algorithm�

ALGORITHM ����

Resultant of Several Polynomials

Input� Polynomials f�� � � � � fn � k�x��

Output� The resultant of f�� � � � � fn�

�� Let y be a new indeterminate� Form the polynomial

f�x� y	 �
n��X
i��

fiy
i �


For e�ciency� it makes sense to take fn of minimum degree among

f�� � � � � fn��

�� Form the Sylvester matrix � of f and fn� The entries are polynomials

in k�y� of degree at most n � ��
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	� Calculate the resultant det � of f and fn using Berkowitz� ��� or Chistov�s

��� algorithm� This is a polynomial in k�y� of degree at most �n � �	 �

deg fn�

�� Check whether det� vanishes identically� By Theorem ������ this occurs

i� f�� � � � � fn have a common root�

As in x������� if the coe�cients of f�� � � � � fn are indeterminates� then

Algorithm ���� can be carried out symbolically� The entries of the Sylvester

matrix of f and fn are then polynomials in y and the indeterminate coe�cients

a of the fi� The resultant is a polynomial r�a� y	 of degree at most �n � �	 �

deg fn in y and deg fn � maxn��i�� deg fi in the a� Considering r�a� y	 as a

polynomial in y with coe�cients in k�a�� Theorem ����� implies that all these

coe�cients vanish under a specialization � of a i� the polynomials f�� � � � � fn
resulting from the specialization � have a common root in k� The coe�cients

of r�a� y	 thus form a resultant system for f�� � � � � fn�

It is possible to work in the polynomial ring k�x� y� a� explicitly and com�

pute the symbolic resultant r�a� y	 in NC using Berkowitz� ��� or Chistov�s ���

algorithm� These algorithms produce a polylog�depth� polynomial�size circuit

C for r�a� y	 over �� �� constants� and inputs a and y� For any specialization

� of a� since r��� y	 is of degree at most �n � �	 � deg fn� we can test in NC

whether r��� y	 vanishes identically by evaluating it at �n � �	 � deg fn � �

sample elements of k using the circuit C�

������ The GCD of Several Univariate Polynomials

The construction of x������ can be extended to give a deterministic NC

algorithm for computing the gcd of several polynomials� We will show in

x������ below how to improve the e�ciency in the presence of a source of

randomness�

ALGORITHM ����

GCD of Several Polynomials

Input� Polynomials f�� � � � � fn � k�x��

Output� g � k�x�� the gcd of f�� � � � � fn�
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�� Let y be a new indeterminate� and form the polynomial

f�x� y	 �
n��X
i��

fiy
i �


For e�ciency� take fn of minimum degree among f�� � � � � fn��

�� Form the subresultant matrices �d of f and fn� The entries of �d are

polynomials in y of degree at most n � ��

	� Compute the subresultants over k�y	�x� using Berkowitz� ��� or Chistov�s

��� algorithm� The dth subresultant det �d is a polynomial in y of degree

at most �n � �	 � �deg fn � d	�

�� Let d be the smallest number such that det �d does not vanish identically�

This is the degree of the gcd of fn and f �

�� Compute the monic gcd of fn and f as in Algorithm ���� using polyno


mial arithmetic on the coe�cients� By Lemma ����� this is also the gcd

of f�� � � � � fn�

�� Reduce the coe�cients� As computed in Step �� they are rational func


tions of y� i�e� quotients of polynomials in y� but they reduce to elements

of k because the monic gcd is in k�x��

�����	 Improving E
ciency with Randomness

If we have access to a source of randomness� then we can obtain signi��

cantly more e�cient algorithms than those of x������ and x������ by using a

randomly chosen element of k in place of the indeterminate y� This is in fact

the method of choice in most implementations� This approach is based on the

observation that a nonzero polynomial is not likely to vanish when evaluated

on a random input chosen from a su�ciently large sample set�

This idea is made concrete in the following lemma� proven independently

by Zippel ���� and Schwartz �����

LEMMA ����

Let p�x�� � � � � xn	 be a nonzero polynomial of total degree d with coe�


cients in k� and let S be a �nite subset of k� If p is evaluated on a random
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element �s�� � � � � sn	 � Sn� then the probability that p�s�� � � � � sn	 � � is

at most d
jSj �

This gives rise to the following probabilistic NC algorithm�

ALGORITHM ����

Resultant of Several Polynomials 
Probabilistic Version�

Input� Polynomials f�� � � � � fn � k�x��

Output� The resultant of f�� � � � � fn�

�� Select a random element 	 uniformly from a large �nite set S � k�

�� Form the polynomial

f��x	 � f��x		 � f��x		
� � � � �� fn���x		

n�� �

This is f�x� 		� where f is the polynomial 
������

	� Calculate the resultant r of f�x� 		 and fn�x	� If f�� � � � � fn have a com


mon root� then r � � with probability �� If f�� � � � � fn do not have a

common root� then by Lemma ���	� r � � with probability at most

�n� �	 � deg fn
jSj

�

�� Reduce the probability of error by repeated trials�

This algorithm does not provide a way to check the accuracy of the

output� This liability is corrected in the gcd algorithm below�

As shown in Lemma ����� if g is the gcd of f�� � � � � fn in k�x�� then

g is also the gcd of f and fn in k�y	�x�� where f is the polynomial �����	�

With high probability� g will also be the gcd of fn and f�x� 		 for a random

	 chosen uniformly from a su�ciently large subset of k� This is because g

always divides the gcd of fn and f�x� 		� and by Theorem ����� g is not itself

the gcd of fn and f�x� 		 i� the dth subresultant of fn and f�x� 		 vanishes�

where d � deg g� This is the dth subresultant of fn and f�x� y	 evaluated at

	� and again by Theorem ����� the dth subresultant of fn and f�x� y	 does not
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vanish identically� thus Lemma ���� applies� This gives the following RNC

algorithm�

ALGORITHM ���


GCD of Several Polynomials 
Probabilistic Version�

Input� Polynomials f�� � � � � fn � k�x� with gcd of degree d�

Output� The polynomial g � gcd�f�� � � � � fn	�

�� Select a random element 	 uniformly from a large set S � k�

�� Form the polynomial

f��x	 � f��x		 � f��x		
� � � � �� fn���x		

n�� �

This is f�x� 		� where f is the polynomial 
������

	� Calculate the gcd h of f�x� 		 and fn as in Algorithm ����� Then g

divides h� and h does not divide g i� the dth subresultant of f�x� 		 and

fn vanishes� By Lemma ���	� this happens with probability at most

p �
�n � �	 � �deg fn � d	

jSj
� ������	

�� Check whether h divides g by checking whether h divides fi� � � i � n���

using Algorithm ����� If so� h is the desired gcd� If not� go back to Step

� and repeat with a new random 	�

Using the value p in ������	 as a bound on the probability of failure in

each trial� and assuming the trials are independent� the expected number of

trials before successfully obtaining the gcd of f�� � � � � fn is at most �
��p �

See von zur Gathen ���� for another approach� attributed therein to S�

Cook� which yields a deterministic NC� algorithm�

����
Multivariate Resultants

The resultant of univariate polynomials is a classical tool that has played

a considerable role in modern algorithms in symbolic algebra and computa�

tional geometry� It provides an e�ectively computable algebraic criterion for
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deciding when two or more univariate polynomials have a common root� Quite

early in this century� e�ective means were developed for generalizing the re�

sultant to the case of multivariate polynomials� Here� however� there must

be a somewhat di�erent approach� Chevalley had noted that there can be no

strictly algebraic criterion for the existence of common solutions to a system

of multivariate polynomials in the sense that the projection of an algebraic

set is not necessarily algebraic�

Because there is no purely algebraic criterion� classical attempts at algo�

rithms for the multivariate case diverge� One direction saw the development

of resolvents through iterated application of the classical univariate resultant

to eliminate variables one at a time� In the work of Hermann� Kronecker�

Macaulay and others� an algebraic criterion was found for the special case

where the given polynomials are all homogeneous� Here one is dealing with

the existence of common zeros in projective space� The solution� which is

both elegant and reasonably e�cient� parallels and generalizes the basic the�

ory developed in x������ for the univariate case�

In this section we review some of the basic properties of multivariate

resultants and their computation� We do not present detailed proofs� but

instead state the properties of various algebraic objects and give construc�

tions of such objects which have been found useful in the design of algebraic

algorithms�

Below S denotes the ring k�x�� � � � � xn� of polynomials in n� � variables

with coe�cients in an algebraically closed �eld k�

������ Resultant Systems

Classical elimination theory considered both necessary and su�cient

conditions for homogeneous polynomials f�� � � � � fm to have no common pro�

jective zeros� Recall that the Homogeneous Nullstellensatz asserts that this

occurs exactly when� for some d� every monomialxE of degree d can be written

xE � g�f� � g�f� � � � �� gmfm

for some polynomials g�� � � � � gm � S� An e�ective criterion for deciding

whether the fi�s have a common projective zero can be derived by �nding

a bound on this degree d and on the degrees of the gj�s which must exist

when there are no solutions�
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An initial solution to this problem is provided by the next theorem� It is

Lazard�s ���� modern generalization of a classical result of Kronecker� proved

using homological methods�

THEOREM ����� E�ective Homogeneous Nullstellensatz

Let m � n � � and f�� � � � � fm � S � k�x�� � � � � xn� be homogeneous

polynomials generating the ideal I� Let d � ��
Pn��

i�� �deg fi� �	� Then

V �f�� � � � � fm	 � � if and only if I contains every monomial of degree d�

When m � n it is known that V �f�� � � � � fm	 is never empty� a fact which

follows from Krull�s Hauptidealsatz and the Projective Dimension Theorem

���� x����� When m � n � �� this degree bound is tight� For example� the

polynomials xd�� � xd�� � � � � � xdnn have no common projective zeros� although the

ideal generated by them does not contain the monomial xd���� xd���� � � �xdn��n

of degree
Pn

i���di � �	 � d� �� It does� however� contain every monomial of

degree d�

We derive a parallel algorithm to verify this condition by reduction to

a problem of linear algebra� Recall that the additive subgroup Sd of S is a

vector space over k with basis Md� By Theorem ������ to determine whether

V �f�� � � � � fm	 � �� it is both necessary and su�cient to show that every

monomial xE � Md is in the ideal generated by the fi�s� Using the following

Lemma� we reduce this veri�cation to a problem of linear algebra�

LEMMA ����

Let f�� � � � � fm be homogeneous polynomials and I � �f�� � � � � fm	� Let

di � deg fi� � � i � m�

If h � Id� then there are homogeneous polynomials g�� � � � � gm with gi �

Sd�di such that h � g�f� � g�f� � � � �� gmfm�

PROOF

The lemma is proved by noting that if h � Id� then there are polynomials

g��� � � � � g
�
m � k�x� such that h �

Pm

i�� g
�
ifi� Observe that all terms of

g�i which are not of of degree d � di give rise to terms that must be

cancelled in the summation� So if we take gi to be the part of g�i that is

homogeneous of degree d� di� then h �
Pm

i�� gifi as well�
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It is easy to see that� as a consequence of Lemma ����� the map � which

takes every vector of m homogeneous polynomials g�� � � � � gm� gi � Sd�di � to

the sum
Pm

i�� gifi�

� �
mY
i��

Sd�di � Sd ������	

� �g�� � � � � gm	 
�
mX
i��

gifi �

is a k�linear map of vector spaces� From Lemma ���� it also follows that the

image of � is exactly Id� We can now de�ne the matrix � of the map � with

respect to the bases Md and Mdi � � � i � m� analogous to the matrix � of

x������� We index the rows of this matrix by the elements of Md and the

columns by pairs �i� xB	 where � � i � m and xB � Md�di � The column

indices comprise a basis for
Qm

i�� Sd�di of size
Pm

i�� nd�di � The entry of �

in row xA and column �i� xB	 is just the coe�cient of the term xA in the

polynomial xBfi�x	� When n � � and m � �� � gives the Sylvester matrix

�����	 of the two univariate polynomials f���� x�	 and f���� x�	 de�ned in

x�������

The E�ective Homogeneous Nullstellensatz �Theorem �����	 now implies

that V �f�� � � � � fm	 � � if and only if � is surjective� This happens exactly

when the matrix � has full rank jMdj � nd� So one way to verify that the

given system of polynomials has no solution is to �nd a nonzero nd�nd minor

of �� which exists if and only if � has rank nd�

The multivariate resultant allows us to eliminate variables from some
collections of multivariate polynomials� Suppose that f��x� y	� � � � � fm�x� y	

are polynomials in two sets of variables x � x�� � � � � xn and y � y�� � � � � yn��

and in addition that they are homogeneous as polynomials in the variables x�

Construct the matrix ��y	 with respect to x� so that the entries of ��y	 are

polynomials in y� Then the matrix ��y	 has the following property� for any

point 
 � An�

� the system f��x� 
	� � � � � fm�x� 
	 has a solution in the variables

x if and only if ��
	 has rank strictly less than nd ���� x���� Thus

f 
 � An�

j �� � Pn f���� 
	 � � � � � fm��� 
	 � � g
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� f 
 � An�

j rank ��
	 � nd g

� f 
 � An�

j all nd � nd minors of ��
	 are zero g�

As in x������� instead of concentrating on a single set of polynomial equations�

we can go one step further and regard the coe�cients as parameters� This

allows us to compute a general algebraic criterion expressed in terms of the

indeterminate coe�cients� One can in principle compute a resultant system

consisting of a set of polynomials in the indeterminate coe�cients� then sim�

ply evaluate them on the coe�cients of any given system and immediately

determine whether or not a solution exists� Unfortunately� the number of

polynomials which arise and their degree make the computation unrealisti�

cally complex in all but the most trivial cases� Nevertheless� we continue to

discuss the computation of resultant systems in these terms for several rea�

sons� First� there are in fact some essential results from classical elimination

theory that require this form� In addition� this form allows us emphasize that

the algorithms which we present can be expressed solely in terms of the basic

operations of the ring of coe�cients� and hence commute with substitution�

Finally� it permits us to express the complexity of the quantities that arise in

this computation in a purely algebraic manner in terms of the complexity of

each coe�cient�
Let f�� � � � � fm be a set of homogeneous polynomials in the variables

x�� � � � � xn with indeterminate coe�cients among the variables c� In other

words� we are considering polynomials fi of the form fi�c� x	 �
P

A ci�Ax
A

where A ranges over multi�indices of some �xed degree di� each xA is a mono�

mial of degree di� and each coe�cient ci�A is a distinct indeterminate�

DEFINITION

A resultant system for the polynomials f�� � � � � fm is a collection of

polynomials g�� � � � � gr � k�c� with the following property� for every spe


cialization c 
� 
 of the coe�cients to elements of k� the polynomi


als f��
� x	� � � � � fm�
� x	 have a common solution in Pn if and only if

gi�
	 � �� � � i � r� In other words

V �g�� � � � � gr	 � f 
 j �� � Pn f��
� �	 � � � � � fm�
� �	 � � g �

If r � �� this polynomial is called a resultant for the system f�� � � � � fm�
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Additional details can be found in the texts of Macaulay ���� Ch� �� and van

der Waerden ���� Ch� ���

Under current technology� the direct calculation of such resultant sys�

tems by computing all minors of the corresponding matrix ��c	 is infeasible

because of the large number of polynomials and their high degree� To im�

prove this situation somewhat� we will use the parallel algebraic matrix rank

algorithm of Mulmuley ����� We summarize the relevant aspects of the con�

struction in the statement of the next lemma� A more complete treatment

can be found in ���� or �����

LEMMA ���� Mulmuley�s Rank Algorithm

Let A be an m� n matrix over an arbitrary �eld k� m � n� and let z� w

be indeterminates� It is possible to compute a polynomial p � k�w� z� of

degree at most ��m � �	n in w and �n in z such that the rank of A is
�n�j
�

� where zj is the highest power of z that divides p� In particular�

A is of full rank if and only if j � �� i�e� if and only if p�w� �	 does

not vanish identically� Moreover� the computation uses only the ring

operations of the �eld k and can be implemented by an arithmetic circuit

of size polynomial in m � n and depth O�log��m � n		�

Since Mulmuley�s algorithm uses only the ring operations of k� it can also be

performed on matrices containing indeterminate entries� As a consequence�

specialization of these indeterminates to elements of k give the same result as

�rst performing the substitution and then applying the algorithm�

As a result we get the following theorem which provides an e�ective crite�

rion for determining when there exists a solution to a system of homogeneous

polynomial equations�

THEOREM �����

Let f�� � � � � fm � k�y��x� be polynomials that are homogeneous in the

variables x of degree d�� � � � � dm� respectively� with coe�cients in k�y�� A

necessary and su�cient algebraic condition for the existence of a com


mon zero � � Pn expressed in terms of the parameters y can be computed

in parallel polynomial time with respect to the elementary operations of
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the ring k�y�� In other words� we can compute a set of polynomials

g�� � � � � gr � k�y� such that

g��
	 � � � �� gr�
	 � � � �� � Pn f���� 
	 � � � � � fm��� 
	 � � �

PROOF

Suppose f�� � � � � fm are as described in the statement of the theorem�

Let � be the matrix of the linear map � of ������	� Then � is an nd �

�
Pm

i�� ndi	 matrix over the ring k�y�� To compute a resultant system� we

will apply the parallel matrix rank algorithm of Mulmuley to �� From

this algorithm� we obtain a polynomial q�y� w	 �
Pe

j�� qj�y	w
j that

for every substitution of �eld elements for the variables y is identically

zero as a polynomial in w if and only if � does not have full rank nd�

As a polynomial in w� q�y� w	 is identically zero just when all of its

coe�cients are zero� The collection of coe�cients f qi�y	 j � � i � e g

thus comprises a resultant system for the given set of polynomials� Since

the computation involves only the operations of the coe�cient ring� the

computation also commutes with specialization of coe�cients�

If each di � d� then the entire computation requires O�d�n	 processors and

time O��n logd	�	� The number of polynomials in the system� and their de�

gree� are at most exponential in n and maxmi�� di�

������ The Resultant of n Polynomials in n

Variables

When the number of homogeneous polynomials equals the number of

variables� there is also a single resultant polynomial� The presentation in this

section follows along classical lines� For an excellent� complete development

when k � C which uses only elementary arguments� see Renegar �����

LEMMA ����

For n � � homogeneous polynomials f�� � � � � fn in the n � � variables

x�� � � � � xn with indeterminate coe�cients c� there exists a single resul


tant polynomial r�c	� which can be e�ectively constructed from the matrix

��
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Let deg fi � di� � � i � n� and de�ne d � � � �
Pn

i�� di � �	 and nd � jMdj�

Recall that the matrix � has nd rows� each indexed by a monomial in Md�

To construct the resultant polynomial� we �rst partition Md into n� � sets�

Say that a monomial xA � Md is reduced in xi if x
A is not divisible by xdii �

For each i� � � i � n� de�ne M i
d to be the set of monomials in Md that

are divisible by xdii and reduced in the variables x�� � � � � xi��� Then the sets

M�
d � � � � �M

n
d comprise a partition of Md�

Let A be the square submatrix of � obtained by selecting the columns

of � labeled by �i� xE	 for � � i � n and xE � M i
d� It can be shown that�

as a polynomial in the indeterminate coe�cients c� detA is divisible by the

resultant r of the fi�s� Moreover� the quotient of the determinant of A by the

resultant r is itself the determinant of a submatrix B of A obtained by

�� eliminating those columns in A corresponding to indices �i� xE	 where

the monomial xE is reduced in n of the variables x
 and

�� for each such column �i� xE	 removed in Step �� eliminating the row

containing the coe�cient of xdii in this column�

These facts are proven by Macaulay in ����� It follows that the desired resul�

tant can be computed as a polynomial in the indeterminates c by constructing

the matricesA andB from� and �nding the quotient r � detA� detB� When

constructed in this manner� the submatrix B depends only on the coe�cients

of the polynomials f� jx���� � � � � fn jx���� and for each i� r�c	 is homogeneous

of degree
Q

j ��i dj in the coe�cients of fi� In ���� Ch� ��� Macaulay also shows

that r is irreducible as a polynomial in k�c�� See also ���� Ch� �� for further

details�
Calculation of the resultant as presented above requires a computation

in which all of the coe�cients are indeterminates� In most cases� this com�

putation is prohibitively expensive� since there are
Pn

i�� ndi such coe�cients�

Most often we do not need to know r as a polynomial in the c�s� but are inter�

ested only in the image of r under some substitution for these coe�cients� For

example� let us assume that we wish to compute the resultant of the homoge�

neous polynomials f�� � � � � fn � k�x�� � � � � xn�� where all of the coe�cients are

constants in the �eld k� Note that all of the above calculations that require
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only ring operations commute with substitution for the indeterminates ��� Ch�

��� since substitution determines a ring homomorphism� The determinant� for

example� is de�ned and computed using only ring operations
 so we can either

compute detA as a polynomial in k�c� and then specialize the variables c to

the coe�cients of the fi�s� or specialize the coe�cients and then compute the

determinant ���� In both cases the result will be the same�

The only other operation required in the construction is the division

of these determinants� Unfortunately this operation does not commute with

specialization� For example� where all coe�cients are elements of the �eld k

as above� it is possible that detA � detB � � under the given substitution�

while the resultant itself is nonzero� To overcome this obstacle� we modify

the construction as follows� Observe that the coe�cients ci of the terms

xdii in fi lie only on the diagonals of the matrices A and B� and that these

comprise all diagonal entries� Instead of computing the determinants of A

and B directly� we compute the characteristic polynomials of these matrices�

i�e� the determinants

a�c� t	 � det�tI �A	

b�c� t	 � det�tI �B	

where t is a new indeterminate� These determinants are obtained from the
determinants of A and B by substituting t�ci for the coe�cient ci of the term

cix
di
i in each fi and negating all other coe�cients� It follows that b divides a�

and the quotient r�c� t	 is just the resultant of the new system

txd�� � f��c� x	� � � � � txdnn � fn�c� x	 � ������	

Moreover� it is easy to see that neither a�
� t	 nor b�
� t	 vanishes identically

for any 
 � kn� This implies that

b�
� t	 � r�
� t	 � a�
� t	 �

so r�
� t	 is the resultant of the system ������	 under the speci�ed substitution�

and r�
� �	 the resultant of the original system f�� � � � � fn� �It is easy to see

that negation of the coe�cients does not change the resultant�	 Hence we can

compute the resultant of n � � homogeneous polynomials in n � � variables
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with coe�cients in a �eld k by computing the constant term of the quotient

of the characteristic polynomials of A and B�

As noted in x������� computation of the quotient of two univariate poly�

nomials such as a�
� t	 and b�
� t	 can be performed in parallel� using only the

ring operations of the coe�cient �eld when the divisor is monic� We claim

further that the quotient of the characteristic polynomials a�c� t	 and b�c� t	 as

polynomials in t is in fact the resultant r�c� t	 of the polynomials in ������	�

For suppose this were not the case� and let r� be the quotient of a and b as poly�

nomials in t� It must be that the actual resultant r divides r�� But if r �� r��

then r� must have an additional factor p�c	 such that r��c� t	 � r�c� t	p�c	� So

a�c� t	 � b�c� t	r�c� t	p�c	 �

and since

a�c� t	 � td �
d��X
i��

ai�c	t
i

it is clear that p � ��

Hence r�c� t	 must be the the resultant of ������	� and the constant

term r�c� �	 of this polynomial is always the resultant of the original system

f�� � � � � fn� Since the constant term of this quotient can be computed using

only ring operations� the entire computation described above now commutes

with specialization of the indeterminate coe�cients� In other words� we can

�rst substitute elements of any division ring for the coe�cients of the fi�s and

then perform the indicated computation� The result is guaranteed to be the

same as would be obtained by constructing the actual resultant polynomial

and then performing the same substitution�

This discussion suggests the following parallel algorithm for computing

resultants� Let f�� � � � � fn be polynomials in the variables x�� � � � � xn with

coe�cients in a ring R�� Construct the matrices A and B and compute their

characteristic polynomials a� b � R��t�� as discussed in ����� For example� R�

may be the polynomial ring k�y�� Write

a�t	 � tnd � and��t
nd�� � � � �� a�t� a�

b�t	 � te � be��t
e�� � � � �� b�t� b�
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where e � nd �
Qn

i�� di� and compute the division a�b using Algorithm �����

Since b is monic� only the ring operations are needed� This gives the desired

resultant�
See also ��� x������ for another method of computing these classical re�

sultants�

THEOREM ����� Resultant of n polynomials in n variables

The resultant of a set of n�� homogeneous polynomials f�� � � � � fn in n��

variables x�� � � � � xn with coe�cients in a ring R� � K�y� can be computed

in parallel polynomial time relative to the elementary operations of the

ring R�� Moreover� since the computation uses only ring operations on

the coe�cients� the calculation commutes with substitution�

The computation of the characteristic polynomials a and b require op�

erations on matrices of size nd� Using Chistov�s algorithm �see ����	� this can

be done in parallel time O�log� nd	 in the elementary operations of the coe��

cient ring R�� The quotient of these two polynomials requires computing the

determinant of a matrix of size nd � e �
Qn

i�� di� and so can be executed in

parallel timeO�log�
Qn

i�� di	 � O��
Pn

i�� log di	
�	� again measured in terms of

the elementary operations of the ring of coe�cients R�� We can conservatively

bound the size of elements in R� that arise in this computation by noting that

the coe�cients of a are polynomials of degree
Q

j ��i deg di in the coe�cients

of each fi� For example� assume that f�� � � � � fn are integral polynomials with

maximum degree d� and let c be a bound on the number of bits necessary

to express any one coe�cient� Then the coe�cients of a require fewer than

�n� �	dnc bits� and those of the resultant no more than �n� �	d�nc bits� On

the other hand� if the coe�cients of the fi�s are polynomials in the ring k�y�

and have maximum degree d in x and e in y� then the coe�cients of a are

polynomials of degree no more than �n��	dne in y� and those of the resultant

of degree at most �n � �	d�ne in y�

������ The u�Resultant

The u�resultant is a classical tool for solving systems of homogeneous

equations which have only a �nite number of projective solutions� Its use has
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been revived by computational applications� as in the zero��nding algorithm

of Lazard ����� the approximation algorithm of Renegar ����� and the work

of Canny ��� in theoretical robotics and of Renegar ���� ��� in real algebraic

geometry�

Behind the construction of u�resultants lies the following idea� Sup�

pose that we have n homogeneous polynomial equations f�� � � � � fn in the

n � � variables x�� � � � � xn� with only a �nite number of projective solutions

�
���
� � � � � �

�s�
� Pn� Then for almost every additional polynomial f� which we

might add to this system� the enlarged system will have no common zeros�

This is true even if the degree of f� is constrained to be ��

More concretely� let u�� � � � � un be new indeterminates and let f� be the

linear form u � x �
Pn

i�� uixi� We show now that for most assignments of

values � � Pn to u� the system ��x� f�� � � � � fn has no commonzeros� Construct

the resultant r�u	 of these n�� polynomials as a polynomial in the variables

u� By the characterization of the resultant given in x������� we know that r

is homogeneous in u� and that for any point � � Pn� r��	 � � if and only if

f�� � � � � fn and � � x have a common solution� Equivalently� r��	 � � if and

only if � � �
�j�

� � for some j� This means that

V �r	 � V

�
� sY

j��

�
�j�
� u

�
A �

The Homogeneous Nullstellensatz now says that each of r and
Qs

j�� �
�j�

� u

divides some power of the other� therefore r factors as a product of linear

forms� each of the form �
�j�
� u for some zero ��j� of the fi�s� Hence all of the

zeros of the fi�s can be recovered by computing this resultant r and factoring it

over k�u�� The coe�cients of these factors are the coordinates of the common
zeros�

DEFINITION

Let f�� � � � � fn � k�x�� � � � � xn� be homogeneous polynomials generating a

zero
dimensional ideal� and let u � u�� � � � � un be a set of new indeter


minates� Then the resultant of the fi�s and the polynomial u � x with

respect to the variables x is called the u�resultant of the fi�s�
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The classical theorem on the u�resultant asserts that� when the set V �

V �f�� � � � � fn	 is �nite� the points � � V and their multiplicities can be recov�

ered from a factorization of the polynomial r�u	�

LEMMA ���� The u
Resultant

Let f�� � � � � fn � k�x�� � � � � xn� be homogeneous polynomials� and assume

that V � V �f�� � � � � fn	 is �nite� where each � � V has multiplicity

���	� Then the u
resultant r�u	 is a homogeneous polynomial of degreeQn

i�� deg fi� and
�

r�u	
�
�

Y
��V

�
nX
i��

�iui

�����

� ������	

Note that� since the ��s are points in projective space� this polynomial is

unique only up to a nonzero constant factor�

The argument sketched above can be extended to show that r�u	 �� �

if and only if V �f�� � � � � fn	 is �nite� From Lemma ���� it follows that this

u�resultant is a quotient of determinants a�u	 and b�u	� By the same lemma�

we can construct these polynomials so that b is independent of the coe�cients

of one of the given polynomials� In particular� we can construct a and b from

the fi�s and the polynomial u � x so that b is independent of the variables u�

Thus when f�� � � � � fn � k�x�� b is a constant in k� Whenever b �� �� a �� �

and a�u	
�
� r�u	� so that a is itself a u�resultant polynomial� In this case� the

u�resultant can thus be constructed using a single determinant computation

over k�u��

������ Generalized Characteristic Polynomials

The algorithms developed in x������ and x������ for computing resul�

tants and u�resultants took advantage of the fact that the quotient of the

characterisitic polynomials of the matrices A and B has two important fea�

tures� it never vanishes identically� and it is the resultant �u�resultant	 of a

�We write f
�
� g to signify that f and g are equal up to a nonzero constant factor� i�e� there

is a � � k� � �� 	 such that f � �g�
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perturbation of the original system of equations by a new indeterminate� This

observation was used to produce an e�cient algebraic algorithm for computing

the resultant of n polynomials in n variables directly from their coe�cients�

using only the operations of the coe�cient ring� This quotient was given the

name generalized characteristic polynomial by Canny ��� because it specializes

in the case of linear equations to the characteristic polynomial of the matrix

of the linear system�

Recently such polynomials have found wide use in extending resultants

and u�resultants to the case of a�ne �inhomogeneous	 sets� Let us begin

by considering how the algorithms of x������ might be adapted to handle

inhomogeneous polynomials� Recall the standard embedding of n�dimensional

a�ne space into n�dimensional projective space�

���� � � � � �n	 
� �� � �� � � � � � �n	 �

We can exploit this correspondence in the following manner� Let f � R be a

�possibly inhomogeneous	 polynomial in the n variables x�� � � � � xn and let x�

be a new variable� We de�ne the homogenizationq of f � written fh� to be the

polynomial

fh�x�� � � � � xn	 � xdeg f� f�x��x�� � � � � xn�x�	 �

where deg f is the total degree of f � Operationally� this means that we mul�

tiply each term of f by a su�ciently large power of the new variable x� to

bring it up to degree deg f �

Although homogenization gives an operational way of obtaining a related

homogeneous polynomial from an inhomogeneous one� we still have not shown

that there is a relation between the roots of these polynomials which can be

exploited in resultant�based algorithms� On the one hand� the reader can

easily verify that ���� � � � � �n	 � An is a zero of f exactly when �� � �� � � � � �

�n	 is a zero of fh � However� the polynomial fh may have zeros which do

not correspond to zeros of the original polynomial when we set x� � �� Such

solutions lie on the hyperplane at in�nity and are called improper or in�nite�

Let us consider the case of the u�resultant� We know that a u�resultant
polynomial can be computed for n homogeneous polynomials in S whenever

they have only �nitely many projective zeros� Now suppose we are given n

possibly inhomogeneous polynomials f�� � � � � fn � R and wish to compute their
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u�resultant� We homogenize them and compute the u�resultant of fh� � � � � � f
h
n �

This u�resultant should be a constant multiple of the polynomial

�
�Y

�

�u� �
nX
i��

�iui	

�
A �

�
�Y

�
�

�
�
� u

�
A �

where � ranges over all common zeros of f�� � � � � fn and �
�
ranges over all im�

proper solutions of fh� � � � � � f
h
n � and from it we can still recover the common

zeros of the original system� But this is only possible when the number of im�

proper solutions is �nite� For if there are in�nitely many improper projective

solutions� the u�resultant polynomial vanishes identically and no information

about the proper solutions will be available�

What we would like is a guaranteed method of obtaining all proper

solutions to the original system
perhaps together with a �nite number of

the improper solutions
in the manner that the u�resultant provides for the

strictly homogeneous case� This is given by the following lemma� proved by

Canny ��� for the case k � C and by Ierardi ���� Ch� �� for �elds of arbitrary

characteristic� We state the lemma only in its simplest form�

LEMMA ����

Let f�� � � � � fn be inhomogeneous polynomials in n variables with only a

�nite number of common zeros� Then the u
resultant of the system

fh� �x	� txdeg f�� � � � � � fhn �x	� txdeg fnn

with respect to the variables x�� � � � � xn is a polynomial

r�u� t	
�
�

dX
i�c

ri�u	t
i

in which the least nonzero coe�cient rc�u	 factors as

�
�Y

�

�x� �
nX
i��

�iui	
��

�
A �

�
�Y

�
�

�
�
� u

�
A �
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where � ranges over all points in V �f�� � � � � fn	� Here d �
Qn

i�� deg fi

and the points �
�
correspond to certain points in the algebraic set which

lie on the hyperplane at in�nity�

������ Applications of u�Resultants

Many of the applications of resultants and u�resultants arise from the

possibility of recovering the coordinates of points de�ned as the zero set of a

number of multivariate polynomial equations� To a large extent� the e�ciency

and elegance of these parallel algorithms stems from their ability to recover

information about these points symbolically� without resorting to numerical

approximation�

For example� suppose that a u�resultant polynomial r�u	 has been con�

structed by one of the methods outlined in x������� and we wish to compute

the ith coordinate of the a�ne points represented by this form� One way

of obtaining this information is by choosing new indeterminates y and t and

substituting into r�u	 the following values for the variables u�

uj 
�

��
�

y� if j � ��

ti � �� if j � i�

tj� otherwise�

A simple calculation shows that if the original polynomial r factored as

r�u	 �
Y
�

� � u �

then after the substitution we obtain a polynomial r� which factors as

r��y� t	 �
Y
�

�
�y � �

nX
j��

�j
��
tj	 �

�i
��

�
A

and the least nonzero coe�cient of r� as a polynomial in t is a polynomial ri�

ri�y	 �
Y
�� ���

�y �
�i
��
	 �
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the roots of which are just the ith coordinates of the a�ne solutions of the

original system�

Using subresultant techniques and the notion of primitive elements� this

method can be extended to provide a tool which is even more useful� As in

the sketch above� the following result relies on the fact that the factors of

the polynomial in which we are interested are all linear� Together with the

construction of generalized characteristic polynomials presented in x������� it

permits us to reduce the problem of �nding all of the zeros of n polynomi�

als in n variables to a univariate problem� provided that there are only a

�nite number of solutions altogether� More importantly� it provides a way of

representing these solutions symbolically� as in the following theorem proven

independently by Canny and Renegar�

THEOREM �����

Let f�� � � � � fn be polynomials with only a �nite number of common zeros�

We can compute a polynomial q�t	 and rational functions r��t	� � � � � rn�t	

such that the points �r���	� � � � � rn��		 include all of these common zeros

as � ranges over the roots of q�

The complete construction and its proof are presented in ���� and ���� where

applications to problems in real geometry are also discussed� The construc�

tions have already proven useful in the following context� when we have found

a �nite set of points de�ned by a set of multivariate equations� this algorithm

allows us to reduce the multivariate problem to a univariate problem involving

just those points�

�����	 Extensions to the A
ne Case

In the a�ne case
the case of inhomogeneous polynomials
there can�

not be a purely algebraic criterion for the existence of a common solution

to sets of polynomial equations� However� recent results of Koll ar ���� and

Galligo� Heintz and Morgenstern ��� do yield a parallel polynomial time alge�

braic algorithm for deciding this question� The algorithm again depends on

obtaining good degree bounds for the Nullstellensatz�

According to the Nullstellensatz� whenever �f�� � � � � fm	 � R�

V �f�� � � � � fm	 � � � � � �f�� � � � � fm	
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� �g�� � � � � gm � R

mX
i��

gifi � � � ������	

The discussion of the previous sections suggest that if we can �nd a degree

bound for the polynomials gi in ������	� then we can reduce the problem of

determining whether � is an element of this ideal to the problem of deter�

mining the rank of an appropriate matrix formed from the coe�cients of the

given polynomials� By reducing the problem to the problem of determining

the rank of a matrix� one can then apply Mulmuley�s algorithm to give a par�

allel polynomial�time solution to the problems of deciding the solvability of a

set of polynomial equations� and even the problem of quanti�er elimination

in algebraically closed �elds� The essential facts are stated in the following

theorem of Koll ar �����

THEOREM ����� L

et f�� � � � � fm � R be polynomials of degree at most d� If V �f�� � � � � fm	 �

�� then there exist polynomials g�� � � � � gm satisfying 
������ with deg fi�

deg gi � dn for � � i � m�

This bound now leads to the following algorithm for determining whether

there exist solutions to a given system of polynomial equations�

For each e � �� let Re denote the additive subgroup of R consisting

of all polynomials of degree at most e� Note that Re is a k�vector space of

dimension ne� and as a basis we can take all monic monomials of degree at

most e� Let ! be the matrix of the linear map

� �
mY
i��

Rdn�deg fi � Rdn

� �g�� � � � � gm	 
�
mX
i��

gifi

with repect to this basis� and let "� denote the vector corresponding to the

multiplicative identity � � Rdn � Now we know that the polynomials fi have a

solution if and only if "� is in the linear span of the columns of !� If it is� then

the rank of ! is the same as the rank of the matrix �!� "�	� obtained by adding
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"� as a new column of !� If not� then the ranks di�er� Invoking Mulmuley�s

NC algorithm for determining the rank of a matrix� we thus obtain an e�cient

parallel algorithm for this problem�

����
�
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����
Exercises

���� Let D be a square matrix with entries in a graded ring S �
L

�

d��
Sd�

Suppose that every entry of D is nonzero and homogeneous� and every �� �

minor of D is homogeneous� Prove that detD is homogeneous�

���� Let A be a set of distinct indeterminates� jAj � d� and let x be another

indeterminate� Show that the coe�cient of xd�i in the polynomial
Q

a�A
	x�

a
 is a homogeneous polynomial in k�A� of degree i� 	This coe�cient is called

the ith elementary symmetric polynomial in A�


���� Let f� g be multivariate polynomials such that

� all irreducible factors of f are distinct 	i�e�� f is squarefree



� f and g are homogeneous of the same degree
 and

� V 	f
 � V 	g
�

Show that f
�
� g�

���� Let A be the multiset of roots of a monic univariate polynomial f 
 thus

f �
Q

��A
	x � �
� Similarly� let B be the multiset of roots of a monic
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univariate polynomial g� Prove that the resultant of f and g isY
��A
��B

	� � �
 �

���� Show that the multivariate resultant of two homogeneous polynomials in two

variables is essentially the same as the univariate resultant of two polynomi�

als� Explain why this is so�

���� Let f be a univariate polynomial with rational coe�cients� The resultant of

f and its formal derivative f � is called the discriminant of f �

�� Calculate the discriminant of the quadratic ax� � bx� c�

�� Prove that f has a multiple root if and only if its discriminant vanishes�

���� Let sm and tm be as in De�nition ������� and let p and q be arbitrary

polynomials� Prove that for � � m � n�

gcd	p� q
 � gcd	smp� tmq� sm��p � tm��q
 �

���� Let f�� f�� � � � � fn� fn�� be the PRS of f� and f�� and let sm and tm be as in

De�nition ������� Prove that for � � m � n�

fm � gcd	f� � 	��
mtmfm��� f� � 	��
msmfm��
 �
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