Computing the Newtonian Graph

DEXTER KOZEN! AND KJARTAN STEFANSSON?

t Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
Y Caliper Corporation, 1162 Beacon Street, Newton, MA 02161, USA

(Received 5 August 1995)

In his study of Newton’s root approximation method, Smale (1985) defined the Newto-
nian graph of a complex univariate polynomial f. The vertices of this graph are the roots
of f and f’ and the edges are the degenerate curves of flow of the Newtonian vector field
Ng¢(z) = —f(2)/f'(2). The embedded edges of this graph form the boundaries of root
basins in Newton’s root approximation method. The graph defines a treelike relation on
the roots of f and f/, similar to the linear order when f has only real roots.

We give an efficient algebraic algorithm based on cell decomposition to compute the
Newtonian graph. The resulting structure can be used to query whether two points in
C are in the same basin. This gives us a modified version of Newton’s method in which
one can test whether a step has crossed a basin boundary.

Stefansson (1995) has recently extended this algorithm to handle rational and alge-
braic functions without significant increase in complexity. He has shown that the New-
tonian graph tesselates the associated Riemann surface and can be used in conjunction
with Euler’s formula to give an NC' algorithm to calculate the genus of an algebraic
curve.

1. Introduction

Following Smale (1985), we define the Newtonian vector field of a polynomial f € C[z]
by Nt(z) = —f(2)/ (). The name is derived from Newton’s method for root approx-
imation, in which successive approximations to a root of f are computed by the rule
Tri1 — g + Nyp(zg).

The vector field N; defines a flow on C, where the flow comes almost everywhere
from a pole (in the affine case where f is a polynomial, from oc) and converges almost
everywhere to a root of f. Each discrete step in Newton’s method 1s tangent to a curve
of flow. We can think of a curve of flow as the trajectory a particle would take under a
version of Newton’s method with infinitesimal steps. Certain degenerate curves of flow
connect roots of f and f’, and these degenerate curves form the boundaries of finitely
many regions called basins, each containing a root of f. The Newtonian graph is a graph
embedded in the complex plane whose vertices consist of the roots of f and f’ and whose
edges are these degenerate curves of flow. We define the graph more formally in §2. This
graph has been studied and the possible graphs that can arise have been classified for
polynomials by Shub et al. (1988).

In §3.2, we give a symbolic algorithm to compute a discrete model of the Newtonian

0747-7171/90/000000 + 00 $03.00/0 © 1995 Academic Press Limited

2 D. Kozen and K. Stefansson

graph of a given polynomial. The output of the algorithm is a labeled oriented graph
that is topologically equivalent to the Newtonian graph, along with an oracle that can
answer such questions such as

Given a,b € C, are a and b in the same basin?

Given a,b € C, are a and b on the same curve of flow?
Given a € C, is @ on a basin boundary?

Given a € C, is @ on an edge of the Newtonian graph?

Such a structure can be used in a version of Newton’s method in which one can modify
the step size at every step to ensure that we stay within a basin if desired.

2. The Newtonian Graph

We have defined the Newtonian vector field Ny of a complex univariate polynomial f.
A vector field such as Ny on C defines a flow on C. Given ¢ € C, the flow through cis a
function ¢, : I — C, where I is a real interval containing zero and ¢, differentiable with

el — Nyt
v (0) = e¢.

That is, ¢ parameterizes the flow starting at ¢, and at every point the direction of flow
is tangent to the field. An illustration of the Newtonian vector field of a polynomial f of
degree four is given in Figure 1.

The flow exists on all of C\V}/ (where Vi = {z € C | f/(#) = 0}). The existence and
uniqueness follows from the theory of differential equations and the fact that Ny is a C*
function on C\V}s (see e.g. Hirsch and Smale (1974), §8.2 and §8.5).

The following lemma of Shub et al. (1988) gives us an important property of the flow:

LEMMa 2.1. Let f € Clz] and let . be the flow through ¢ in the Newtonian field N;.
Then f maps the curve {p.(t) |t € I} to a ray pointing to the origin. More specifically,

flee®) = fle)e™" .

Proor. Computing df (¢.(¢))/dt using the chain rule gives:

df(s;;(t)) _ f,(%(t))dsojt(t)
= ()N (pe(1))
= —Jle1),

which 1s a differential equation in ¢ for the function f o ¢.. Given the initial condition
©.(0) = ¢, it has the unique solution f(¢.(t)) = f(c)e™ . O

One consequence of Lemma 2.1 is that the flow functions ¢.(t) are algebraic over C[e’].
Using the properties of ¢, one can show the following.

LEMMA 2.2. For every ¢ € C\(Vy UV}p), . is defined on a mazimal real interval (a,b)
containing 0, which is of one of the following four types:

Computing the Newtonian Graph 3

........

Figure 1. The Newtonian vector field of a polynomial of degree four. Every curve of flow is directed to
a root, except the basin boundaries (dotted lines). There is a root of f’ on every basin boundary, and a
curve of flow from there to “adjacent” roots (also dotted lines).

1 (=00, +00), and the flow comes from oo and goes to a root of f;

2 (—o0,b) and the flow comes from oo and goes to a root of f';

3 (a,b) and the flow comes from a root of f' and goes to another root of f';
4 (a,+00) and the flow comes from a root of f' and goes to a root of f.

PrROOF. Ny is a C! function W — C where W = C — (V; UV/), and all flow must leave
any compact set of W (Hirsch and Smale (1974), §8.5). By Lemma 2.1, the maximal
interval of ¢, is unbounded upwards iff the flow goes to a root of f. The same argument
shows that the interval is not bounded below iff the flow comes in from oo. Since the flow
leaves any compact set of W, the only other limit points are in V. O

DEFINITION 2.1. The Newtonian graph of a polynomial f € C[z] is the embedded plane
graph G = (V, E,m) with vertices V.= V; U Vy, directed edges consisting of the curves
of flow between vertices wherever they exist, and orientation ® of edges about any vertex
determined by the embedding.

We note that the graph is not just a combinatorial structure, but also includes an orien-
tation as determined by the embedding.

Figure 2 illustrates the Newtonian graph of the vector field of Figure 1. Figure 3 shows
an example containing an edge between two roots of f’.

4 D. Kozen and K. Stefansson

Figure 2. The graph of the vector field in Figure 1. The solid dots are the roots of the polynomial, the
hollow ones are the roots of the derivative.

Figure 3. The vector field and the graph of a degree three (real) polynomial with an edge between
two derivative roots.

Under f, every edge maps onto a line segment of finite length with endpoints in the
set {f(c) | f'(¢) =0} U {0} and lying on a ray through the origin. This is an immediate
consequence of Lemma 2.1 and the fact that edges are curves of flow. Conversely, the
preimage under f of any such ray consists of only finitely many curves, at most the degree
of f. Thus the graph has only finitely many edges. Furthermore, Shub et al. (1988) show
that the graph is connected, and classify the possible types of graphs that can arise.

A basin of attraction is a connected region consisting of flow going to one particular
root of f. A basin boundary is the boundary between two basins. There must be a root of
f" on every basin boundary, because flows are continuous, and it requires a discontinuity
of Ny for the flow to “split” into two directions, and these only occur at the roots of f'.
Also the basin boundaries are curves of flow themselves, so we conclude that every basin
boundary is flow into a root of f’. In particular this means that basin boundaries are
contained in the preimage f=1({mf(c) | f'(c) =0, 1 < m}).

Computing the Newtonian Graph 5

3. Computing Basins and Graph Edges

We will give an algorithm to compute the basin boundaries and the edges of the
Newtonian graph. First we need a few preliminaries on cylindric algebraic decomposition.

3.1. CELL DECOMPOSITION

We describe cylindric algebraic cell decomposition briefly. For a more detailed descrip-

tion, see Collins (1975) or Ben-Or et al. (1986).

DEFINITION 3.1. A decomposition of R¥ is a finite partition {C;}icr such that each C;
is connected, C;NC; = @ f i £ j, and UiEI C; = R*. For k =1, such a decomposition
15 cylindric if the each C; s either a point or an interval. For k > 1, the decomposition
is cylindric if for all v, 1 < v <k, {m, ,(C;)| i€ I} isa cylindric decomposition of
R”.

DEFINITION 3.2. Given polynomial equations, fi(x1,...,2m) =0, 1 < i< n, with f; €
Rlxz1,...,2m], a cylindric algebraic decomposition (CAD) of R™ is a data structure D
with the following properties.

D contains a graph whose nodes correspond to certain subsets of R™ called cells,
each cell homeomorphic to R? for some d, and the cells are a decomposition of R™.
For alli=1,...,n, sign(f;) is constant on every cell. Fach cell is labeled with the
signs that the f; take on that cell

FEvery node contains an oracle such that given any ¢ € R™, the oracle can answer
if ¢ is contained in the associated cell.

Every node contains dimenston information, corresponding to the dimension of the
assoctated cell.

The edges of the graph correspond to adjacency of the cells in R™. There is a
directed edge (u,v) if the cell associated with u forms part of the boundary of the
cell associated with v.

The decomposition is cylindric.

Algorithms have been developed to compute (parts of) such a cell decomposition dating
back to Tarski (1951). Collins (1975) has a double exponential algorithm, although it lacks
some of the adjacency information. Ben-Or et al. (1986) developed a parallel algorithm
giving the same kind of decomposition (the BKR algorithm), and Kozen and Yap (1985)
extended that algorithm to obtain full adjacency information as well (hereafter called
the extended BKR algorithm).

We note that due to the cylindric condition and adjacency information, an algorithm
computing such a decomposition can be used on a set of polynomials with quantifiers,
projecting down the result. If the input is a formula of the form

n
Fyys ... Ay /\fi(xl,...,xm,yl,...,yk) = 0,
i=1
we can perform a CAD on R™** then project the solution down to R™. The resulting
structure can be used to answer questions of the form: Given ¢ € R™, does there exist
Y1, ...,y € R¥ such that y1, ..., yx, ¢ is a solution to the system?
We note that the order of variables is important with respect to the cylindric condition.

6 D. Kozen and K. Stefansson

3.2. THE ALGORITHM

Recall that every basin boundary and every edge is mapped by f onto a straight
line. Also, the basin boundaries and edges have a root of f’ as a limit. Thus, all these
“interesting” curves of flow satisfy, for every z on the curve,

Jee CImeR f(z)=mf(e) N fl(e)=0. (3.1)

Any point z on a basin boundary or an edge must satisfy these two conditions. We note
that the converse is false in general; z € C can be a solution to (3.1) without being on
an edge or a basin boundary.

We proceed in two steps. First we find a decomposition of C describing the solutions z
to (3.1). Then we prune that output, because we may get spurious solution curves that
do not correspond to basin boundaries or edges.

To find the solutions to (3.1), we compute a cylindric algebraic decomposition based
on the equations

flz) =mf(c) f(e)=0. (3.2)
The resulting structure gives a decomposition of R x C x C describing regions where
such m, ¢, z exist, along with the dimension of each region and adjacency information.
Projecting m and ¢, we obtain curves in C for which there exists a solution to (3.1).
First let us note that algorithms such as Collins’ and the extended BKR algorithm do
decomposition over the reals. But we can split the equations into a real and imaginary
parts, and get a decomposition of R® = R x C x C, corresponding to the equations

fR(l‘,y) = mfR(Cl,Cz)
f[(l‘,y) = mfI(Cl,Cz)
frler,es) = 0
f}(cl’@) = 0,

where f(x + iy) = fr(z,y) + ifr(x,y) and fr, fr € Rlx,y]. We get a decomposition on
R® which corresponds to a decomposition on R x C x C.

We then project the dimensions corresponding to ¢ = ¢; + ico and again project m,
obtaining a decomposition of C corresponding to z for which there exist m and ¢ satisfying
equation (3.2).

This decomposition will contain all the basin boundaries and graph edges. These will
be partitioned into segments (bounded 1-cells) and 0-cells between such segments. There
may be other cells present which are not part of solutions to the system (3.2), correspond-
ing to auxiliary cells introduced by the CAD algorithm. However, we can always identify
these, because all cells are labeled with the signs of the input polynomials (3.2), which
determine which of them constitute actual solutions. A solution curve to the system can
be reconstructed by linking such adjacent cells.

Not all solution curves are edges or basin boundaries. The following lemma classifies
the types:

LEMMA 3.1. The output from the process above contains at most O(n?) I1-cells which are
solutions curves for the input system. They are of the following types:

(i) Adjacent to two 0O-cells, one of which describes a root of f' and one which describes
a root of either f or f’;

Computing the Newtonian Graph 7

(ii) Adjacent only to one 0-cell which describes a root of f';
(iii) Adjacent only to one O-cell which describes a oot of f.

Cells of type (i) are edges of the Newtonian graph; cells of type (i) are a basin boundaries;
and cells of type (iii) are extraneous solutions to the system.

ProoF. The only 1-cells that can be solutions to the system correspond to curves of
flow. The classification is obvious from the definition of edges and the properties of basin
boundaries.

There are at most O(n?) solution curves for f(z) = mf(c) with ¢ a root of f/(¢) and
m € IR, because there are at most n — 1 roots of f’ and f is an n-to-one mapping. O

The cells of type (i) and (i) are the ones we are interested in. We can distinguish these
from the extraneous cells of type (iii) by checking the sign of f, which allows us to verify
if a curve ends at a root of f. Since f is part of the input, the sign of f is available on
every cell.

Depending on which algorithm we use, we may or may not have all the information
needed. The extended BKR guarantees that if f 1s a part of the input, then the signs
of f will be provided on each cell. If we do not have this guarantee, we can always add
F/(2) = 0 to our input equations and get the same information.

At this point we can determine the types of the solution curves. Now it is easy to
implement the pruning step: we simply coalesce each cell of type (iii) as part of the
adjacent 2-cell, which 1s the basin that this cell lies in.

Now the structure can be used in answering queries. Two points are in the same basin
if they are in the same 2-cell or if they are separated only by 1-cells of type (iii).

4. Improvements
Recall that we computed a CAD of R® 2= R x C? with respect to the equations
f(z) =mf(c) f'(e)=0
and projected the solution onto C. This can be simplified by defining
glm,z) = Res.(f(z) —mf(c), f'(c)),

where Res, denotes the univariate resultant with respect to ¢. Here we view f(z)—mf(c)
and f'(e) as univariate polynomials in C[z, m][c].

The polynomial g has the property that g(m, z) = 0iff 3¢ € C f(z)—mf(c) =0 = f'(¢).
Hence, a decomposition of R x C with respect to ¢ i1s the same as the projection of the
decomposition of R x C x C with respect to the original two equations.

The only thing we must be aware of is how to obtain the necessary signs of f and f’
on cells, in order to 1dentify and link up solution curves and prune off the spurious ones.
One way would be to add the equation f(z) = 0 (and f/(z) = 0, if we are not using the
extended BKR), and do a decomposition with respect to f (f') and g. This is already an
improvement in terms of dimension, since we are only working with three real variables
(x = Rz, y = Sz and m) instead of five.

The asymptotic complexity remains the same, but the constants are much better. The
extended BKR gives an NC' circuit of depth 20(d*) logo(d) n where d is the number of
variables and n is the maximum of either the number of polynomials or their degrees.

8 D. Kozen and K. Stefansson

In our case the circuit will be of depth O(logo(l) n) where n is the degree of the input
polynomial f.

5. Applications to Newton’s Method

The ability to test whether two points lie in the same basin of the Newtonian vector
field opens up intriguing possibilities for Newton’s root approximation method. Since one
can test whether a Newton iteration step has jumped over a basin boundary, one can
modify the algorithm to scale back the step size to stay within a particular basin if desired.
This can be done for example by replacing the usual Newton step zpy1 «— 25 + Ny (21)
by the program

a—1,
repeat
Zh41 — Zp + aNg(z1)
a—af2
until z;41 is in the same basin as zj

Here we use our precomputed Newtonian graph structure to determine whether two
points are in the same basin. If in addition strict progress toward a root is desired, one
can modify the last line of the program to read

until z;yq is in the same basin as z; and |zp41] < |2]

One might conjecture that this approach gives a version of Newton’s method in which
convergence to a root is guaranteed. Unfortunately, this is not the case, as shown by the
following counterexample.

Consider a polynomial f with a basin boundary ¢. such that ¢, has strictly positive
curvature and f, f/, and f” do not vanish in a neighborhood of ¢ = ¢.(0).

For instance, we might take f(z) = 2% — 2 with roots —1,0, 1, derivative roots &1/+/3,
and basin boundary ¢, with ¢ the unique root of ¢ —c+2v/3¢/9 in the positive quadrant.
In this case

fee) = fle)et = _‘gﬁ

It follows that for t < 1, ¢.(t) is the unique root of 3 — & + 21/3e!~*/9 in the positive
quadrant, and ¢.(1) = 1/+/3, thus . is a basin boundary. This example is illustrated in
Figure 4.

Let N be an open ball about ¢ of sufficiently small radius. Let A be the portion of N
to the left of ¢, moving along ¢ in the direction of positive ¢, and let B be the portion of
N to the right of ¢ (in Figure 4, A appears to the right of ¢). By the assumption about
the curvature of ¢, (AU@)N N is a convex set. Also, the radius of N can be chosen small
enough that all flow lines have strictly positive curvature in N.

We will consider scaled Newton steps z — z + eN;(z) applied to z € A. Our modified
Newton’s method described above, applied to a point z € A, gives

MN(z) = z+27FNp(2)

Computing the Newtonian Graph 9

Figure 4. A counterexample.

where k is the least nonnegative integer such that z + 27*N;(z) € A. (For this coun-
terexample, the extra test |z + 27¥N;(2)| < |z] is rendered superfluous by picking the
radius of N sufficiently small.)

Let a be a point in A such that the line segment ac is perpendicular to Ny(c). For ¢
in the real interval [0, 1], define u(t) = ¢t 4+ (1 — t)a. The function u(t) travels along the
segment ac as t goes from 0 to 1. By convexity, all points u(¢) lie in A except for the
endpoint u(1), which lies on ¢.

We will construct a scaling sequence

€g> €L >€> - >0

of small positive reals such that each ¢; = 27%i for some positive integer k;, and the ¢;
converge sufficiently rapidly to 0 to satisfy several conditions given below. Relative to
the scaling sequence {¢; }, we define the functions w, : [0,1] — C by

uo(t) = wu(?)
w1 (0) = tnt) 6Ny (unlt))
Thus wuy,(t) is the point obtained by starting from u(?) and applying n scaled Newton

iterations with scale factor ¢; at the i*" step. Note that u,, depends on the scaling sequence
{e;}, although this dependence is not explicit in the notation.

10 D. Kozen and K. Stefansson

One of the conditions on {¢;} is that u,(¢) € N for all t € [0, 1] and n > 0. Since

[unt1(t) —un(®)] = enNp(un(0))]

we can insure this by choosing e, sufficiently small, as follows. If w,(¢#) € N for all

€ [0,1], let #(¢) be the maximum radius of an open ball centered at u,(¢) and wholly
contained in N. The function r : [0, 1] — R is continuous and defined on a compact set,
thus achieves its infimum inf; r(¢) > 0 at some ¢ € [0, 1]. We can inductively insure that
unt1(t) € N for all ¢t € [0, 1] by picking

infte[oyl] T(t)
sup,en [N;(2)]

We can also choose {¢;} such that u, : [0,1] — C is one-to-one and du,(t)/du is arbi-
trarily close to 1 uniformly in ¢. The latter condition implies the former. A straightforward
calculation gives

€n

d“” 1:[R EZ)()y (5.1)

and we have already insured that all u;(t) € N, therefore f(u;)f"(u;)/f (u;)? is bounded.
We can thus choose the ¢, sufficiently small that the sequences du,(t)/du for ¢ € [0,1]
converge uniformly to values arbitrarily close to 1.

Intuitively, these conditions say that the locus of points w,(t) is nearly a straight line
segment in N and nearly parallel to u(¢). In particular, it intersects ¢ at most once, and
if it intersects, then it does so transversally (we chose the radius of N sufficiently small
that the direction of N;(#) does not vary much).

Now we construct inductively two real sequences

O=sp<s1<s2< -+ <ta<ti<ip=1

such that u,(t) € A for s, <t < t, and u,(t,) € . This is already true for n = 0.
Suppose we have constructed s, and t,. By the curvature assumption, u,41(tp) € B,
and we can insure t,41(s,) € A by havmg picked ¢, sufficiently small. Therefore there
must exist a point ¢,41 such that s, < tp41 <1, and up41(tht1) € ¢. By the bound on
dtp11/du, we have that ¢,41 is unique, up41(¢) € A for all ¢ < ¢,41, and u,11(t) € B
forallt > t,41.
Now up(tn41) € A and
Unt1(tn41) = Un(tnt1) + e Np(un(tn1)) € ¢,

so by the curvature assumption,
Unltns1) + 260N (un(tnsr)) € B.
By choosing sp41 € (sp, tn41) sufficiently close to t,41, we can insure

1) = wall) + €0 Ny (ua(t) € A
un(t) + 26, N¢(un(t)) € B

for all t € (sp41,tn41). This says that our modified Newton step gives
MN(un(t) = wnia (1) (5.2)
for all t € (spy1,tnt1)-

Computing the Newtonian Graph 11

Figure 5. The Newtonian vector field of a rational function.

Now let tx = inf,, t,, > sup,, sp. By (5.2), we have that
MN (un(tx)) = uny1(ts) .

Thus the modified Newton algorithm started at u(tx) converges to a point on ¢ in the
closure of N, far from a root of f.

Despite the failure of the modified method to converge to a root in all cases, the ability
to test membership in a particular basin raises other intriguing possibilities. For example,
one might test whether one is very close to a basin boundary by counting the number of
times the step size was halved, and take a “sideways” step toward the interior of the basin
if so. Such modifications present themselves as interesting topics for future investigation.

6. Newtonian Graphs of Rational and Algebraic Functions

Stefansson (1995) has extended the definition of the Newtonian graph to rational and
algebraic functions and has extended the algorithm of §3.2 to handle these more general
cases with no significant increase in complexity.

Figure 5 illustrates the Newtonian vector field of a complex rational function of degree
four. Three poles and four roots are visible; there is a fourth pole at co. Curves of fixed
color indicate curves of flow.

Stefansson (1995) has shown that for rational and algebraic functions, the Newtonian
graph tesselates the associated Riemann surface, and in conjuction with Fuler’s formula
gives an NC' algorithm to calculate the genus of the surface.

12 D. Kozen and K. Stefansson

7. Acknowledgments

The support of the National Science Foundation under grant CCR-9317320 and the
U.S. Army Research Office through the ACSyAM branch of the Mathematical Sciences
Institute of Cornell University under contract DAAL(03-91-C-0027 is gratefully acknowl-
edged.

References

Ben-Or, M., Kozen, D., Reif, J. (1986). The complexity of elementary algebra and geometry. J. Comput.
Syst. Sci. 32:2, 251-264.

Collins, G.E. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decomposition.
In Lect. Notes in Comput. Sci. 33, 134-183. Springer-Verlag.

Hirsch, M.W., Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra. Aca-
demic Press.

Kozen, D., Yap, C.K. (1985). Algebraic cell decompositionin NC. In Proc. 26th Symp. Found. Comput.
Sei., 515-521. IEEE.

Shub, M., Tischler, D., William, R.F. (1988). The Newtonian graph of a complex polynomial. SIAM J.
Math. Anal 19:1.

Smale, S. (1985). On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. 13:2, 87-122.

Stefansson, K. (1995). Newtonian Graphs, Riemann Surfaces, and Computation. PhD thesis, Cornell
University.

Tarski, A. (1951). A decision method for elementary algebra and geometry. Univ. of Calif. Press, second
edition.

