Journal of Automata, Languages and Combinatorics 18 (2013) 1, 53-60
© Otto-von-Guericke-Universitat Magdeburg

REFLECTION IN THE CHOMSKY HIERARCHY

HENK BARENDREGT

Institute of Computing and Information Science,
Radboud University, Nigmegen, The Netherlands
e-mail: henk@cs.ru.nl

VENANZIO CAPRETTA

School of Computer Science, University of Nottingham, United Kingdom
e-mail: venanzio.capretta@nottingham.ac.uk

and

DEXTER KOZEN

Computer Science Department, Cornell University,
Ithaca, New York 14853, USA

e-mail: kozen@cs.cornell.edu

ABSTRACT

The class of regular languages can be generated from the regular expressions. These
regular expressions, however, do not themselves form a regular language, as can be seen
using the pumping lemma. On the other hand, the class of enumerable languages can
be enumerated by a universal language that is one of its elements. We say that the
enumerable languages are reflezive.

In this paper we investigate what other classes of the Chomsky Hierarchy are re-
flexive in this sense. To make this precise we require that the decoding function is
itself specified by a member of the same class. Could it be that the regular languages
are reflexive, by using a different collection of codes? It turns out that this is impossi-
ble: the collection of regular languages is not reflexive. Similarly the collections of the
context-free, context-sensitive, and computable languages are not reflexive. Therefore
the class of enumerable languages is the only reflexive one in the Chomsky Hierarchy.

In honor of Roel de Vrijer on the occasion of his siztieth birthday

1. Introduction

Let T C P(X*) be a class of languages over an alphabet ¥. Let (C,U) be a couple
of languages such that the words of U are pairs c e w with ¢ € C and w arbitrary.
Define, for ¢ € C,

G={weXf|cowelU}.

54 H. Barendregt, V. Capretta, D. Kozen

The pair (C,U) is called a universal coding system for T if
T={L;|ceC}.

7T is called reflexive if there exists a universal coding system (C,U) for 7, such that
C,UeT.

We assume that ¥ is a fixed alphabet and consider only languages over it, that
is, subsets of ¥*. We assume that % has “enough” symbols, in the sense that, given
some candidate language of codes C', we freely presume that we can find a symbol e
not contained in any word of C.

It turns out that the classes of regular, context-free and context-sensitive languages
are all non-reflexive. The proofs of these facts are different for each of the three classes.
The class of recursive languages (not officially in the Chomsky hierarchy) is also non-
reflexive. It is known that recursively enumerable languages are reflexive, as follows
from the existence of a universal Turing machine.

This leaves open the possibility that other classes, smaller than that of recursively
enumerable languages, are reflexive. In fact we will show in Proposition 2 that for ev-
ery effectively countable family of languages, we can construct such a class containing
its union. The construction is simple but artificial. The quest is for such a reflexive
class that has a uniformly defined family of accepting machines.

Related Work

A crucial difference between reflexivity and other notions of universality in the lit-
erature is that the code of a language is included as part of its representation in
the universal language. This imposes a strong uniformity requirement on the coding
scheme that is absent with other notions. Greibach [2] constructs a “hardest context-
free language” L¢ such that every context-free language is an inverse homomorphic
image of Ly or Lo—{e}. The language Ly is constructed from a Dyck language (paren-
thesis language) on two pairs of matching parentheses. The homomorphism, which
is the coding mechanism that witnesses the embedding of a context-free language in
the universal language Lg, is not part of Ly, thus imposes no uniformity condition.

A similar result is the Chomsky-Schiitzenberger theorem [1], which states that
every context-free language is the homomorphic image of the intersection of a Dyck
language and a regular set. Again, the coding mechanism is not part of the universal
language.

Kasai [3] constructs a “universal context-free grammar” for every finite alphabet 3,
a context-free grammar G such that for every context-free language L C ¥*, there is a
regular control set C' that restricts the possible sequences of leftmost derivations of G,
such that Lo(G) = L. Again, the control set C is independent of L(G). It should
be pointed out that the cited results are all positive universality results, whereas
reflexivity in our sense does not hold for context-free languages.

2. Standard Encodings

First of all, let us look at the standard encodings for the language classes of the
Chomsky hierarchy and ask if they belong to the class that they define.

Reflection in the Chomsky Hierarchy 55

The standard encoding of regular languages over an alphabet ¥ is the language of
regular expressions, defined as the set inductively generated by the rules:

e The symbols (), ¢ and a for every a € ¥ are regular expressions;

e If u and v are regular expressions, then (u Uv), (uv) and (u*) are regular
expressions.

It is a well-known fact that languages that make use of parentheses are not regular,
so the language of regular expressions does not belong to the class that it defines.
Instead, the following grammar shows that it is context-free:

(reg — exp) — 0
— €
—a a€eXx
— ((reg — exp) U (reg — exp))
— ((reg — exp)(reg — exp))
— ((reg —exp)”)
The standard encoding of context-free languages is by context-free grammars. Such
a grammar is a finite sequence of rules, separated by semicolons in our version. Each
rule has the form z — w, where z is a variable (non-terminal) from a set V' and w
is any word over the alphabet V' U Y. Contrary to the previous case, this language is
not only context-free, but even regular. In fact, it is defined by the following regular
expression:

V= (VUD) GV — (VUE)S).

A similar consideration can be made for the context-sensitive languages.

So the conclusion is that the language of regular expressions is context-free while the
language of context-free grammars is regular! This is for what concerns the traditional
representations of languages. But if we start thinking about other possible encodings,
the question we are asking becomes muddled. Is there some set of words, other than
regular expressions, that encodes regular languages and is itself regular? Since we
know that regular languages are effectively countable, we can certainly enumerate
them using natural numbers, through some form of Godel numbering. Therefore
the numerals can be used as codes for regular languages, and they themselves form
a regular language. The regular expression defining them is simply S*O, where S
and O are symbols denoting successor and zero, respectively.

This, however, is an unnatural answer to the question whether regular languages
have an internal representation. The decoding function is going to be quite complex
and certainly won’t be implementable by a finite automaton, which is the sort of
machine associated to a regular language.

3. Reflexivity

A coding system consists of a language C of codes and some decoding mechanism.
This can be given in two equivalent ways: either by a universal language U or by
a decoding function d : C — 7. We define the notion of reflexivity for a language

56 H. Barendregt, V. Capretta, D. Kozen

class 7 by requiring that there be a coding language C' and a universal class U both
within 7.

Definition 1 Let T be a class of languages over an alphabet 3, i.e., T C P(X*).
1. A coding system is a pair (C,U) with C,U C X*. We call C the code language
and U the decoding language.
2. Given a coding system (C,U) and any c € C, define

g={weX|coeweU}.

where ® is a new symbol not used in C. We call the mapping Ac.L{; the decoding
function of the system.

3. (C,U) is a T-coding system iff C € T and U € T.

4. (C,U) is universal for T iff T ={L§ | c € C}.

5. T is reflexive if there exists a T -coding system that is universal for T.

Equivalently, we could have taken the decoding function as a primitive in the
definition of a coding system, defining it as a pair (C,d), where C' is a language and
d: C — P(X*). The two definitions are related by the transformations:

U={cew|ceCandwed(c)} and d(c)=L{.

Any system (C,U) codes the class of languages 7(c,vy = {Lf; | c € C}. (C,U) is
trivially universal for 7(¢c), but it is not necessarily a 7(¢)-coding system, because
C and U may not be in (¢ iyy. We will call (C,U) itself reflezive when this happens,
that is, when there are codes c,u € C' such that C' = L{; and U = Ly;. We can always
extend a system to a reflexive one minimally.

Proposition 2 For every coding system (C,U), there exists another coding system
(C",U") such that

{Ly, | eCy={L§ |ceC'yu{c U}
Proof. We can safely assume that there are two words c,u € ¥* not containing the

separator e and not in C. We are going to use them as the new codes for ¢’ and U’,
respectively. Define

C'=CU{c,u}, U'=UU{cec|ceC'}, U = (ue)*U".
Then (C',U’) is a reflexive coding system extending (C,U). In fact, let ¢ € C, then
L?]:LCU/;C/:L%]/ a,ndU/:LL[lJ/. O

4. Regular Languages

We show that regular languages are not reflexive according to the previous definition.
The proof exploits a well-known characterization of regular languages.

Reflection in the Chomsky Hierarchy 57

Proposition 3 (Myhill-Nerode) Given a language L over %, define the following
equivalence relation =5, on X*:

v=Epw <= Yue€ X vu € L wue L
Then L is reqular iff ¥*/ =y, is finite.

The standard proof of the Myhill-Nerode result exploits the fact that L is accepted
by a finite automaton.

Theorem 4 The class of reqular languages is not reflexive.

Proof. Assume that regular languages are reflexive through the coding system (C, U).
Then U is regular. Hence ¥*/ =y is finite. As

’
[

coe =y e < Lf =L,

this implies that there are only a finite number of regular languages, quod non. O

5. Context-Free Languages

Context-free languages (CFLs) can be characterized as those sets of words that are
accepted by a push-down automaton, that is, a finite state machine that uses a stack
as memory. If there were a universal language U for this class, the automaton cor-
responding to U would have to use the stack to store both the code ¢ and and the
information needed for the computation. But then, how can it “read” the code with-
out destroying the information about a specific word? This informal argument makes
it plausible that context-free languages are not reflexive.

A more precise proof follows. This exploits the fact that every CFL has a grammar
in Chomsky normal form, where the production rules are of the form A — BC or
A — a, where A, B, C are nonterminal symbols and «a is a terminal symbol.

Theorem 5 The class of context-free languages is not reflexive.

Proof. 'We use the sets L,, = {a"b™" | n > 0}. Intuitively, the languages L,, are
context-free, but not uniformly so; to accept a language with large m requires a large
state set or stack alphabet in a pushdown automaton or a large number of nonterminal
symbols in a context-free grammar.

Suppose, towards a contradiction, that there were a universal CFL-coding system
(C,U). Then with each CFL L C ¥*, there would be associated at least one code
¢ € C such that for all w € ¥*, w € L iff cew € U. U would have a Chomsky
normal form grammar, say with start symbol S and d nonterminal symbols. We
write A — = if the nonterminal A can derive the string x. Note that the null string
€ is not derivable from any nonterminal.

Consider a parse tree for S — z. If o is a path in the parse tree with nodes
labelled by nonterminals Ag, ..., Ag, then for 0 < ¢ < k — 1, the rule applied to A;
is of the form either (i) A; — BA;41 or (ii) A; — A;4+1B for some B. In case (i), let
v; be the non-null string generated by B and let z; = €. In case (ii), let v; = € and

58 H. Barendregt, V. Capretta, D. Kozen

let x; be the non-null string generated by B. In either case, A; —— v; A;y17;, thus
Ay =5 v, Az, where

Vo = VoV1 " Vg—1, Lo = Tk—1" " "L1X0-

A basic pumpable segment in a parse tree is a path o whose endpoints are labelled with
the same nonterminal but otherwise all other nonterminals along the path are distinct.
Basic pumpable segments arise in the proof of the pumping lemma. The length of a
basic pumpable segment is at most d. If A -~ x and the parse tree contains no basic
pumpable segment, then |z| < 297! since the tree is binary branching and of height
at most d.

Now let ¢, be a code for L,, and choose integers m and n such that

m>d297Y n > o] + 1. (1)

Consider a parse tree for S —- c,,, ® a”b™". Let 7 be the path in the parse tree from
the start symbol S down to the rightmost a in the string a™. Then

Uy =cpea™t, oz, =0

For each A; — v;A;y12; along the path 7, we must have |z;| < 2971 otherwise
there would be a pumpable segment in the parse tree for x; and we could generate
a string with too many 0’s. In order to generate all of ™", we must have at least
mn/291 such z;, therefore if k is the length of 7, then

k>mn/2%7t > d(|em| + 1),

by the two inequalities (1). This implies that it is possible to find at least |¢,,| + 1
disjoint basic pumpable segments along the path 7: starting from the bottom and
walking upward toward the root, we have a basic pumpable segment as soon as a
nonterminal is repeated, then we start again from that nonterminal.

Now for each of these |¢,,|+ 1 pumpable segments o, consider the strings v, and x.
Each v, either contains the separator e, or it is completely contained in a™, or it is
completely contained in c,.

If any v, contains e, then by pumping ¢ we can generate a string with the same
code ¢, but too many e’s, which is impossible since L,, doesn’t use e.

If any v, is entirely contained in the a™, then by pumping o we can generate a string
that violates a™b™". If v, is null, then z, is non-null and we can increase the number
of bs without changing the number of as. On the other hand, if v, is non-null, by
pumping ¢ once we can increase the number of as by at least one. There should be a
corresponding increase of at least m bs, but this is impossible since |z, | < d2¢71 < m.

Finally, if all v, are substrings of c,,, then at least one of them must be null, since
there are at least |c,, |+ 1 disjoint basic pumpable segments but only |c,, | letters in ¢,,.
By pumping that o, we can generate a string with the same code c¢,, but too many
b’s.

In all cases, we have been able to pump and generate a string that should not be
accepted by U.]

Reflection in the Chomsky Hierarchy 59

6. Context-Sensitive Languages

The class of context-sensitive languages consists of those recognized by a linear-
bounded automaton, that is, a Turing machine with linear space complexity. An
informal argument suggests that this class cannot be reflexive: for each language
there is a linear bound, but certainly there is no universal linear bound for the whole
class, which would be necessary if it were reflexive.

The following proof that the class of context-sensitive languages is not reflexive
uses a diagonalization argument similar to Russell’s paradox.

Definition 6 (i) Given a language L over X, define the root of L by
VL={weX |wewe L}

(ii) A class of languages T is called Russellian if T is closed under taking comple-
ments and roots.

Theorem 7 If T is Russellian, then T is not reflerive.

Proof. Suppose towards a contradiction that 7 is Russellian and reflexive. Let (C,U)
be a 7-coding system universal for 7. Then U € 7. By closure under complement
and root it follows that

\/ﬁ:{weZ*|wow§éU}€T.
Hence VU = Li; for some r € C. Then we obtain a contradiction:

rerclU«srel], asLlj={w|rewelU}
sreVu asLTU:\/ﬁ
& rer €U by definition of /~
sSrerg¢l.

Theorem 8 The class of context-sensitive languages is not reflexive.

Proof. We show that the class of context-sensitive languages is Russellian. It is well
known that the family of context-sensitive languages is closed under complement.
As to closure under root, let L be a context-sensitive language. Then there exists
a Turing machine M with a linear space bound ax 4 b on the size x of the input that
accepts L. Let us define a new machine M’ that operates in the following way: given
the input w, it first replaces it with wew and then runs M. Clearly M’ is also linearly
bounded, with the bound a(2z + 1) + b = 2ax + a +b. Hence /L is context-sensitive.
O

Remark 1 The class of computable languages is clearly closed under complements
and roots, hence Russellian. Theorem 7 shows (the well-known fact) that also this
class is not reflexive.

60 H. Barendregt, V. Capretta, D. Kozen

7. Turing Recursively Enumerable Languages

The following result is essentially due to Turing.

Theorem 9 The class of recursively enumerable languages is reflexive.

Proof. Turing proved the existence of a universal machine M, that can simulate
every Turing machine T using a program: there exists a code t such that, for every
input w, the result of the computation of M, on t e w is the same as that of T" on w.

The set of codes t is itself recursively enumerable (and can in fact be made context-
free). This, together with the characterization of recursively enumerable languages as
those accepted by a Turing machine, gives the result. O

Postscript

We leave it to the linguists to discuss whether the fact that the class of context-
sensitive languages is not reflexive has implications for the place of say English in the
Chomsky hierarchy.

Chomsky’s nativist theory posits that the human mind has an innate module for
language that is “tuned” to the specific native language in the first years of life. The
class of “natural languages” consists of those that can be tuned in this way; nobody
knows precisely where it lies, probably somewhere between context-free and context-
sensitive. But this is a statement about the syntax of the language, not about its
semantics.

In our approach we also talk about the semantics: the issue of reflection involves
the meaning of the language. In our presentation the syntax is that of the language C'
and the semantics is given by U. If C is English, it can well be context-sensitive
without U being context-sensitive. After all, we can describe Turing machines and
r.e. languages in English.

References

[1] N. CHOMSKY, M:-P. SCHUTZENBERGER, The algebraic theory of context free
languages. In: P. BRAFFORT, D. HIRSCHBERG (eds.), Computer Programming
and Formal Systems, North-Holland, 1963, 118-161.

[2] S.A.GREIBACH, The hardest context-free language. SIAM Journal of Computing
2 (1973) 304-310.

[3] T. Kasal, A universal contex-free grammar. Information and Control 28 (1975)
30-34.

(Received: December, 12, 2012; revised: September, 6, 2013)

