
Halting and Equivalence of Schemes over

Recursive Theories

Dexter Kozen

Computer Science Department, Cornell University, Ithaca, New York 14853-7501,
USA

Abstract

Let Σ be a fixed first-order signature. In this note we consider the following decision
problems.

(i) Given a recursive ground theory T over Σ, a program scheme p over Σ, and
input values specified by ground terms t1, . . . , tn, does p halt on input t1, . . . , tn
in all models of T ?

(ii) Given a recursive ground theory T over Σ and two program schemes p and q
over Σ, are p and q equivalent in all models of T ?

When T is empty, these two problems are the classical halting and equivalence prob-
lems for program schemes, respectively. We show that problem (i) is r.e.-complete
and problem (ii) is Π0

2-complete. Both these problems remain hard for their respec-
tive complexity classes even if T is empty and Σ is restricted to contain only a single
constant, a single unary function symbol, and a single monadic predicate. It follows
from (ii) that there can exist no relatively complete deductive system for scheme
equivalence.

Key words: model theory, Kleene algebra, dynamic logic
1991 MSC: 03B60, 03B70, 03G05, 03G15, 06E25, 03C05, 08A70, 08B20

Let Σ be a fixed first-order signature. A ground formula over Σ is a Boolean
combination of atomic formulas P (t1, . . . , tn) of Σ, where the ti are ground
terms (no occurrences of variables). A ground theory over Σ is a consistent
set of ground formulas closed under entailment. A set E of ground formulas is
a complete extension of a ground theory T if E contains T and each ground
formula or its negation appears in E.

Email address: kozen@cs.cornell.edu (Dexter Kozen).

Preprint submitted to Elsevier Preprint 5 February 2003



Theorem 0.1 The following problem is r.e.-complete: Given a recursive ground
theory T over Σ, a program scheme p over Σ, and input values specified by
ground terms t = t1, . . . , tn, does p halt on input t in all models of T? The
problem remains r.e.-hard even if T = ∅ and Σ is restricted to contain only
a single constant, a single unary function symbol, and a single monadic pred-
icate.

Theorem 0.2 The following problem is Π0
2-complete: Given a recursive ground

theory T over Σ and two schemes p and q over Σ, are p and q equivalent in all
models of T? The problem remains Π0

2-hard even if T = ∅ and Σ is restricted
to contain only a single constant, a single unary function symbol, and a single
monadic predicate.

When T = ∅, these are the classical halting and equivalence problems for
program schemes. Note that for the upper bounds, the recursive theory T
is part of the input. Classical lower bound proofs (see [1]) establish the r.e.
hardness of the two problems for the case T = ∅. The Π0

2-hardness of the
second problem in the case T = ∅ can also be shown to follow without much
difficulty from a result of [2].

Proof of Theorem 0.1. Let T be a recursive ground theory. It suffices to re-
strict our attention to Herbrand models of T . These models are in one-to-one
correspondence with the complete extensions of T .

First we show that the problem is r.e. Given p and t, we simulate the com-
putation of p on input t on all Herbrand models of T simultaneously, using
the decidability of T to resolve tests. Each branch of the simulation maintains
a finite set E of ground atomic formulas consistent with T , initially empty.
Whenever a test P (s1, . . . , sk) is encountered, we consult T and E to deter-
mine which branch to take. If the truth value of P (s1, . . . , sk) is determined by
T and E, that is, if T � E → P (u1, . . . , uk) or T � E → ¬P (u1, . . . , uk), where
the ground term ui is the current value of si, 1 ≤ i ≤ k, then we just take
the appropriate branch. Otherwise, if both P (u1, . . . , uk) and ¬P (u1, . . . , uk)
are consistent with T ∪ E, then the simulation branches, extending E with
P (u1, . . . , uk) on one branch and ¬P (u1, . . . , uk) on the other. In each simu-
lation step, all current branches are simulated for one step in a round-robin
fashion. We thus simulate the computation of p on all possible complete ex-
tensions of T simultaneously. If p halts on all such extensions, then by König’s
Lemma there is a uniform bound on the halting time of all branches of the
computation. The simulation halts successfully when that bound is discovered.

We now show that the problem is r.e.-hard in the restricted case Σ = {a, f, P},
where a is a constant, f is a unary function symbol, and P is a unary relation
symbol. We will encode the halting problem for deterministic Turing machines.
Given a deterministic Turing machine M and a string x over M ’s input alpha-

2



bet, we will construct a scheme p with no input or output and a finite atomic
theory T such that p halts on all complete extensions of T iff M halts on
input x. The encoding technique used here is fairly standard, but we include
the argument for completeness and because we need the resulting scheme p in
a certain special form for the proof of Theorem 0.2.

The Herbrand domain over a and f is isomorphic to the natural numbers with
0 and successor. An Herbrand model H over this domain is represented by an
infinite binary string whose nth digit is 1 iff P (fn(a)) in H . The correspondence
is one-to-one. We will use these strings to encode computation histories of M .

Each string x over M ’s input alphabet determines a unique finite or infinite
computation history #αx

0#αx
1#αx

2# · · · , where αx
i is a string over a finite

alphabet ∆ encoding the instantaneous configuration of M on input x at
time i (tape contents, head position, current state). The configurations αx

i

are separated by a symbol # �∈ ∆. The computation history in turn can be
encoded in binary. Finally, an infinite binary string can be encoded by the
truth values of P (fn(a)) for successive n.

The ground theory T describes the starting configuration #αx
0# of M on input

x. Thus T consists of finitely many ground atomic formulas. Any complete
extension of T describes either the unique valid computation history of M
on input x or a garbage string. The scheme p can read the nth bit of this
string in the corresponding Herbrand model by testing the value of P (fn(a)).
It starts by scanning the initial part of the string to check that it is of the
form #αy

0# for some y. (This step is not strictly necessary for this proof, since
we are restricting our attention to models of T , in which this step will always
succeed; but it will be useful later in the proof of Theorem 0.2.) Next, p scans
the string from left to right to determine whether each successive αx

i+1 follows
from αx

i in one step according to the transition rules of M . It does this by
comparing corresponding bits in αx

i and αx
i+1 using two variables to simulate

pointers into the string. If the current value of variable x is fn(a), then testing
P (x) reads the nth bit of the string. The pointer is advanced by the assignment
x := f(x).

If p discovers an error, so that the string does not represent a computation
history of M on some input, it halts immediately. It also halts if it ever en-
counters a halting state of M anywhere in the string. Thus the only complete
extension of T that would cause p not to halt is the one describing the valid
computation history of M on x in the case that M does not halt on x. Thus
p halts on all complete extensions of T iff M halts on x.

We can further restrict to T = ∅ by observing that the T in this construction
is finite, so it can be hard-wired into the scheme p itself. Thus the initial
format check that p performs can be modified to check whether T holds and

3



halt immediately if not. However, for purposes of the proof of Theorem 0.2
below, it will be important that p not depend on the input x but only on the
machine M . �

Proof of Theorem 0.2. Two schemes are equivalent over all models of T iff
they are equivalent over all Herbrand models of T . As above, each Herbrand
model of T is uniquely represented by a complete extension of T .

First we show that equivalence of schemes over models of T is Π0
2. Equivalently,

inequivalence of schemes over models of T is Σ0
2. It suffices to show that

inequivalence of schemes over models of T can be determined by an IND
program over N with an ∃ ∀ alternation structure [3].

The two schemes p and q are not equivalent over models of T iff there exists
an Herbrand model H of T and input values t = t1, . . . , tn such that when
interpreted over H , either

(i) both p and q halt on input t and produce different output values;
(ii) p halts on t and q does not; or
(iii) q halts on t and p does not.

We start by selecting existentially the input t and the alternative (i), (ii) or
(iii) to check.

If alternative (i) was selected, we simulate p and q on input t, maintaining
a finite set E of ground atomic formulas and using T and E as in the proof
of Theorem 0.1 to resolve tests. Whenever a test is encountered that is not
determined by T and E, we guess the truth value and extend E accordingly.
Thus we are nondeterministically guessing the model H as we go along. This is
done by existential branching in the IND program. We continue the simulation
until both p and q halt, then compare output values, accepting if they differ.

If alternative (ii) was selected, we simulate p on t until it halts, maintaining
the guessed truth values of undetermined tests in the set E as above. When
p has halted, we have a consistent extension T ∪ E of T , where E consists
of the finitely many tests that were guessed during the computation of p. So
far we have only used existential branching. We must now verify that there
exists a complete extension of T ∪ E in which q does not halt on input t. By
Theorem 0.1, this problem is Π0

1-complete, so we can solve it with a purely
universally-branching IND computation.

The argument for alternative (iii) is symmetric.

For the lower bound, we reduce the totality problem for Turing machines,
a well-known Π0

2-complete problem, to the equivalence problem. The totality
problem is to determine whether a given Turing machine M halts on all inputs.

4



As above, it will suffice to consider T = ∅ and Σ = {a, f, P}.

Given a deterministic Turing machine M , we construct two schemes p and
q with no input or output that are equivalent iff M halts on all inputs. The
scheme p is the one constructed in the proof of Theorem 0.1. As in that proof,
each input string x over M ’s input alphabet determines a unique computation
history, and the scheme p checks that the Herbrand model in which it is
running encodes a valid computation history of M on some input.

Now unlike the proof of Theorem 0.1, there is an extra source of non-halting.
Recall that there is an initial format check in which p checks that the string
has a prefix of the form #αx

0# for some x. If there is no second occurrence
of # in the string, then p will loop infinitely looking for it. If it does detect
a second occurrence of #, then as before, the only source of non-halting is if
M does not halt on x. We therefore build q to simply check for a prefix of the
form #αx

0# exactly as p does and halt immediately when it encounters the
second occurrence of #. Thus p does not halt in the Herbrand model H iff the
string represented by H either

(i) does not have a prefix of the form #αx
0#, or

(ii) does have a prefix of the form #αx
0# and represents a non-halting com-

putation history of M on x;

and q does not halt in H in case (i) only. Therefore p and q are equivalent iff
M halts on all inputs. �

In [4], axioms were proposed for reasoning equationally about input/output
relations of first-order program schemes over Σ. These axioms have been shown
to be adequate for some fairly intricate equivalence arguments arising in pro-
gram optimization [4,5]. However, unlike the propositional case, it follows from
Theorem 0.2 that there can exist no finite relatively complete axiomatization
for first-order scheme equivalence. If such an axiomatization did exist, then the
scheme equivalence problem over a given first-order theory T would be r.e. in
T . But it is decidable whether a given first-order sentence ϕ is a consequence
of a given finite set E of ground formulas over the signature Σ = {a, f, P},
since E � ϕ iff E → ϕ is a valid sentence of the first-order theory of a one-
to-one unary function with monadic predicate, a well-known decidable theory
[6] (note that every Σ-structure is elementarily equivalent to one in which the
interpretation of f is one-to-one). By Theorem 0.2, the scheme equivalence
problem relative to E is Π0

2-hard, therefore not r.e. in the decidable first-order
theory generated by E.

5



Acknowledgements

This work was supported in part by NSF grant CCR-0105586 and by ONR
Grant N00014-01-1-0968. The views and conclusions contained herein are those
of the author and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of these organi-
zations or the US Government.

References

[1] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.

[2] D. Harel, A. R. Meyer, V. R. Pratt, Computability and completeness in logics
of programs, in: Proc. 9th Symp. Theory of Comput., ACM, 1977, pp. 261–268.

[3] D. Harel, D. Kozen, A programming language for the inductive sets, and
applications, Information and Control 63 (1–2) (1984) 118–139.

[4] A. Angus, D. Kozen, Kleene algebra with tests and program schematology, Tech.
Rep. 2001-1844, Computer Science Department, Cornell University (July 2001).

[5] A. Barth, D. Kozen, Equational verification of cache blocking in LU
decomposition using Kleene algebra with tests, Tech. Rep. 2002-1865, Computer
Science Department, Cornell University (June 2002).

[6] J. Ferrante, C. Rackoff, The computational complexity of logical theories, Vol.
718 of Lecture Notes in Mathematics, Springer-Verlag, 1979.

6


