
Computing the Newtonian Graph

DEXTER KOZENy AND KJARTAN STEF�ANSSONz

yComputer Science Department� Cornell University� Ithaca� NY ������	�
�� USA
zCaliper Corporation� ���� Beacon Street� Newton� MA 
����� USA


Received � August �����

In his study of Newton�s root approximation method� Smale �����	 de
ned the Newto�
nian graph of a complex univariate polynomial f � The vertices of this graph are the roots
of f and f � and the edges are the degenerate curves of 
ow of the Newtonian vector 
eld
Nf �z	 � �f�z	�f ��z	� The embedded edges of this graph form the boundaries of root
basins in Newton�s root approximationmethod� The graph de
nes a treelike relation on
the roots of f and f �� similar to the linear order when f has only real roots�

We give an e�cient algebraic algorithm based on cell decomposition to compute the
Newtonian graph� The resulting structure can be used to query whether two points in
C are in the same basin� This gives us a modi
ed version of Newton�s method in which
one can test whether a step has crossed a basin boundary�

Stef�ansson �����	 has recently extended this algorithm to handle rational and alge�
braic functions without signi
cant increase in complexity� He has shown that the New�
tonian graph tesselates the associated Riemann surface and can be used in conjunction
with Euler�s formula to give an NC algorithm to calculate the genus of an algebraic
curve�

�� Introduction

Following Smale ������	 we de
ne the Newtonian vector �eld of a polynomial f � C �z�
by Nf �z� 
 �f�z��f ��z�� The name is derived from Newton�s method for root approx�
imation	 in which successive approximations to a root of f are computed by the rule
xk�� � xk �Nf �xk��
The vector 
eld Nf de
nes a �ow on C 	 where the �ow comes almost everywhere

from a pole �in the a�ne case where f is a polynomial	 from �� and converges almost
everywhere to a root of f � Each discrete step in Newton�s method is tangent to a curve
of �ow� We can think of a curve of �ow as the trajectory a particle would take under a
version of Newton�s method with in
nitesimal steps� Certain degenerate curves of �ow
connect roots of f and f �	 and these degenerate curves form the boundaries of 
nitely
many regions called basins	 each containing a root of f � The Newtonian graph is a graph
embedded in the complex plane whose vertices consist of the roots of f and f � and whose
edges are these degenerate curves of �ow� We de
ne the graph more formally in x�� This
graph has been studied and the possible graphs that can arise have been classi
ed for
polynomials by Shub et al� �������
In x���	 we give a symbolic algorithm to compute a discrete model of the Newtonian
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graph of a given polynomial� The output of the algorithm is a labeled oriented graph
that is topologically equivalent to the Newtonian graph	 along with an oracle that can
answer such questions such as

Given a� b � C 	 are a and b in the same basin�
Given a� b � C 	 are a and b on the same curve of �ow�
Given a � C 	 is a on a basin boundary�
Given a � C 	 is a on an edge of the Newtonian graph�

Such a structure can be used in a version of Newton�s method in which one can modify
the step size at every step to ensure that we stay within a basin if desired�

�� The Newtonian Graph

We have de
ned the Newtonian vector 
eld Nf of a complex univariate polynomial f �
A vector 
eld such as Nf on C de
nes a �ow on C � Given c � C 	 the �ow through c is a
function �c � I � C 	 where I is a real interval containing zero and �c di�erentiable with

d�c�t�

dt

 Nf ��c�t��

�c��� 
 c �

That is	 � parameterizes the �ow starting at c	 and at every point the direction of �ow
is tangent to the 
eld� An illustration of the Newtonian vector 
eld of a polynomial f of
degree four is given in Figure ��
The �ow exists on all of CnVf � �where Vf � 
 fz � C j f ��z� 
 �g�� The existence and

uniqueness follows from the theory of di�erential equations and the fact that Nf is a C�

function on CnVf � �see e�g� Hirsch and Smale ������	 x��� and x�����
The following lemma of Shub et al� ������ gives us an important property of the �ow�

Lemma ���� Let f � C �z� and let �c be the �ow through c in the Newtonian �eld Nf �
Then f maps the curve f�c�t� j t � Ig to a ray pointing to the origin� More speci�cally�

f��c�t�� 
 f�c�e�t �

Proof� Computing df��c�t���dt using the chain rule gives�

df��c�t��

dt

 f ���c�t��

d�c�t�

dt

 f ���c�t��Nf ��c�t��


 �f��c�t�� �
which is a di�erential equation in t for the function f � �c� Given the initial condition
�c��� 
 c	 it has the unique solution f��c�t�� 
 f�c�e�t� �

One consequence of Lemma ��� is that the �ow functions �c�t� are algebraic over C �et ��
Using the properties of �	 one can show the following�

Lemma ���� For every c � Cn�Vf � Vf � �� �c is de�ned on a maximal real interval �a� b�
containing �� which is of one of the following four types�
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Figure �� The Newtonian vector 
eld of a polynomial of degree four� Every curve of 
ow is directed to
a root� except the basin boundaries �dotted lines	� There is a root of f � on every basin boundary� and a

curve of 
ow from there to �adjacent� roots �also dotted lines	�

� �������� and the �ow comes from � and goes to a root of f 	

 ���� b� and the �ow comes from � and goes to a root of f �	
� �a� b� and the �ow comes from a root of f � and goes to another root of f �	
� �a���� and the �ow comes from a root of f � and goes to a root of f �

Proof� Nf is a C� function W � C where W 
 C � �Vf �Vf � �	 and all �ow must leave
any compact set of W �Hirsch and Smale ������	 x����� By Lemma ���	 the maximal
interval of �c is unbounded upwards i� the �ow goes to a root of f � The same argument
shows that the interval is not bounded below i� the �ow comes in from�� Since the �ow
leaves any compact set of W 	 the only other limit points are in Vf � � �

Definition ���� The Newtonian graph of a polynomial f � C �z� is the embedded plane
graph G 
 �V�E� �� with vertices V 
 Vf � Vf � � directed edges consisting of the curves
of �ow between vertices wherever they exist� and orientation � of edges about any vertex
determined by the embedding�

We note that the graph is not just a combinatorial structure	 but also includes an orien�
tation as determined by the embedding�
Figure � illustrates the Newtonian graph of the vector 
eld of Figure �� Figure � shows

an example containing an edge between two roots of f ��
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Figure �� The graph of the vector 
eld in Figure �� The solid dots are the roots of the polynomial� the
hollow ones are the roots of the derivative�

Figure �� The vector 
eld and the graph of a degree three �real	 polynomial with an edge between
two derivative roots�

Under f 	 every edge maps onto a line segment of 
nite length with endpoints in the
set ff�c� j f ��c� 
 �g � f�g and lying on a ray through the origin� This is an immediate
consequence of Lemma ��� and the fact that edges are curves of �ow� Conversely	 the
preimage under f of any such ray consists of only 
nitely many curves	 at most the degree
of f � Thus the graph has only 
nitely many edges� Furthermore	 Shub et al� ������ show
that the graph is connected	 and classify the possible types of graphs that can arise�
A basin of attraction is a connected region consisting of �ow going to one particular

root of f � A basin boundary is the boundary between two basins� There must be a root of
f � on every basin boundary	 because �ows are continuous	 and it requires a discontinuity
of Nf for the �ow to �split� into two directions	 and these only occur at the roots of f ��
Also the basin boundaries are curves of �ow themselves	 so we conclude that every basin
boundary is �ow into a root of f �� In particular this means that basin boundaries are
contained in the preimage f���fmf�c� j f ��c� 
 �� � � mg��
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�� Computing Basins and Graph Edges

We will give an algorithm to compute the basin boundaries and the edges of the
Newtonian graph� First we need a few preliminaries on cylindric algebraic decomposition�

���� Cell Decomposition

We describe cylindric algebraic cell decomposition brie�y� For a more detailed descrip�
tion	 see Collins ������ or Ben�Or et al� �������

Definition ���� A decomposition of Rk is a �nite partition fCigi�I such that each Ci

is connected� Ci 	Cj 
 � if i 

 j� and
S
i�I Ci 
 Rk� For k 
 �� such a decomposition

is cylindric if the each Ci is either a point or an interval� For k � �� the decomposition
is cylindric if for all r� � � r � k� f�������r�Ci� j i � Ig is a cylindric decomposition of
Rr�

Definition ���� Given polynomial equations� fi�x�� � � � � xm� 
 �� � � i � n� with fi �
R�x�� � � � � xm�� a cylindric algebraic decomposition 
CAD� of Rm is a data structure D
with the following properties�

D contains a graph whose nodes correspond to certain subsets of Rm called cells�
each cell homeomorphic to Rd for some d� and the cells are a decomposition of Rm�
For all i 
 �� � � � � n� sign�fi� is constant on every cell� Each cell is labeled with the
signs that the fi take on that cell�
Every node contains an oracle such that given any c � Rm� the oracle can answer
if c is contained in the associated cell�
Every node contains dimension information� corresponding to the dimension of the
associated cell�
The edges of the graph correspond to adjacency of the cells in Rm� There is a
directed edge �u� v� if the cell associated with u forms part of the boundary of the
cell associated with v�
The decomposition is cylindric�

Algorithms have been developed to compute �parts of� such a cell decomposition dating
back to Tarski ������� Collins ������ has a double exponential algorithm	although it lacks
some of the adjacency information� Ben�Or et al� ������ developed a parallel algorithm
giving the same kind of decomposition �the BKR algorithm�	 and Kozen and Yap ������
extended that algorithm to obtain full adjacency information as well �hereafter called
the extended BKR algorithm��
We note that due to the cylindric condition and adjacency information	 an algorithm

computing such a decomposition can be used on a set of polynomials with quanti
ers	
projecting down the result� If the input is a formula of the form

�y��y� � � ��yk
n�

i��

fi�x�� � � � � xm� y�� � � � � yk� 
 � �

we can perform a CAD on Rm�k	 then project the solution down to Rm� The resulting
structure can be used to answer questions of the form� Given c � Rm	 does there exist
y�� � � � � yk � Rk such that y�� � � � � yk� c is a solution to the system�
We note that the order of variables is important with respect to the cylindric condition�
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���� The Algorithm

Recall that every basin boundary and every edge is mapped by f onto a straight
line� Also	 the basin boundaries and edges have a root of f � as a limit� Thus	 all these
�interesting� curves of �ow satisfy	 for every z on the curve	

�c � C �m � R f�z� 
 mf�c� � f ��c� 
 � � �����

Any point z on a basin boundary or an edge must satisfy these two conditions� We note
that the converse is false in general� z � C can be a solution to ����� without being on
an edge or a basin boundary�
We proceed in two steps� First we 
nd a decomposition of C describing the solutions z

to ������ Then we prune that output	 because we may get spurious solution curves that
do not correspond to basin boundaries or edges�
To 
nd the solutions to �����	 we compute a cylindric algebraic decomposition based

on the equations

f�z� 
 mf�c� f ��c� 
 � � �����

The resulting structure gives a decomposition of R
 C 
 C describing regions where
such m� c� z exist	 along with the dimension of each region and adjacency information�
Projecting m and c	 we obtain curves in C for which there exists a solution to ������
First let us note that algorithms such as Collins� and the extended BKR algorithm do

decomposition over the reals� But we can split the equations into a real and imaginary
parts	 and get a decomposition of R� �
 R
 C 
 C 	 corresponding to the equations

fR�x� y� 
 mfR�c�� c��

fI�x� y� 
 mfI �c�� c��

f �R�c�� c�� 
 �

f �I �c�� c�� 
 � �

where f�x � iy� 
 fR�x� y� � ifI�x� y� and fR� fI � R�x� y�� We get a decomposition on
R

� which corresponds to a decomposition on R
 C 
 C �
We then project the dimensions corresponding to c 
 c� � ic� and again project m	

obtaining a decomposition of C corresponding to z for which there existm and c satisfying
equation ������
This decomposition will contain all the basin boundaries and graph edges� These will

be partitioned into segments �bounded ��cells� and ��cells between such segments� There
may be other cells present which are not part of solutions to the system �����	 correspond�
ing to auxiliary cells introduced by the CAD algorithm� However	 we can always identify
these	 because all cells are labeled with the signs of the input polynomials �����	 which
determine which of them constitute actual solutions� A solution curve to the system can
be reconstructed by linking such adjacent cells�
Not all solution curves are edges or basin boundaries� The following lemma classi
es

the types�

Lemma ���� The output from the process above contains at most O�n�� ��cells which are
solutions curves for the input system� They are of the following types�


i� Adjacent to two ��cells� one of which describes a root of f � and one which describes
a root of either f or f �	
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ii� Adjacent only to one ��cell which describes a root of f �	

iii� Adjacent only to one ��cell which describes a root of f �

Cells of type 
i� are edges of the Newtonian graph	 cells of type 
ii� are a basin boundaries	
and cells of type 
iii� are extraneous solutions to the system�

Proof� The only ��cells that can be solutions to the system correspond to curves of
�ow� The classi
cation is obvious from the de
nition of edges and the properties of basin
boundaries�
There are at most O�n�� solution curves for f�z� 
 mf�c� with c a root of f ��c� and

m � R	 because there are at most n� � roots of f � and f is an n�to�one mapping��

The cells of type �i� and �ii� are the ones we are interested in� We can distinguish these
from the extraneous cells of type �iii� by checking the sign of f 	 which allows us to verify
if a curve ends at a root of f � Since f is part of the input	 the sign of f is available on
every cell�
Depending on which algorithm we use	 we may or may not have all the information

needed� The extended BKR guarantees that if f is a part of the input	 then the signs
of f � will be provided on each cell� If we do not have this guarantee	 we can always add
f ��z� 
 � to our input equations and get the same information�
At this point we can determine the types of the solution curves� Now it is easy to

implement the pruning step� we simply coalesce each cell of type �iii� as part of the
adjacent ��cell	 which is the basin that this cell lies in�
Now the structure can be used in answering queries� Two points are in the same basin

if they are in the same ��cell or if they are separated only by ��cells of type �iii��

�� Improvements

Recall that we computed a CAD of R� �
 R
 C � with respect to the equations

f�z� 
 mf�c� f ��c� 
 �

and projected the solution onto C � This can be simpli
ed by de
ning

g�m� z� 
 Resc�f�z� �mf�c�� f ��c���

where Resc denotes the univariate resultant with respect to c� Here we view f�z��mf�c�
and f ��c� as univariate polynomials in C �z�m��c��
The polynomial g has the property that g�m� z� 
 � i� �c � C f�z��mf �c� 
 � 
 f ��c��

Hence	 a decomposition of R
 C with respect to g is the same as the projection of the
decomposition of R
 C 
 C with respect to the original two equations�
The only thing we must be aware of is how to obtain the necessary signs of f and f �

on cells	 in order to identify and link up solution curves and prune o� the spurious ones�
One way would be to add the equation f�z� 
 � �and f ��z� 
 �	 if we are not using the
extended BKR�	 and do a decomposition with respect to f �f �� and g� This is already an
improvement in terms of dimension	 since we are only working with three real variables
�x 
 �z	 y 
 �z and m� instead of 
ve�
The asymptotic complexity remains the same	 but the constants are much better� The

extended BKR gives an NC circuit of depth �O�d�� logO�d� n where d is the number of
variables and n is the maximum of either the number of polynomials or their degrees�
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In our case the circuit will be of depth O�logO��� n� where n is the degree of the input
polynomial f �

�� Applications to Newton�s Method

The ability to test whether two points lie in the same basin of the Newtonian vector

eld opens up intriguing possibilities for Newton�s root approximationmethod� Since one
can test whether a Newton iteration step has jumped over a basin boundary	 one can
modify the algorithm to scale back the step size to stay within a particular basin if desired�
This can be done for example by replacing the usual Newton step zk�� � zk � Nf �zk�
by the program

�� �	
repeat

zk�� � zk � �Nf �zk�
�� ���

until zk�� is in the same basin as zk

Here we use our precomputed Newtonian graph structure to determine whether two
points are in the same basin� If in addition strict progress toward a root is desired	 one
can modify the last line of the program to read

until zk�� is in the same basin as zk and jzk��j 	 jzkj

One might conjecture that this approach gives a version of Newton�s method in which
convergence to a root is guaranteed� Unfortunately	 this is not the case	 as shown by the
following counterexample�
Consider a polynomial f with a basin boundary �c such that �c has strictly positive

curvature and f 	 f �	 and f �� do not vanish in a neighborhood of c 
 �c����
For instance	 we might take f�z� 
 z�� z with roots ��� �� �	 derivative roots ���p�	

and basin boundary �c with c the unique root of c
��c��

p
�e�� in the positive quadrant�

In this case

f��c�t�� 
 f�c�e�t 
 ��
p
�

�
e��t �

It follows that for t 	 �	 �c�t� is the unique root of x� � x� �
p
�e��t�� in the positive

quadrant	 and �c��� 
 ��
p
�	 thus �c is a basin boundary� This example is illustrated in

Figure ��
Let N be an open ball about c of su�ciently small radius� Let A be the portion of N

to the left of �	 moving along � in the direction of positive t	 and let B be the portion of
N to the right of � �in Figure �	 A appears to the right of ��� By the assumption about
the curvature of �	 �A���	N is a convex set� Also	 the radius of N can be chosen small
enough that all �ow lines have strictly positive curvature in N �
We will consider scaled Newton steps z �� z � 
Nf �z� applied to z � A� Our modi
ed

Newton�s method described above	 applied to a point z � A	 gives

MN �z� 
 z � ��kNf �z�
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Figure �� A counterexample�

where k is the least nonnegative integer such that z � ��kNf �z� � A� �For this coun�
terexample	 the extra test jz � ��kNf �z�j 	 jzj is rendered super�uous by picking the
radius of N su�ciently small��
Let a be a point in A such that the line segment ac is perpendicular to Nf �c�� For t

in the real interval ��� ��	 de
ne u�t� 
 ct� ��� t�a� The function u�t� travels along the
segment ac as t goes from � to �� By convexity	 all points u�t� lie in A except for the
endpoint u���	 which lies on ��
We will construct a scaling sequence


	 � 
� � 
� � � � � � �

of small positive reals such that each 
i 
 ��ki for some positive integer ki	 and the 
i
converge su�ciently rapidly to � to satisfy several conditions given below� Relative to
the scaling sequence f
ig	 we de
ne the functions un � ��� ��� C by

u	�t� 
 u�t�

un���t� 
 un�t� � 
nNf �un�t�� �

Thus un�t� is the point obtained by starting from u�t� and applying n scaled Newton
iterations with scale factor 
i at the ith step� Note that un depends on the scaling sequence
f
ig	 although this dependence is not explicit in the notation�
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One of the conditions on f
ig is that un�t� � N for all t � ��� �� and n � �� Since

jun���t� � un�t�j 
 
njNf �un�t��j �
we can insure this by choosing 
n su�ciently small	 as follows� If un�t� � N for all
t � ��� ��	 let r�t� be the maximum radius of an open ball centered at un�t� and wholly
contained in N � The function r � ��� ��� R is continuous and de
ned on a compact set	
thus achieves its in
mum inft r�t� � � at some t � ��� ��� We can inductively insure that
un���t� � N for all t � ��� �� by picking


n 	
inft�
	��� r�t�

supz�N jNf �z�j �

We can also choose f
ig such that un � ��� ��� C is one�to�one and dun�t��du is arbi�
trarily close to � uniformly in t� The latter condition implies the former� A straightforward
calculation gives

dun
du



n��Y

i�	

�� � 
i�
f�ui�f ���ui�

f ��ui��
� ��� �����

and we have already insured that all ui�t� � N 	 therefore f�ui�f ���ui��f ��ui�� is bounded�
We can thus choose the 
n su�ciently small that the sequences dun�t��du for t � ��� ��
converge uniformly to values arbitrarily close to ��
Intuitively	 these conditions say that the locus of points un�t� is nearly a straight line

segment in N and nearly parallel to u�t�� In particular	 it intersects � at most once	 and
if it intersects	 then it does so transversally �we chose the radius of N su�ciently small
that the direction of Nf �z� does not vary much��
Now we construct inductively two real sequences

� 
 s	 	 s� 	 s� 	 � � � 	 t� 	 t� 	 t	 
 �

such that un�t� � A for sn � t 	 tn and un�tn� � �� This is already true for n 
 ��
Suppose we have constructed sn and tn� By the curvature assumption	 un���tn� � B	
and we can insure un���sn� � A by having picked 
n su�ciently small� Therefore there
must exist a point tn�� such that sn 	 tn�� 	 tn and un���tn��� � �� By the bound on
dun���du	 we have that tn�� is unique	 un���t� � A for all t 	 tn��	 and un���t� � B
for all t � tn���
Now un�tn��� � A and

un���tn��� 
 un�tn��� � 
nNf �un�tn���� � � �

so by the curvature assumption	

un�tn��� � �
nNf �un�tn���� � B �

By choosing sn�� � �sn� tn��� su�ciently close to tn��	 we can insure

un���t� 
 un�t� � 
nNf �un�t�� � A

un�t� � �
nNf �un�t�� � B

for all t � �sn��� tn���� This says that our modi
ed Newton step gives

MN �un�t�� 
 un���t� �����

for all t � �sn��� tn����
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Figure �� The Newtonian vector 
eld of a rational function�

Now let t� 
 infn tn � supn sn� By �����	 we have that

MN �un�t��� 
 un���t�� �
Thus the modi
ed Newton algorithm started at u�t�� converges to a point on � in the
closure of N 	 far from a root of f �
Despite the failure of the modi
ed method to converge to a root in all cases	 the ability

to test membership in a particular basin raises other intriguing possibilities� For example	
one might test whether one is very close to a basin boundary by counting the number of
times the step size was halved	 and take a �sideways� step toward the interior of the basin
if so� Such modi
cations present themselves as interesting topics for future investigation�

�� Newtonian Graphs of Rational and Algebraic Functions

Stef�ansson ������ has extended the de
nition of the Newtonian graph to rational and
algebraic functions and has extended the algorithm of x��� to handle these more general
cases with no signi
cant increase in complexity�
Figure � illustrates the Newtonian vector 
eld of a complex rational function of degree

four� Three poles and four roots are visible� there is a fourth pole at �� Curves of 
xed
color indicate curves of �ow�
Stef�ansson ������ has shown that for rational and algebraic functions	 the Newtonian

graph tesselates the associated Riemann surface	 and in conjuction with Euler�s formula
gives an NC algorithm to calculate the genus of the surface�
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