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Abstract. We investigate conditions under which a given Kleene algebra with
tests is isomorphic to an algebra of binary relations. Two simple separation prop-
erties are identified that, along with star-continuity, are sufficient for nonstandard
relational representation. An algebraic condition is identified that is necessary
and sufficient for the construction to produce a standard representation.

1 Introduction

Kleene algebra with tests (KAT) is an equational system for program verification that
combines Kleene algebra (KA), or the algebra of regular expressions, with Boolean
algebra. One can model basic programming language constructs such as condition-
als and while loops, verification conditions, and partial correctness assertions. KAT
has been applied successfully in verification tasks involving communication protocols,
source-to-source program transformation, concurrency control, compiler optimization,
and dataflow analysis [1,2,3,4,5,6]. The system subsumes Hoare logic and is deduc-
tively complete for partial correctness over relational models [7].

There are many interesting and useful models of KAT: language-theoretic, relational,
trace-based, matrix. In programming language semantics and verification, the relational
models are of primary importance, because correctness conditions are often expressed
as input/output conditions on the start and final state of the computation.

In relational models, actions and tests are represented as binary relations on some
universal set of states. The class of all relational KATs is denoted REL. Because of the
prominence of relational models in programming language semantics and verification,
it is of interest to characterize them axiomatically or otherwise. It is known that REL
satisfies no more equations than those satisfied by KATs in general, and the equational
theory is PSPACE-complete [8]. This result extends to the Hoare theory, universal Horn
formulas in which all premises are of the form p = 0 [8,9]. However, the full Horn
theories of REL and KAT diverge: the relationally valid Horn formula p ≤ 1 → p2 = p
is not true in all KATs or even in all star-continuous KATs. For example, it fails in the
min,+ algebra or tropical semiring used in shortest path algorithms.

In this paper we explore conditions under which a Kleene algebra with tests can be
represented isomorphically as a relational KAT. Not all algebras are so representable,
even star-continuous ones; as observed above, the min,+ algebra is not. We have iden-
tified two basic first-order properties, Properties 1 and 2 below, that are sufficient for
relational representation of idempotent semirings with tests, or Kleene algebras without
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∗. In the presence of ∗, these properties plus the infinitary star-continuity condition are
sufficient for representation by a nonstandard relational model—one in which p∗ is the
least reflexive transitive relation containing p in the algebra, although not necessarily the
set-theoretic reflexive transitive closure. We also identify a property that is equivalent to
the assertion that the construction yields a standard model.

The two properties 1 and 2 can be viewed as separation properties. Essentially, they
assert the existence of enough tests to allow binary relations to be characterized by their
observable behavior, where the tests of the algebra are the observations. The two con-
ditions are relatively weak, although for trivial reasons neither is a necessary condition
for representation. We discuss the significance of Properties 1 and 2 further in Section
3 below.

The Stone representation theorem (see e.g. [10,11]) asserts that every Boolean alge-
bra is isomorphic to a Boolean algebra of sets. After McKinsey’s [12] and Tarski’s [13]
axiomatization of relation algebras, several authors [14,15,16] searched for a similar
representation result for relation algebras but with only partial success. This work cul-
minated in a counterexample of Lyndon [17]. In his conclusion, Lyndon discussed the
possibility of a positive representation result in weaker systems. He mentioned specif-
ically relational rings, which are essentially idempotent semirings or Kleene algebras
without ∗. Work on the relational representation of dynamic algebra [18,19,20,21,22,23]
built on this work and is analogous to the present results in the stronger setting in which
all weakest preconditions are assumed to exist. The main result of this paper strengthens
the representation results of [18,21] in that respect.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [24,25]. The axiomatization
used here is from [26]. A Kleene algebra is an algebraic structure (K, +, ·, ∗, 0, 1)
that is an idempotent semiring under +, ·, 0, 1 such that p∗q is the ≤-least solution to
q + px ≤ x and qp∗ is the ≤-least solution to q + xp ≤ x. Here ≤ refers to the natural

partial order on K: p ≤ q def⇐⇒ p + q = q. This is a universal Horn axiomatization. A
Kleene algebra is star-continuous if it satisfies the stronger infinitary property

pq∗r = sup
n

pqnr. (1)

The family of star-continuous Kleene algebras is denoted KA∗. It is a proper subclass of
the Kleene algebras, but all naturally occurring Kleene algebras, including all relational
models, are star-continuous.

The axioms for ∗ say essentially that ∗ behaves like the Kleene asterate operator of
formal language theory or the reflexive transitive closure operator of relational algebra.

Standard models include the family of regular sets over a finite alphabet; the fam-
ily of binary relations on a set; and the family of n × n matrices over another Kleene
algebra. Other interpretations include the min,+ algebra or tropical semiring used in
shortest path algorithms and models consisting of convex polyhedra used in computa-
tional geometry.
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The completeness result of [26] says that all true identities between regular expres-
sions interpreted as regular sets of strings are derivable from the axioms. In other words,
the algebra of regular sets of strings over a finite alphabet P is the free Kleene algebra
on generators P. The axioms are also complete for the equational theory of relational
models.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [5] is just a Kleene algebra with an embedded
Boolean subalgebra. That is, it is a two-sorted structure (K, B, +, ·, ∗, ¯, 0, 1) such
that

– (K, +, ·, ∗, 0, 1) is a Kleene algebra,
– (B, +, ·, ¯, 0, 1) is a Boolean algebra, and
– (B, +, ·, 0, 1) is a substructure of (K, +, ·, 0, 1).

Elements of B are called tests. The Boolean complementation operator ¯ is defined only
on tests. We use the symbols b, c, d, . . . to denote tests and p, q, r, . . . to denote arbitrary
elements of K .

The while program constructs are encoded as in propositional Dynamic Logic [27]:

p ; q def= pq

if b then p else q def= bp + b̄q

while b do p def= (bp)∗b̄.

The Hoare partial correctness assertion {b} p {c} is expressed as the inequality bp ≤ pc
(equivalently, as the equation bpc̄ = 0 or the equation bp = bpc). All Hoare rules are
derivable in KAT; indeed, KAT is deductively complete for relationally valid proposi-
tional Hoare-style rules involving partial correctness assertions [7] (propositional Hoare
logic is not).

For A a set of tests, define Ā = {b̄ | b ∈ A} and ∼A = B − A. Note that Ā and
∼A are not the same in general; however, they coincide if A is an ultrafilter or maximal
ideal of B.

See [26,5,7,28] for a more detailed introduction to KA and KAT.

2.3 Relational Models

A relational model is a KAT whose elements are binary relations on some universal
set U . The sequential composition operator · is interpreted as relational composition,
the choice operator + is interpreted as set-theoretic union, the iteration operator ∗ is
interpreted as reflexive transitive closure, the multiplicative identity 1 is interpreted as
the identity relation on U , and the additive identity 0 is interpreted as the null relation.
Tests are subsets of the identity relation on U , but not all subsets of the identity relation
need be tests. The Boolean complementation operator on tests gives the set-theoretic
complement in the identity relation.
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A nonstandard relational model is the same, except that we do not require that p∗
be the set-theoretic reflexive transitive closure, but only the ≤-least reflexive transitive
relation containing p in the algebra.

The class of all relational KATs is denoted REL. If φ is a logical formula in the
language of KAT, we write REL � φ and say that φ is relationally valid if it is true
under all relational interpretations.

For a binary relation p on a set U , define the domain and range of p to be the sets

dom(p) def= {u | ∃v (u, v) ∈ p} ran(p) def= {v | ∃u (u, v) ∈ p},

respectively.

3 Representation

We will show that the following two natural properties, along with the star-continuity
condition (1), are sufficient to construct a nonstandard relational representation. These
properties are quite weak.

Property 1. pq = 0 ⇒ ∃b p = pb ∧ q = b̄q.

Property 2. p �≤ q ⇒ ∃b∃c bpc �= 0 ∧ bqc = 0.

In relational models, Property 1 asserts that if pq vanishes, then there is a test that
separates the range of p from the domain of q. This property is satisfied automatically in
any system that postulates the existence of pre- and/or postconditions, such as dynamic
algebra [19], Kleene algebra with domain and range operators [29], or Kleene modules
[30]. It is related to expressibility conditions in Hoare logic [31] but somewhat weaker.

Property 2 asserts that actions can be distinguished by their interaction with tests.
It is equivalent to the assertion that there exists no distinct inseparable pair, where the
relation ≡ of inseparability is defined by

p ≡ q def⇐⇒ ∀b∀c (bpc = 0 ⇔ bqc = 0).

The significance of this requirement is captured in the following proposition.

Proposition 1. Let p and q be terms in the language of KAT, and let b and c be test
variables not occurring in p or q. The following are equivalent:

(i) p ≤ q is valid,
(ii) bqc = 0 → bpc = 0 is valid,

(iii) bqc = 0 → bpc = 0 is relationally valid.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. For (iii) ⇒ (i), if p ≤ q is
not valid, then it fails in some relational model, since the equational theories of KAT
and REL are the same. Let (s, t) ∈ p − q in this model, and reinterpret b as {s} and c
as {t}. Then bpc contains (s, t), but bqc = 0.

Let K, B be a KAT satisfying Properties 1 and 2. As with all Stone-like constructions,
our universal set of states will be the set of ultrafilters of B.
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Recall that a filter is a subset F of B such that

(i) bc ∈ F ⇔ b ∈ F and c ∈ F
(ii) 1 ∈ F

(iii) 0 �∈ F ,

and an ultrafilter is a maximal filter. Dually, an ideal is a subset I of B such that

(i) b + c ∈ I ⇔ b ∈ I and c ∈ I
(ii) 1 �∈ I

(iii) 0 ∈ I .

Ideals are the kernels of Boolean algebra homomorphisms. Note that F is a filter iff
F̄ is an ideal, and u is an ultrafilter iff ū is a maximal ideal. By Zorn’s lemma, every
filter is contained in an ultrafilter and every ideal is contained in a maximal ideal. Every
ultrafilter u satisfies the property that for all b, either b ∈ u or b̄ ∈ u, but not both;
therefore ∼u = ū.

Let U denote the set of ultrafilters of B. The well-known Stone construction (see
e.g. [10,11]) produces a Boolean algebra isomorphic to B whose elements are subsets
of U and whose Boolean operations are the usual set-theoretic ones. The subset corre-

sponding to b is b′ def= {u | b ∈ u}. We denote this set-theoretic Boolean algebra by
B′.

A coideal of a Boolean algebra B is a complement of an ideal; that is, it is a subset
C of B satisfying

(i) b + c ∈ C ⇔ b ∈ C or c ∈ C
(ii) 1 ∈ C

(iii) 0 �∈ C.

Lemma 1. Every coideal contains an ultrafilter as a subset.

Proof. If C is a coideal, then ∼C is an ideal. By Zorn’s Lemma, ∼C extends to a
maximal ideal M . Then ∼M is an ultrafilter and is a subset of C.

Definition 1.

In(p, q) def= {d | pdq �= 0}

Pre(p) def= {b | bp �= 0} = In(1, p)

Post(p) def= {c | pc �= 0} = In(p, 1).

Lemma 2. If pq �= 0, then In(p, q) is a coideal. If p �= 0, then Pre(p) and Post(p) are
coideals.

Proof. For In(p, q),

(i) p(c + d)q �= 0 ⇔ pcq + pdq �= 0 ⇔ pcq �= 0 or pdq �= 0,
(ii) pq �= 0 ⇒ p1q �= 0 ⇒ 1 ∈ In(p, q),

(iii) p0q = 0 ⇒ 0 �∈ In(p, q).

Pre(p) and Post(p) are special cases.

A collection {Cα} of coideals is downward-directed if for any pair Cα and Cβ , there is
a Cγ with Cγ ⊆ Cα ∩ Cβ .
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Lemma 3. The intersection of any downward-directed set of coideals is a coideal.

Proof. Equivalently, the union of any upward-directed set of ideals is an ideal. The
three conditions are easily checked.

Lemma 4.

(i) If p1 ≤ p2 and q1 ≤ q2, then In(p1, q1) ⊆ In(p2, q2).
(ii) If p1 ≤ p2, then Post(p1) ⊆ Post(p2).

(iii) If p1 ≤ p2, then Pre(p1) ⊆ Pre(p2).

Proof. Statement (i) follows easily from the definitions. Statements (ii) and (iii) are
special cases.

We now define our relational model R. For all p ∈ K , define

Definition 2.

pR def= {(u, v) | ∀b ∈ u ∀c ∈ v bpc �= 0}.

Since bp = 0 iff p = b̄p (see e.g. [7, Section 3]), we have the following facts:

Pre(p) = {b | bp �= 0} = {b | p �= b̄p}
∼Pre(p) = {b | bp = 0} = {b | p = b̄p}

¯∼Pre(p) = {b̄ | bp = 0} = {b̄ | p = b̄p}.

If p �= 0, then Pre(p) is a coideal, ∼Pre(p) is an ideal, and ¯∼Pre(p) is a filter.

Lemma 5. Let u be an ultrafilter. The following are equivalent:

(i) u ⊆ Pre(p)
(ii) ¯∼Pre(p) ⊆ u

(iii) u ∈ dom(pR).

Proof. (i) ⇔ (ii): ¯∼Pre(p) ⊆ u iff ∼Pre(p) ⊆ ū iff ∼ ū ⊆ Pre(p) iff u ⊆ Pre(p),
since u = ∼ ū.

(iii) ⇒ (i): If (u, v) ∈ pR, then for all b ∈ u and c ∈ v, bpc �= 0. Since 1 ∈ v, we
have that for all b ∈ u, bp �= 0. Then u ⊆ Pre(p) by definition of Pre(p).

(i) ⇒ (iii): If u ⊆ Pre(p), then bp �= 0 for all b ∈ u. By Lemma 2, for all b ∈ u,
Post(bp) is a coideal. By Lemmas 3 and 4(ii),

⋂
b∈u Post(bp) is a coideal, therefore

contains an ultrafilter v by Lemma 1. Thus for all b ∈ u and c ∈ v, c ∈ Post(bp),
therefore bpc �= 0 and (u, v) ∈ pR.

The following is the main theorem of this section.

Theorem 1. Let K, B be a star-continuous KAT satisfying Properties 1 and 2. The set
{pR | p ∈ K} is a nonstandard relational KAT with tests {bR | b ∈ B}, and the map
p �→ pR is a KAT isomorphism.

Proof. If p ≤ q then pR ⊆ qR, since p ≤ q ⇒ bpc ≤ bqc. Thus the map p �→ pR is
monotone.
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To show that p �→ pR is one-to-one, it suffices to show that if p �≤ q, then pR �⊆ qR.
Suppose that p �≤ q. By Property 2, there exist b and c such that bpc �= 0 and bqc = 0.
By Lemma 2, Pre(bpc) = {d | dbpc �= 0} is a coideal, therefore contains an ultrafilter
u by Lemma 1. By definition of Pre(bpc), we have dbpc �= 0 for all d ∈ u. It follows
that b ∈ u, since either b ∈ u or b̄ ∈ u, and the latter is impossible. Moreover, by
Lemma 2, for all d ∈ u, Post(dbpc) = {e | dbpce �= 0} is a coideal. In addition, it
follows from Lemma 4(ii) that the set {Post(dbpc) | d ∈ u} is downward-directed,
since

Post(d1d2bpc) ⊆ Post(d1bpc) ∩ Post(d2bpc).

By Lemma 3,
⋂

d∈u Post(dbpc) is a coideal, therefore contains an ultrafilter v by
Lemma 1. As with u, c ∈ v. Then (u, v) ∈ pR, but (u, v) �∈ qR since bqc = 0.

Next we show that p �→ pR is a homomorphism with respect to addition; that is,
(p + q)R = pR ∪ qR. The reverse inclusion follows from monotonicity. For the
forward inclusion, suppose (u, v) �∈ pR ∪ qR. Then there exist b1, b2 ∈ u and
c1, c2 ∈ v such that b1pc1 = 0 and b2qc2 = 0. Since u and v are filters, b1b2 ∈ u
and c1c2 ∈ v, and b1b2pc1c2 = 0 and b1b2qc1c2 = 0. Then b1b2(p + q)c1c2 = 0, so
(u, v) �∈ (p + q)R .

Next we show that p �→ pR is a homomorphism with respect to multiplication; that
is, (pq)R = pR ◦ qR. For the forward inclusion, suppose (u, v) ∈ (pq)R. Then for all
b ∈ u and c ∈ v, bpqc �= 0. By Lemma 2, for all b ∈ u and c ∈ v, In(bp, qc) is a
coideal. Moreover, the set {In(bp, qc) | b ∈ u, c ∈ v} is downward-directed, since

In(b1b2p, qc1c2) ⊆ In(b1p, qc1) ∩ In(b2p, qc2).

By Lemma 3,
⋂

{In(bp, qc) | b ∈ u, c ∈ v} is a coideal, therefore contains an ultrafilter
w by Lemma 1. Then for all b ∈ u, c ∈ v, and d ∈ w, bpdqc �= 0, therefore bpd �= 0
and dqc �= 0. It follows that (u, w) ∈ pR and (w, v) ∈ qR, therefore (u, v) ∈ pR ◦ qR.

For the reverse inclusion, we need Property 1. Suppose (u, w) ∈ pR and (w, v) ∈
qR. Then for all b ∈ u, c ∈ v, and d ∈ w, we have bpd �= 0 and dqc �= 0. If bpqc = 0
for some b ∈ u and c ∈ v, then by Property 1, there exists d such that bp = bpd and
qc = d̄qc. Either d ∈ w or d̄ ∈ w. If the former, then dqc = dd̄qc = 0. If the latter, then
bpd̄ = bpdd̄ = 0. In either case, we have a contradiction. Thus for all b ∈ u and c ∈ v,
bpqc �= 0, therefore (u, v) ∈ (pq)R.

For tests, we must show that bR = {(u, u) | b ∈ u}, that 1R is the identity relation
on U , that 0R is the empty relation, and that the map b �→ bR is a homomorphism with
respect to negation. We have

bR = {(u, v) | ∀c ∈ u ∀d ∈ v cbd �= 0}.

Thus (u, v) ∈ bR iff u = v and b ∈ u, therefore bR = {(u, u) | b ∈ u}. In particular,
1R = {(u, u) | 1 ∈ u}, the identity relation, and 0R = {(u, u) | 0 ∈ u} = ∅. Since
b ∈ u iff b̄ �∈ u,

b̄R = {(u, u) | b̄ ∈ u} = {(u, u) | b �∈ u} = 1R − bR.

Finally, for ∗, it follows from the star-continuity of K, B and the fact that the map
p �→ pR is an order isomorphism that q∗R = supn(qR)n .
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4 Star

In this section we identify an algebraic condition (Condition 2 below) under which the
construction of Section 3 yields a standard relational model. This occurs exactly when
qR∗ = q∗R for all q, where qR∗ denotes the set-theoretic reflexive transitive closure
of qR and q∗R is the representation of q∗ in R.

Endow U with the Stone topology generated by B′ and U×U with the product topol-
ogy. The basic open sets of these spaces are sets of the form b′ and b′ × c′, respectively.
Let cl(A) denote the closure of A in either topology.

Lemma 6. Every pR is closed in U × U .

Proof. If (u, v) �∈ pR, then there exist b ∈ u and c ∈ v such that bpc = 0. Then
(u, v) ∈ b′ × c′ and

(b′ × c′) ∩ pR = (bpc)R = ∅.

Thus b′ × c′ is a basic open neighborhood of (u, v) disjoint from pR. Since (u, v) �∈ pR

was arbitrary, (U × U) − pR is open, therefore pR is closed.

Lemma 7. The sets dom(pR) and ran(pR) are closed in U .

Proof. By Lemma 5, dom(pR) is the set of ultrafilters u extending the filter ¯∼Pre(p).
But the set of ultrafilters extending any filter F is closed, since it is the intersection of
basic closed sets:

{u | F ⊆ u} =
⋂

b∈F

{u | b ∈ u} =
⋂

b∈F

b′.

The argument for ran(p) is symmetric.

Lemma 8. Let {qα} be a collection of elements of K and p an element of K such
that for all b, c ∈ B, bpc = supα bqαc. Then pR = cl(

⋃
α qR

α ). In particular, q∗R =
cl(qR∗).

Proof. The inclusion ⊇ holds by Lemma 6. If (u, v) ∈ pR−cl(
⋃

α qR
α ), then there exists

a basic open neighborhood b′ × c′ of (u, v) disjoint from
⋃

α qR
α . Then (bqαc)R =

(b′ × c′) ∩ qR
α = ∅ for all α, thus bqαc = 0 for all α, therefore supα bqαc = 0. But

(u, v) ∈ (b′ × c′) ∩ pR = (bpc)R, thus (bpc)R �= ∅ and bpc �= 0. This contradicts the
assumption.

A necessary and sufficient condition for the relational model constructed in Section 3
to be standard is the following uniform halting condition:

Condition 2. it

∀n ∃b ∈ u ∃c ∈ v bqnc = 0 ⇒ ∃b ∈ u ∃c ∈ v ∀n bqnc = 0.

Condition 2 says that if for each n there are properties of (u, v) that cause it not to be
an input/output pair of the program qn, then there is a pair of such properties that work
uniformly over all n. Intuitively, the input/output relation of a loop depends on only
finitely many testable properties. Equivalently,

∀b ∈ u ∀c ∈ v ∃n bqnc �= 0 ⇒ ∃n ∀b ∈ u ∀c ∈ v bqnc �= 0.
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Theorem 3. Condition 2 is equivalent to the property q∗R = qR∗.

Proof. The left-hand side of Condition 2 says exactly that (u, v) �∈ qRn
for all n, thus

(u, v) �∈ qR∗. We also have
⋃

n

(bqnc)R =
⋃

n

(b′ × c′) ∩ qnR = (b′ × c′) ∩
⋃

n

qnR = (b′ × c′) ∩ qR∗,

so that the right-hand side of Condition 2 can be rewritten

∃b ∈ u ∃c ∈ v ∀n bqnc = 0

⇔ ∃b ∃c (u, v) ∈ b′ × c′ and ∀n (bqnc)R = ∅
⇔ ∃b ∃c (u, v) ∈ b′ × c′ and

⋃

n

(bqnc)R = ∅

⇔ ∃b ∃c (u, v) ∈ b′ × c′ and (b′ × c′) ∩ qR∗ = ∅.

This says exactly that there is a basic open neighborhood of (u, v) disjoint from qR∗.
Thus the implication of Condition 2 says exactly that ∼qR∗ is open; that is, qR∗ is
closed. By Lemma 8, q∗R is the closure of qR∗, therefore they are equal if and only if
qR∗ is closed.

5 Open Problems

Theorem 3 does not say that a standard representation does not exist if Condition 2 fails.
In the case of countable K , some variant of the Tarski–Rasiowa–Sikorski lemma or the
Baire category theorem might be used to drop out nonstandard points from the model
constructed above, giving a standard relational model or perhaps a homomorphic image
of one; see [19,21]. The constructions of [19,21] do not seem to apply directly. On the
other hand, neither do we have a negative result. The counterexamples of [20,22] for
dynamic algebra do not immediately provide counterexamples for KAT, but the coun-
terexample of [20] may be adaptable. Such questions remain for future investigation.

Axiomatization of the universal Horn theory of relational models is another interest-
ing open question. This theory is an extension of the universal Horn theory of the star-
continuous Kleene algebras, and both theories are known to be Π1

1 -complete [32,33],
therefore not finitely axiomatizable. However, the star-continuous algebras have a suc-
cinct infinitary axiomatization containing a single infinitary rule (1). It is interesting to
ask whether the relational algebras have a finitary axiomatization relative to this. Pre-
sumably the Horn formula p ≤ 1 → p2 = p would be a candidate axiom. Considerable
progress in this direction has been made by Hardin [34].
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