Ve T

?:,
]
R

™ ical Comp Sci 27 (1983) 333-354 k23]
North-Haolland

RESULTS ON THE PROPOSITIONAL u-CALCULUS

Dexter KOZEN®
Math ical Sciences Deg IBM Research Censer, Yorkiown Heighis, NY 10598, U.S.A.

Abstsact. In this paper we define and study a propositional u-calculus Ly, whu:h connm
estentially ol propositional modal logic with a least fixpoint op Luis b
yet strictly more e:ptesswe lhan Propom:oml Dynamic Logic (PDL). For l resmcted vcm(m

we give an exf i P dure, small model property, and complete deductive
system. thereby sub 8 lhc ponding results for PDL.
1. Introduction

The propositional u-calculus refers collectively to a class of programming logics
consisting of propositional model logic with a least fixpoint operator u. The u-
calculus originated with Scott and De Bakker [22) and was developed by Hitchcock
and Park [7), Park [17], De Bakker and De Roever [2], De Roever [20) and others.
The system we consider here is very close to a system appearing in [1]. The results
of this volome, however, are mostly inspired by the work of Pratt (19], who defines
a propositional u-calculus Pu, shows that Pu subsumes PDL, and extends the
exponential-time decision procedure for PDL to Pu. It is not known, however,
whether Pu contains PDL strictly, and a deductive system is not given.

The usual proof rules for expressions involving least fixpoints do not readily apply
to Pratt's Pu due to its formulation as a lcast root calculus rather than a least
fixpoint calculus. This formulation was chosen in order to capture the reverse
operator of PDL. Also, formulas of Pu arc required to satisfy a rather strong
condition akin to syntactic continuity. This condition renders illegal several useful
formulas: e.g., the formula xX[b]X, which is the same as —4b in the notation of
Streett [21], expresses the property that the program b has no infinite computations.
Pratt's syntactic restriction allows the filtration-based decision procedure of [18] to
extend to Pu, whereas no filtration-based decision procedure can work in the
presence of uX.[a)X, as shown by Streett [21].

Here we propose weakening the syntactic continuity requirement and returning
to a least fixpoint formulation. The resulting system is called Lyu. Although full L
is decidable, the best bound known is nonelementary [16]. However, under a natural
syntactic restriction which is still somewhat weaker than full syntactic continuity,
better bounds can be obtained. For the syntactically restricted version, we show:

* These results were oblained during the author’s sabbatical at the University of Aathus, Denmark.

0304-3975/83/33.00 © 1983, Elsevicr Science Publishers B.V. (North-Holland)

-.A.w"
it
| PO

4 D. Kozen

(1) L, although syntactically simpler, is strictly more expressive than PDL. The
strict containment result follows from a result of Streett (21). Ly can express several
natural PDL-ineflable formulas that are useful in program verification (see {4) for
examples).

(2) Ly is decidable in deterministic exponential time, and is in fact exponential-
time complete. This strengthens the corresponding result for PDL.

(3) There is a natural complete deductive system, involving the fixpoint induction
rule of Park (17}

Familiarity with PDL and the concept of least fixpoints is assumed (see [1. 20, 6]).

2. Definition of Ly and Lu+

Lp is essentially propositional modal logic with a least fixpoint operator u. Lu+
is an infinitary language containing Ly, obtained by augmenting La with the ability
to construct the a-fold composition of a monotone operator, where a is any ordinal.
Lu+ is useful in transfinite inductive arguments.

2.1. Syntax

The primitive nonlogical symbols of Ly and Lu+ consist of propesitional constants
P, Q... ,including the constants 0, 1, propositional variables X, Y, . . . , and program
constants a, b,. ... Formulas p.q.. .. of Lu+ are defined inductively:

2.1 X, (2.1.5) (a)p.

(2.1.2) P, (2.1.6) aX.pX, a an ordinal,

(2.1.3) pvq. (2.1.7) uXpX,

(2.1.4) —p,
wherein (2.1.6) and (2.1.7) pX is positive in the variable X, i.e., every free occurrence
of X in pX occurs in the scope of an even number of negations 1. (The notions
of scope, bound and free occurrences of variables, closed formulas, etc. are the
same as in first-order predicate logic, where uX and aX are treated as quantificrs.)

Inwitively, aX.pX represents the a-fold compasition of the operator AX.pX
applied to 0.
2.2. Semantics

A model is a structure M = (S, 1), where S is a set of states and / an interpretation
of the propusitional constants and program constants as, respectively, subscts of §
and binary relations on S. We require that /{0) =@ and /(1) =S.

Results on the propositional u-calculus 338

A valuation is a mapping assigning a subsct of S to each variable. Formally, a
formula p is interpreted as an operator p* from valuations to subsets of S. However,
since p™ will be independent of the variables not occurring free in p, we will view
p“ as a function of its free variables. We will write p(X) to denote that alt free
variables of p are among X = X,...., X.. and p*(A) 1o denote the value of p*'
on any valuation that assigns A, to X,, 1<i<n. The operator pM is defined
inductively as follows:

2.2.1) XM(A)=A, (22.4) (p)M(A)=5-p"(A),
(22.2) PMA)=1(P), (2.2.5) ((a)p)™(A)=(a")p"(A)),
(2.2.3) (pv@™(A)=p*(A)uq"(A)
where, in (2.2.5),
(@M} B)={s|31e B,(s,)€ I(a)}.

To define (2.1.6) and (2.1.7), let pX be a formula positive in X, and let X denote
the other free variables of pX. Thus pX = p{X, X). We assume by induction
hypothesis that the operator p" has already been defined. Because of the require-
ment that pX be positive in X, the operator p™ is monotone in the variable X with
respect to the subset relation. :

(2.2.6a) 0X.pXM(A)=0" =4,

(2.2.6b) (a+1)X.pX™(A)=p(aX.pX*(A). A).

(2.2.6¢) 8X.pXM(A)=U,. , BX.pX"(A). 5 a limit ordinal,
(227 pXpXM(A)=U, BX.pX™(A),

where, in (2.2.7), the union is over all ordinals 8. Taking p > & [or any ordinal a,
(2.2.6)(a-c) and (2.2.7) can be combined into the single definition:

(2.2.8) aX.pXM(A)=U,. . pM(BX.pX"(A), A),

where a is either an ordinal or u. _
For fixed A, since p™(X, A) is monotone in X, it follows that aX.pX™(A)s
BX.pX™(A) whenever a = B. At some level «, we must have

KX pXM(A) = (x + DX.pXM(A) = pX.pX™(A).

The least such « is called the closure ordinal of the aoperator AX.!J“'(X. A).
It follows from the Knaster-Tarski theorem that puX.pX* (A) is the <-least
fixpoint of the operator AX.p™ (X, A). and that

(2.2.9) uX.pX™(A)=MB|p"(B. A)=B}=(B|p"'(B, A)c B}.

I p is closed, then p* is constant. In this casc s is said to satisfy p (notation:
M. sk por se=p) if se p™.

336 D. Kozen
3. Notation and basic results

3.1. Defined operators, positive normal form

In addition to the primitive operators, we will usc the usual defined Boolcan
operators a, = and «», as well as the defined operators
[alp = a)p, vX.pX = X pX.
The operator v is the greatest fixpoint operator. It [ollows from (2.2.9) that »X.pX
is the greatest fixpoint of the map AX.pX, i..,
(.1.1) »X.pX™(A)=\UiB| B =p™(B, A)} =UiB|B< p*(B, A)}
and
3.1.2) (a)p)™(A) =[a™1(p™(A))
by (2.2.5), where
[aM1(B)={s5|Vt. (s 1)e I(a)» 1€ B} =§-(a¥XS~-B).

It is easily proved that every Ly formula is equivalent to a formula over v, A,
#. 1.4).{),and v in which 1 is applied to primitive P only. Moreover, by renaming
bound variables (Proposition 5.7(i) below), we can assume that no variable is
quantified twice. Such a formula is said to be in positive normal form.

3.2. Closure

Let p, be a fixed closed formula in positive normal form. The following definitions
introduce the closure CL(py) of py, the analog of the Fischer-Ladner closure of
PDL [6]). For convenience, the closure is defined in terms of a mapping ¢ on
subformulas of po.

Let o denote either x or & If X is a bound variable of py, there is a unique u-
or v-subformula @X.pX of pu in which X is quantified. We denote this subformula
by ¢X. X is called a p-variable if oX = uX.pX and a v-variable if oX = vX.pX.

Definition 3.2.1. Definc p=<gq if g appears as a subformula of p, and p<gq if ¢
appears as a proper subformula of p. For py< p, dcfine Vo=Y,.... Y, n20,t0
be the sequence of all variables Y such that oY < p, taken in the order

oY, < --<o¥,<p.

For X =X,,.... X, asubsequence of V,and§ =4, ..., 4. asequence of formulas,
definc

AX13)=p X @ XX/) [X),

where p{ X/q] denotes the formula p with all free occurrences of X replaced by g.
Note that the order of substitution is from right to left.

Definition 3.2.2. If V.= X,..... X let oV, denote the sequence aX,,...,0X,

Results on the propositional p-calculus ERY]

Define the map ¢ on subformulas of p. by

e(p)=plVp/aV,}
The closure of py is the range of e:

CL(pu) =te(p) v p).

Note that e(p) is closed, since if X occurs free in p, then oX < p. Itisimmediately
clear from the definition that CL{py) is a finite set, and is in fact no larger than
{ pd. the number of symbols of po. The next proposition relates CL(po) to the more
usual notion of closure, as found for exampie in (6).

Proposition 3.2.3. CL(py) is the smallest set of closed formulas such that

(i) poe CL(pu),

(i) if "PeCL(py). then Pe CL(py).

@iii) if pvqeCL{pn), then pe CL(py) and g€ CL(Po)s

(iv) if pAgeCL(py), then pe CL(py) and q€ CL(pa),
(v) if {a)pe CL(py), then pe CL(pn),

(vi) if [alpe CL{py), then pe CL{po).

(vii} if eX.pX € CL{pu), then p(aX.pX)e CL(po).

Proof. It immediately follows from Definition 3.2.2 that
(viii) e(p)=p if p is closed,
(ix) e(pvq)=e(p)velq)
(x) e(prg)=e(p)aelq),
(xi) e({a)p)=(a)e(p).
(xii) e({alp)=lale(p).
(xiii) e(X)=e(aX.p)=oX.Ap[Vox/oVax)).

where, in (xiii), #X = ¢X.p. Cases (i) and (ii) arc immediate from (viii). For case
(i), suppose pv g€ CL(po). Then pv g = e P’ v q’) for some subformula p’vq’ of
po- By (ix), p=e(p’) and g= ¢(q'), therefore p. g€ CL(pu). Cases (iv)-(vi) are
similar. For case (vii), suppose oX.pX € CL{py). Formula oX.pX has exactly two
pre-images under e, namely X and oX = oX.p'X. Then pu< p'X, and

e(p'X)=p' XX/ XA Vax/ aVax)= P (oX.p' XN Vax 0 Vax]= plaX.pX).
therefore p(aX.pX)eCL(p,). O

3.3. Active variables and aconjunctivity

Definition 3.3.1. Let p, be in positive normal form, p,<p. A variable Y of py is
called active in pif 7Y < p and p{ X/ aX) contains a free occurrence of Y, where
X is the subsequence of V,, consisting of those variables X for whicheY <oX <p.

kX1 1. Kozen

The subscquence of V,, consisting of the active variables of p is denoted A, The
subsequence of A, consisting of the active s-variables (resp. v-variables) is denoted
Ap, (tesp. Av,).
1f X is free in p. then X is active in p, but not vice versa in general; e.g., in
(3.3.2) pX.vYAX A pZ({la}Y v[0)2)),
X is not free in (@)Y but is active in (@)Y, since
(@) Y(Z{oZL Y/aY]=(a)wY.(X A pZ({a)Y v[b]Z))

contains a free occurrence of X. However, the relation ‘is active in’ is somewhat
like the transitive closure of the relation ‘is free in’, in the following sense.

Lemma 3.3.3, If Y is active in p, and X is active in oY, then X is active in p.

Proof. Let X=X\v.... Xm P =Y,,..., Yo m n=0, be all variables such that
oX <oX,<++<oXn<a¥<oY < --<a¥,<p

Then Y is free in p[P/o¥) and X is free in Y[X/oX), therefore X is free in
P VIoPLY/aY(RIoRR/eX])=p[¥/a¥] Y/oYIX/eX) O

The problem of determining whether X is active in p can be reformulated as a
(ransitive closure problem, and any standard algorithm for computing the transitive
closure of a binary relation will be efficient enough for our purposes.

DeBnition 3.3.4. Let p, be in positive normal form. pu is aconjunctive in the
p-varigble X if. whenever pa<pag, X is active in at most one of p, ¢. po is
aconjunctive if it is aconjunctive in every p-variable.

Example (3.3.2) above is not aconjunctive, because X A pZ{({@)Y v(b]Z) is a
subformula of (3.3.2), and the u-variable X is active in both X and pZ({a)Y v
(6)2).

Aconjunctivity is a technical restriction that is used in the proof of Theorem
6.3.1. It is related to, albeit weaker than, syntactic continuity. It is difficult to give
the intuition behind the concept of aconjunctivity out of context; we therefore defer
further explanation until Section 6.

4, Expressiveness results

Ly subsumes PDL without the reverse operator, as noted by Pratt [19]). The only
Jeast fixpoints PDL can express are of the form {a*)p, which in Ly is expressed
pX.pv{a)X. Thus {(a*)p is the least fixpoint of the monotone operator AX.pv (a)X.

Resulis on the propositional u-calculus KRl

This operator is continuous in X, in the sense that
pv (a>(U A.) =U(pv(a)A).

If any model M, if pX is continuous in X, then
uX.pXM = wX.pX™,

i.e., the inductive definition of pX.pX given in (2.2.7) above need not go beyond w.

However, there are many non-continuous operators that are potentially useful
in program verification. An interesting example is provided by the operator AX{a}X.
Its least fixpoint in any model M is

pX[alX™ ={s|there are no infinite a-paths out of s}="da,

where 4 is the loop operator of Streett [21]. pX[a]X isa well-formed formula of
L. even under the restriction of aconjunctivity, but is illegal in Pratt’s system. In
the model of Fig. 1, the operator AX[a)X does not close at w, since the top state
satisfies (w+ 1)X.[a)X but not wX[a)X. Thus AX[a)X is monotone but not
continuous.

There are many useful properties that can be expressed with non-continuous
operators, including liveness and fairness properties. The prototype liveness property

a a a
3
a a .
H {
a
i
Fig. 1.

340 0. Kozen

‘along every a-path, p must eventually come true’ is expressed as pX.pvl[a)X in
Ly. We refer the reader to [4] for further examples.

The question raised by Pratt about the strict expressiveness of Pu over PDL is
still open, but the following result of Streett shows that L, even restricted to
aconjunctive formulas, is strictly more expressive than PDL. The proof also reveals
why filtration techniques, which are used to oblain complexity and completeness
results for PDL, fail for Lu.

Proposition 4.1 ((21)). uX[a)X is not equivalens to any PDL formula.

Prool. Suppose pX.[a]X < p in all models, where p is a formula of PDL. In the
model M of Fig. 1, sk xX[a)X, therefore sk p. The proof of the small model
property of PDL [6) allows M to be collapsed to a finite model N by identifying
states that are indistinguishable by formulas of FL(p), the Fischer-Ladner closure
of p. If [1] is the equivalence class of ¢ in the collapsed model, then N, [t]=q iff
M, tF=q for any q € FL(p). In particular, (5] p. But [s) cannot satisfy pX[a)X,
since the collapsing must have created a loop, therefore there is an infinite a-path
outof [s]. O

The above proof assumes that uX[alX = pinall models and derives a contradic-
tion. However, it is possible to show that Ly is strictly more expressive than PDL
in the stronger sense that there is a model M and a formula q of Ly such that no
PDL formula p is equivalent to q on M.

Proposition 4.2 ((12)). In the model given by Fig. 2, the formula uX{aXa)X defines
the even states, whereas all PDL formulas, even with fest and reverse, define only
finite and cofinite sets.

Fig. 2.

Intuitively, PDL cannot simulate an unbounded alternation of {a) and {(a).

Full Lz encodes APDL of Streett [21], since da = vX.(a)}X. Under the restriction
of aconjunctivity, Ly can be shown to encode well-structured APDL, which is
APDL with the * and U operators constrained to appear only in the context of the
deterministic program constructors

i pthena else b =prau-plib and whilepdoa =(p?;a)*;p

Primitive programs need not be deterministic (sce [8]).

Resulis on the propositional y-calculus 40
8. A deductive system

The deductive system is equational, as in [15), involving equations p=q and
inequalities p < q. The latter can be considered as an abbreviation for pv ¢ =q. The
logical axioms and rules are those of equational logic, including substitution of equals
for equals, provided the syntactic restrictions on g formulas are not violated. The
nonlogical axioms are the following:

(5.1) axioms for Boolean algebra,

(5.2) (@)X v(a)Y ={a}(X v Y),

(5.3) (@)X alalY <(a}(X A Y),

(5.4) (a)0=0,

(5.5) p(uX.pX) = pX.pX, uX.pX free for X in pX,
(5.6) pY = Y=>uX.pX <Y, Y does not occur in pX.

A formula p is consistent if not -p = 0. Axioms (5.1)-(5.4) are those of proposi-
tional modal logic. Axioms (5.5) and (5.6) say that #X.pX is the =<-least object A
such that p{A) < A. Axiom (5.6} is the fixpoint induction rule of Park 17}
The following are some basic theorems of this system. The reader is referred to
[1.20] for the proofs, which are omitted here.
Proposition 5.7. (i) (Change of bound variable)
pX.pXmuY.pY, X, Y free for Z in pZ,
(i) pX<sqX = oX.pX <oXqX.
(iti) (Monotonicity)
q<r = plg)splr), X positive in pX,
(iv) pleXpX)maX.pX, oX.pX free for X in pX,
(v} pXq=q, Xnotfreeingq.
i) plpXgapX)sq => pXpX<q. qfreefor X in pX.
Proot of (vi)
(a) p(pX.qarpX)<q (byassumption),

() plgapXigaplgaXN)sq (by (a). (5.1) and (iii)),

(©) plaganX(gaplgaXM<qaplgruXiqaplqsX)))
{by (b) and (5.1)),

) plgapX(qrplgaXspuXiqaplqaX)) (by(c)and(5.5)

342 . Kozen

(€) pqauX(qaplgnXM=qanXiqnsplga X)) (by (b). (&) and (5.1)),
) uXpX=qgapXigapligaX)) (bylc) and (5.6)).
(g) wuX.pX=<gq (by(f)and(5.1). (m}

Implication (vi) of Proposition 5.7 is crucial in the proof of Theorem 6.3.1. We
will use it in its dual form: if g A uX.pX is consistent, then @ A p(pX.Dg A pX)is
consistent. This is the proof-theoretic analog of the following model-theoretic
intuition: If there is a state of the model M satisfying g A X.pX, then there must
be a least @ such that there is a state of M satisfying g » aX.pX.

6. Complexity and deductive completeness

In this section we prove completeness of the deductive system of Section 5 and
give an exponential time decision procedure and small model property for Ly under
the restriction of aconjunctivity. Lu is decidable without this restriction [16), but
is not known 1o be elementary. These results arc proved simultancously, using a
tableau method.

6.1. Construction of the tableau

Let p, be in positive normal form. In this section we construct a tableau T for
po. T is a labeled tree constructed inductively downward by applying the extension
rules described betow. Certain edges of T will be labeled with primitive programs,
others will be unlabeled. Each node s of T will be labeled withaset I', of subformulas
of pu

Initially, T consists of a single node 7o labeled { py}. The tree is extended downward
by applying the following five extension rules to the leaves, in an order to be specified
later.

(6.1.1) a-rude. If pagelr, create node ¢ with r,=(r-{prghulp.q} and
unlabeled edge s+ 1.

(6.1.2) v-rule. I pvqe I, create two new nodes ¢, u with I,=(F.~{pvahuip).
I, =(I~{pvqDv(q) and unlabeled cdges s+ 1, s+ u.

(6.1.3) o-rule. If aX.pXel, create 1 labeled I,=(I'—{eXpXPu(pX} and
unlabeled edge st

(6.1.9) X-rule. 1 X € I',and il aX = eoX.pX, create t labeled I, =(I,-{X)ulpX}
and unlabeled edge s 1.

(6.1.5) {)-rule. For cach (b)pe I'.create ¢ labeled I, = {ptulgllblge I} and edge
s -1 labeled b.

Results on the propusitional u-calculus R X

Note that the v-rule creates two new successors, the {)-rule creates a new
successor for each formula of the form {b)p, and ali other rules create one new
successor. In the last case, the unique successor of s is denoted s+.

The construction process maintains several lists C of integer counters ¢, which
count applications of the X-rule to active variables of formulas in I',. There is one
list C(s,p) for each pe T, and the lists are disjoint. If A,=X,..... X, then
C(s, p)=(c\.....), where ¢; counts applications of the X-rule to X;. The counter
¢, is associated with X; throughout its tifetime. We denote this correspondence by
X(¢;) = X, In general, there may be several counters at node s associated with the
same variable X, since X may be active in several formulas of T, but these counters
will appear on different lists. .

The integer value contained in ¢ at node s is denoted c(s). If X(c) is a u-variable,
¢ is called a p-counter, and ¢(s) will always fall in the interval 0= ¢(s) =2, If
X(c) is a v-variable, c is called a v~counter, and c(s) € {0. 1}. A v-counter ¢ is used
only as a onc-bit flag to determine how recently the o- or X-rule has been applicd
to X(c).

If C is a list. let Cs (resp. Cv) denote the sublist of C consisting of all x-counters
(resp. v-counters). The construction process also maintains a global list G consisting
of all existing p-counters. G(s) is a shuffle-mcrge of the lists Cu(s. p), pe I', Thus
the order of the u-counters in G is consistent with their order on the lists Cp.
Whereas the order of the counters ¢ on C is static and determined by the order <
on X (c). the order on the global list G is dynamic and depends on the construction
up to that point. G(s) imparts a priority to the p-counters existing at s, with the
leftmost of highest priority.

The lists and counters are maintained as follows. We start with a single list
C(7o. pu) 8t the root, and C(fu. oo} =G(ra) =(). since p, has no active variables.
The lists and counters are updated at each application of an extension rule as
foltows.

(6.1.6) When the o-rule is applied to oX.pX at node 5, recall that I, is obtained
from I, by replacing oX.pX with pX. If X is free in pX, then pX has a new active
variable that was not active in X.pX, namely X. A new counter ¢ is created with
X(c)= X and c(s+) =0, and we append ¢ 1o the right end of C(s, oX.pX) to get
Cl(s+,pX). if X is a p-variable, the new counter is also appended to the right end
of G, indicating lowest priority. If X is not free in pX, then we take C(s+,pX) =
C{s,oX.pX) and G(s+) = G(s), but by Proposition 5.7(v) we can assume w.l.o.p.
that this does not happen.

(6.1.7) When the v-rule is applied to pvq at node s with successors £, 4 as in
(6.1.2), recall that the formula p replaces pv q in I, and g replaces pvq in I, We
obtain C(1, p) (resp. C(u.q)) from C(s, pv q) be deleting all counters ¢ such that
X(c) is not active in p {resp. q). Any deleted p-counters also disappear from the
global lists G(1) and G(u).

344 D. Kozen

(6.1.8) When the a-rule is applied to paq at node s then we obtain C(s+, p),
(vesp. C(s+.q)) from C(s.paq) by deleting all counters ¢ such that X(c) is not
active in p (resp. q). The global list G remains unchanged. It is here that the
condition of aconjunctivity is used: whereas a »-counter on C(s, p » q) may appear
on both C(s+.p) and C(s+,q). Cu(s.paq) cleanly splits into disjoint lists
Cu(s+, p) and Cu(s+, q), since cach p-variable active in paq is active in exactly
one of p, ¢. If aconjunctivity were not satisfied, the u-counters on G would have
to be duplicated.

(6-1.9) When the X-rule is applied to a variable X at s, and oX =aX.pX, take
C(s+,pX)=C(s, X), and set c(s+)=c(s)+1, where ¢ is the unique counter on
C(s+,pX) and C(s, X) such that X{c) = X. Note that ¢ appears rightmost on these
lists, since oY < ¢X for all variables Y active in X. If X is a u-variable, we reset
all u-counters of lower priority than ¢ to 0 (recall that d is of lower priority than
cif it appears to the right of ¢ on the global list G). We also reset to 0 any #-counter
appearing on any C(s+, p) to the right of some p-counter that is incremented or
reset to 0.

(6.1.10) When the {)-rule is applied at s, then for any successor ¢, [, is of the form
{Aq1-...qa). where (b)p, [blg.e T, Take Cltp)= C(s,(b)p) and C(tq)=
C(s,[b]q), V= is<n G(1) is oblained from G(s) by deleting all counters not
appearing on C(t, p) or some C(t,). All s-counters are reset to 0.

(6.1.11) If pe T, and the a-, v-, -, or X-rule is applied at s lo some ¢ # p, and !
is a successor of s, then pe I, In this case we take C(4, p) = C(s, p) and leave all
counters on C(1, p) intact.

(6.1.12) After updating the lists according to (6.1.6)-(6.1.11), C(t, p) may be
temporary ill-defined. For example, if p,prg e I, and the a-ruleis applied to pa g,
then (6.1.8) defines C(s+, p) to be a sublist of C(s,paq). but (6.1.11) defines
C(s+,p) = C(s, p). For another example, if (b)p.[blpe I’ andthe()-rule isapplied,
then, at the successor ! corresponding to (b)p, (6.1.10) defines C(1,p)=C(s,{b}p)
and C(1, p) = C(s.[b]p). Whenever such a conflict occurs, the list of higher priority
is kept and the other is discarded, where the priority of a list is determined by the
position in G of its highest priosity u-counter. 11 the lists contain no u-counters,
say C=(cy,....¢) and C'=(c},... .¢4), then we discard C' and set ¢=
max{c.ci}, 1sisn.

Whenever two lists C', C are in conflict and C' is the one that is discarded, we
write C' = C and ¢’ - ¢ for ¢'€ C', c€ C with X(c") = X(c).

(6.1.13) Whenever a pu-counter changes priority due to the deletion of a higher
priority u-counter, it is resct to 0. Whenever a a-counter c€ C is incremented or
reset to 0, and d is a »-counter appearing to the right of ¢ on C, then d is also
reset to 0.

Results on the prapositional u-colculus 4s

6.2. The algorithm

We now describe an alternating Turing machine algorithm to construct the tableau.
The algorithm starts with one process at the root ro. It then applies the extension
rules in a regular fashion, accepting or rejecting on certain conditions described
below. When visiting node s of T, a process has representation of I, written on its
tape. It also maintains all the lists of counters as described above. At applications
of the v-rule, it makes an existential branch, spawning two subprocesses, each taking
one of the successors. At applications of the {)-rule, it branches universally,
spawning several processes, one for each successor.

At any node, the a-, v-, - and X-rules are applied first. The X-rule may only
be applicd to a v-variable X ¢ I, if c(s) =0, where ce C(s, X) and X(c)=X.

Whenever one of the following conditions obiains, the process takes the indicated
action.

(6-2.1) There exist P, 7P e I, Halt and reject.

(6.2.2) Some u-counter exceeds 2"V, Halt and reject.

(6.2.3) The only rule that applies is the {)-rule {ie.. I} contains only formulas of
the form P, =P, (a)p, [alp, or s-variables X whose counters are nonzero), and
neither of the previous conditions holds. Apply the {)-rule.

(6.2.4) No rule applies and none of the previous conditions hold. Halt and accept.

Let |G| denote the maximum length of Gis). Since G(s) is a shuffic of at most
1pol lists Cu(s, p) and each [Cau (s, p)l < 1pl, |Gl =< | pol>. The above algorithm requires
at most | pol® space, enough to encode I, and |G| = | pol? counters, each containing
a nonnegalive integer at most 2'%, Despite the possibility of infinite computations,
this alternating algorithm can be simulated in deterministic exponential time (3].

The next lemma is used here to show that one of the conditions (6.2.1)-(6.2.4)
must obtain after a finite time. The lemma is used again in Section 6.3.

Definition 6.2.5. Let $= 5. 01, 52, £2. - « - + S 1o = 1 be nodes along some pathin T
such that s,., is an immediate successor of £, 1 S i<n. Letc=c¢,,....c, becounters
such that ¢, exists in the interval [s,) and ¢, - ¢,., at 4, (therefore ¢, no longer
exists at 5,.,). Let a, be the number of times ¢, is incremented in the interval [s,. 1.},
and define

alc.s.)= ¥ a:

Isisn

Lemma 6.2.6. If either (i) ¢ is a p-counter, or (i) ¢ is a v-counter and the { Y-rule is
not applied in the interval (s, t), then

ale, s, 0)s|pl*2™",

M6 . Kozen

Proof. (i) Let ¢, 5. 4, ¢, 5. 1, 1 < i n, be as in Definition 6.2.5. Note that X(c)=
X(c), Vsi=n Let pel, such that ¢,€ C(s,p), and let d, be the leftmost
u-counter on C(s, p,). Using Lemma 3.3.3, it can be shown that d, exists throughout
the interval (s, 1,] leftmost on the same list as ¢, and d, - -+ = d,. Since the priority
of d, never decreases, and d, . is of higher priority than d,. the sequence dy»---—+d,
is no longer than |Gl

Let N =2, the maximum value of ¢, In the interval (s, ¢], ¢,’s priority can
increase at most |G| times. Between priority changes, whenever ¢, is reset t0 0, a
counter of higher priority is incremented. Thus ¢, can be incremented or reset to
0 at most N'“! times before either ¢, or a higher priority counter exceeds N and
condition (6.2.2) obtains, causing the process to halt and reject. Thus ¢, can change
priority, be reset, or be incremented at most [GIN'™! times. This gives an upper
bound on the a, of Definition 6.2.5, thus

alc s, 1)< |G|2Nm'5 |Pn|‘2"‘"'_

(ii) If there exists a u-variable Y active in X(c), then for each i, there exists a
u-counter d, appearing leftmost on the same list as ¢, throughout the interval [s,, 4]
As above, the length of the sequence ¢; =« * - = ¢, is at most |G|. Within the interval
{3~ 4}, €, can be reset to 0 only if the ()-rule is applicd (6.1.10) or some u-counter
10 the left of ¢, is incremented or reset to 0 (6.1.13). The former does not occur
by assumption. The latter occurs only if the rightmost u-counter to the left of ¢, is
incremented or reset to 0. By (i), this can happen at most |G|N*"! times, from which
the bound follows.

If there does not exist a u-variable active in X(c), then ¢ cannot be reset in the
interval [s. t]. since neither (6.1.10) nor (6.1.13) occurs. Thus ¢ or ¢ can be
incremented at most onee in [s, {], since the X-rule is never applied when a counter
is nonzero, and therefore alc, s, 0)=<1. O

Lemma 6.2.7. One of conditions (6.2.1)-(6.2.4) must obtain after a finite time.

Proot. Suppose there were an infinite path in T with the v-, A-, o- and X-rules
applied along that path without one of (6.2.1)-(6.2.4) cver obiaining. Each rule
except the X-rule decreases the size of I, as measured by the total number of
symbols in formulas in I, therefore there must exist a variable X to which the
X-rule is applied infinitely often. Moreover, X can be chosen such that oX is
<-minimal.

By Lemma 6.2.6, each ¢ with X(¢) = X that exists along the path must disappear
after a finite time. This says that a new counter for X is created infinitely often
through application of the o-rule. But then there must be a Y with ¢Y < oX such
that the X-rule is applied to Y infinitely often along the path, contradicting the
<-minimality of X. O

Results on the propositivnal u-calculus Rk

6.3. Proof of main theorem

The following theorem asserts the correctness of the algorithm and the complete-
ness of the deductive system of Scction 5 simultaneously.

Theorem 6.3.1. The following are equivalent:
(i) pu is consistent,
(ii) the algorithm does not reject,
(iii) po has a finite tree-like model of depth exponential in | ol

Proof of (i) (if). Suppose p, is consistent. First we construct a formula e'(s.p)
for each pe T, such that ¢'(s, p) s e(p). €'(s, p) is formed by conjoining certain
closed formulas r(s, ¢), c€ Culs, p) (1o be defined later) with certain subformulas
of e(p), as follows. Let V,=X=X,....,X,. For X,€Ap, ¢,€ Cu(s p) with
X(c)=X, and oX,=uX.9X, let q,=pnX.(r(s, ¢)agX,). For X;e V,- Au,, let
g, = o X, Define

¢(s.p)=plX/4)

By Proposition 5.7(iii), €'(s, p) = e(p).

Each r(s, c) consists of a conjunction of closed formulas, defined inductively down
the tree. 1If neither the o- nor the X-rule is applied at s, or if the o- or X-rule is
applied to a v-variable, let

(6.3.2) r(t,c)=r(s, ¢)

for all successors ¢t of 5 and counters ¢ € G(1). If the o-rule is applied to uX.pX at
s, yielding a new counter ¢ on C(s+, pX) with X(c)= X, define

(6.3.3) r(s+,c)=true,
(6.3.4) r(s+.d)=r(s,d), deC(s+,pX), d#c

If the X-rule is applicd to the p-variable X at s, and ce C(s+, X) with X(c)=X,
define

(6.3.5) r(;+. d) = true il d is of lower priority thanc,
(6.3.6) r(s+,d)=r(s,d) il disof higher priority than ¢,
(6.3.7) r(s+.c)=r(s.c)and’,
where
a,={e'(s+.p)lpel,.p# X}

The formula r(s+, ¢) in (6.3.7) is well-defined, since (6.3.5) and (6.3.6) determine
r(s+.d) for all d # c, and these determine ¢'(s+. p) for all pe I p# X, and hence
determine 4.,

348 D. Kozen

Note that 7(s, ¢) consists of a conjunction of c(s) closed formulas (by conavention,
Ag=1):

r(s, €)=AAL A ATNEL

where s;, 0= i < c(s), is the most recent ancestor of s such that ¢ had value &
Let

4,={e(s.p)lpel’).

We now construct a set B of nodes of T containing the root r, such that

(6.3.8) if se B and the v-rule was applied at s, then at least one successor of s
isin B,

(6.3.9) for any other node s€ B, all successors of s are in B,

(6.3.10) for cvery s€ B, 4, is consistent.

The set B is constructed inductively down the tree. First set B:={r}; 4, ={po} is
consistent by assumption.

Suppose s€ Band the v-ruleisappliedtopvqats, and 4, u are the two successors
of & If pe I', already, and C(s, p) is of higher priority than the sublist of C(s,pvq)
corresponding to the active variables of p, then the latter list is deleted in (6.1.12),
so that 4,< 4, Then 4, is consistent since 4, is, so we can extend B by taking
B:= Bult). Similarly, if g€ I', and C(s, q) is of higher priority, then we can take
B:= Bu{u}. If ncither of the above cases holds, then

e(s,pvg)se,pve(uq), Ad,sAd,vald,

By Axiom {5.1), one of 4,, A, must be consistent, say 4, Set B:= Buli}

Similarly, at applications of the a-,{)- and &-rules, and applications of the X-rule
to v-variables, B can be extended to include all successors, since if 4, is consistent,
then 4, is consistent for all successors &

At an application of the o-rule to a p-formula at s, a new r(s+, c) appears, but
it is frue at that point, and so does not affect the consistency of 4,., by Proposition
5.7iii). At applications of the o- and X-rulc to v-formulas, and applications of the
A-, v- and {)-rules, no r(s, ¢) changes.

1t remains to show that 4,, is consistent when the X-rule isapplied toa p-variable
X at s B. It is here that we use Proposition 5.7(vi). Let oX = pX.pX and let
ce C(s, X) with X =X(c). If pXe I, already, and C(s, pX) is of higher priorily
than C(s, X). then 4,< 3, as above, and we arc done. Oherwise, 4} is obtained
from A, —{e’(s. X)} by replacing some r(s, d) with r(s+, d) = true, namcly for those
d of lower priority than c at s. Thus

(6.3.11) ad,s a4} ae'(s, X).
Therefore, since 4, is consistent by hypothesis,

(6.3.12) 4, ufe'(s, X)) =4, ulpX(r(s, c)ap' X))

Resulis on the propositional u-calculus 349

is consistent. Using Proposition 5.7(vi) it follows that
(6.3.13) A\ u{p'(uX.(r(s.c)aad; ap' X))
is consistent. But (6.3.13) is equal to
A ulp' (eX.(r(s+,)ap' X)}= 4, uie'(s+, pX)} = 4,.,

therefore the latter is consistent.

The above construction gives a subtree B satisfying conditions (6.3.8)-(6.3.10)
above. We show now that if = is any process in the computation tree of the above
alternating algorithm visiting node s of the tableau, and is labeled 0 (reject),
then s¢ B.

A process = may halt and reject outright because of cither (6.2.1) or (6.2.2). In
(6.2.1), there exist P, 2 Pe 4,, therefore 4, is inconsistent by (5.1), hence s¢ B by
(6.3.10). In (6.2.2) there must exist two ancestors &, v of s such that [, =TI, and
the X-rule is applied to the u-variable X(c) at 4 and v, thereby incrementing ¢ at
u and v, and c is not reset in the interval [, v]. This also implies that the priority
of ¢ is unchanged between u and v. If de G(u) of higher priority than ¢, then
de G(p) with the same priority, and d{u) = d(v), otherwise ¢ would have been
reset between u and ©. Then r(ut+, d) = r(v+, d). The set of counters of lower
priority than ¢ at u may differ from that at v, but r(u+, d) = r(v+, d’) = true for
any such d, d', because these counters were reset to 0. Then

(6.3.14) 4, =4,.

Now -4, appears in r{ut,c) and hence in r(v,c), and e'(v X)=
#X.(r(v,) A pX) € 4,, therefore

(6.3.15) Ad,=r(v, c)<nd), =4,
by (5.1), Proposition 5.7(iii) and (6.3.14). On the other hand,
ad,<sad), by (6.3.11).

Thus 4, is inconsistent, and ve B by (6.3.10). Since v is an ancestor of s, 5& B.

If = is a universal branch, then one of the successors p of w must be labeled 0
in the algorithm, and p is visiting a successor f of s. By induction, 1€ B, therefore
s¢ B by (6.3.9). I = is an existential branch, then both successors p, 1 of 7 must
be labeled 0 in the algorithm, and p, 7 are visiting successors 4, u of s. By induction,
1, u€ B, therefore s¢ B by (6.3.8). Proceeding back up to the root, if the initial
process mo were labeled 0, then ro# B, a contradiction. Thercfore the algorithm
does not reject.

Proof of (il) - (i#}). If the algorithm does not reject, prune all nodes of the tablcau
T visited by processes of the algorithm labeled 0 (rcject). Prune further so that
each v-node s has exactly one successor s+. The tree T” so obtained satisfies (6.3.8)
and (6.3.9) above, and contains the root 7o

350 0. Kazen

We now define a model M =(S, 1) from T. Let S be the set of nodes of T such
that either the { }-rule was applied at s, or no rule was applicable at s (thus s isa
leaf). Each edge out of a node in § is labeled with a unique program constant, and
all other edges are unlabeled. For se ', let U(s) be the set of nodes of T’ consisting
of s and all ancestors on the path back up to, but not including, the most recent
ancestor in S; or back up to and including the root, if no ancestor of s is in 5. Note
that if s€ S and s~ u in T", then by Lemma 6.2.7 there exists a unique node (€S
such that ue U(1). For s, 1€ S, let (s, £) € I(a) if there is an edge from s to a node
in U(1) labeled a. Let se I(P) if PeT,

We construct a set of closed formulas 6, of Lu+ for each se€ T, as follows. Let
pel, V,,=X=X.,. s X oXi=0X,pX. | X, € Ap, and ce C(s, p) with X, =
X(c), let

a(s,c)= sup alc, s, q=als)X.pX,

where alc, 5, 1) is given as in Definition 6.2.5. If X,€ V,— Ap,, let ¢,=0X. Let
d=4qi..-..q, and define

s p)=p X4, @.=(e(s.plpel). 6,=ulBilte U(s)).

Define p' p if p' is identical to p except that some a occurring in subformulas
aX.qX of p may be replaced by some B < a. We show that, for all seS,
{6.3.16) if paqe O, thenp,qe 8,
6.3.17) if pvqe O, then either pe 8, or 9€ 6,
(6.3.18) if {(a)pe B, then 3t S, (s, 1)cl(a)and pe o,
(6.3.19) if [a]pe B, then ¥ 1€ S, (s, 1) € I(a)~»3 p' € p such that p'€ 6,
(6.3.20) if aX.pX € 6,, a an ordinal o7 u. then p(BX.pX) € O, for some < a,
(6.3.21) if ¥X.pX € 6,, then p(»X.pX)e o,

Proof of (6.3.16). If page O,, then Are U(s), 3 p’.q’ with pag= e'(Lp' rq)e
0., p'ag'el, and the a-rule applied to p'aq’ at ¢ Then p', ¢'€l,, and p=
e(t+,p'), g=e"(1+.¢'), thus p, g €, £ 6,

Proof of (6.3.17). The proof of (6.3.17) is similar to (6.3.16).

Proof of (6.3.18). If (a)p€ O,, then {(a)pe O,. By the {)-rule, some g-successor U
of s has pe 6., and by Lemma 6.2.6 there is a unique descendant f of u with te S
and uc U(1). Then (s, 1) e I(a) and pe 8,

Proof of (6.3.19). This proof is similar to that of (6.3.18), except that p' G p appears
in 8, instead of p, because if [a)p”e I, with [a)p = e"(s,[a]p"), then, by (6.1.5), p
appears in 1, for all a-successors u of s, and

a(s,c)=supalt,c) foranyce Cul(s.p”).

Results on the propovitional u-calculus)

where the supremum is taken over all @-successors of 5. Some of these a(e o)
may be strictly less than a(s, c).

Proof of (6.3.20). Eithera=pg oracw If a =y and pX.pX € 6, then 3 te U(s),
3p' X with
sX.pX =e(tuX.p' X)=uXp' X[X/§lc 6,

where X = V,x,x aX.p'X e, and the o-rule applied to uX.p'X at & Then
p'Xel, and

(4. P X)=p X(R, X/q alt+,)X.p'X]=p'(a(t+,) X.p' XN X/4]
=p(a(t+,c)X.pX)€ 6,.c 6,
where ce C(1+, p' X) with X = X(c).
If a € and aX.pX € 8,, then A re U(s), Ip'X with
aX.pX=e"(t, X)=X[X. X/§,aX.p'X)e O,
where X =V, x,x. Xe T, the X-rule is applicd to X at ¢, and a = a(t, ¢) where
ce C(1, X) with X =X(c). Then p'X eI, and
e+, p'X)=p' X[X, X/§ a(t+,c)X ' X]
=p'(a(t+,c)X.p' X)X/§]
=pla(t+,) X.pX)€ 8,.c 6,
where ¢’ € Clt+, p'X) with X = X(c’). Either ¢=¢’ or ¢ - ¢’, but in either case,
alt, c) = a1+, ¢’)+ 1, therefore (6.3.20) is satisfied.

Proof of (6.3.21). If vX.pX €@, then 3re U(s), 3p'X such that »X.pX =
(¢, ¥X.p'X) and the o-rule is applied to vX.p'X e T, or vX.pX = ¢"(t, X) and
X e I In the former case we procecd as in the proof of (6.3.16). In the latter case,
if ce C(1, X) with X(c) = X, and c(f) # 0, then there must have been a most recent
time ¢' at which the value of ¢ changed from 0 to 1. Then any x-counter d appearing
to the left of ¢ on C(f', X) exists at ¢, and the X-rule is not applied to X(d) in the
interval [#'+, 1], nor is d reset, otherwise ¢ would have been reset. Then a(d,)=
a(d, '), therefore vX.pX = e*(t', X), and the X-rule is applied to X at I, Asin
the proof of (6.3.20),

e(r'+,p’' X)=p(vX.pX)e 6,,< 6,
Now dcfine
g"={seS5|3q'cq.q'€6,}.

Note that if ¢’ € . then ¢'* ™. 1 =gy,qm let " =q0\... .q9. We show
by induction on formula structure that, for any p(X) and ¢,

(6.3.22) p(g)” < p™(G").

382 D. Kozen

By definition of M,
P?={s|Pe 8,}=P",
aP?={s]Pe 0} P by (6.2.1) and (2.2.4),
X" =q” =X"(q°).
For the case pv g,
Pva(@” s p)”ve(@)® by(6.3.17)
c p™(§™")vq™(3®) by induction hypothesis
=(pvg™(@") by(223).
The case p a q is similar, using (6.3.16). For the case (a)p,
(a)p(d)” = (a™)(p(§)") by(6.3.18)

<@ (p"(g"n
by induction hypothesis and the monotonicity of (a™)

=(a)p™(§”) by(2.2.5).
For the case {alp,

(n]p(ri)":—[a“](U p(q)"') by (6.3.19)

AQTCPQ)
c[a*](p(4)*) by monotonicity of [a™]

cla“)p™(q")
by induction hypothesis and the monotonicity of [a™)

=[alp™(¢@") by(3.1.2).
For the case aX.pX, where cither a =p or a€ w,
aX.pX(§)* < p(BX.pX(4),§)" forsome B <a,by(6.3.20)
< pM(BX.pX(3)",4”) by induction hypothesis on p

c phl(pxpo(qﬂ) qﬂ)
by induction hypothesis on 8 and the monotonicity of F

=(B+ DX.pXM(4") by (2.2.6b)
< aX.pXM ("),
since B + | < a. Finally, for the case vX.pX,
vX.pX(§)" S pvX.pX(§.)" by(6.3.21)
c pM(vX.pX(§)”.§") by induction hypothesis.

Results on the propositional g -calcutus 353

By (3.1.1), ¥X.pX"'(4§") is the greatest fixpoint of the operator AXpM(X. ™).
therefore

vX.pX (P < vX.pXY(§%).

This completes the proof of (6.3.22).

Taking p=po in (6.3.22), we get ro€ py S py’. therefore M, rl=pp. A finite
tree-like model of the appropriate size can be obtained from M by the technique
in [8, 13).

Proot of (iil) = (}). This asserts the soundness of the deductive system and is left
to the reader. O
Acknowledgment

1 would like to thank Rivi Sherman and Joe Halpern for pointing out mistakes

in an earlier version [14], and Steve Bloom, Allen Emerson and Joe Halpern for
valuable suggestions.

Relerences

(1] 1.W. De Bakker, Mat} ical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs, NJ,
1980).

(2) 3.W. De Bakker and W. De Roever, A calculus for § h Proc. 13t Intemat.
Coll.onA L and Prog g (North- llolland Amstcrdam 1972) pp. 167-196.

{3) A. Chandra, D. Koun and L. Stockmeyer, Allemuon J. Assoc. Comput. Mach. 28 (1) (1981)
114-133.

{4) E.A. Emerson and E.M. Clarke, Cham:lmaag coueclnm pvopemu of parzllel programs using
fixpoints, Proc. 7th I Coll. on ¢ and Prog 1g. Lecture Notes in
Comp Sci 8S (Springer, Beslin, lDﬂO)w lﬁ')-lBl

[5] E.A. Emerson and E.M. Clarke, Design and synthesis of syachronization skel using branching-

time temporal logic, in: D. Kozen, ed., Pmr Workshop on Logics of Programs, Lecture Notes in
Ci Sci 131 (Springer, Berlin, I982)pp 52-71.
(6) M. l-‘ndm and R. l.adnct Propositional d ic logic of regular prog . J. Compul. System
Sci. 18 (2) (1979} 194-211.
[71p Hitthmcls nnd D.M.R. Park, lnducmn rules and termination proofs, Proc. 131 Iniernat. Collog.
on A iguages and Prog g (Norih-Holland, A lam, 1973) pp. 225-251.
{8) 3. Holpemn nndl Reif, The prapositional dymmv: logic of deterministic, well-structured programs
{extended absiract), Proc. 22nd IEEE Symp. on Foundations of Computer Science (1981} pp.
322-334.
9 D Kozen, A sepresentation lheomn tor modeh of s-free PDL., Proc. 7th fnternar. Collog. on
guages, and Prog, 2. Lecture Notes in Computer Science 85 (Springer, Bedlin,
1980). pp- 352-362
{10} D. Kozen. On the duality of dynamic algebras and Kripke models, in: E. Engeler. ed.. Proc.
Workshop on Logic of Programs, Lecture Notes in Computer Science 128 (Springer. Berlin, 1979}
pp. 1-11.
[11) D. Kozen, On induction vs. *-conlinuily. in: [). Kozen, ed.. Proc. Warkshap on Logics of Programs
1981, Lecture Notes in Computes Science 131 (Springer. Berlin, 1982) pp. 167-176.

354 D. Kozen

[82) 0. Kozen, On the expressi of . Unpublished ip

[13) 1. Kozen. Small models for the pr o itiona) u-calculus. Unpublished tipt

(14) l) Kozea, Results on lhe pop) u-cakulus, Proc. Yth Collag. on Auwtomata,
ges, and Prog 2 11982) pp. 348-35Y,

(15) D Kozen and R. Parikh, An elmnnry proof of the compleieness of PDL., Theoret. Comput. Sci.
14 (1989) 113-118.

[16) D. Knzen and R. Pasikh, A decision proceduze for the propositional u-calculus, in: E.M, Clarke and
0. Kozen, eds., Proc. Workshop on Logics of Programs 1983, Lecture Noutes in Compuler Science
{Springes. Berlin, 1983).

[17) D.M.R. Park, Fixpoint induction and proof of p ics, in: B. Meltzer and D. Michi
eds., Mach. Int. § (Edinburgh Univ. Press. 1910) pp 59-78.

(18] V.R. Prat1, A near oprimal method for ng about action, J. Comput. Systems Sci. 20 (1980)
231-254.

[19] V.R. Pratt, A decidable s -calculus (Preliminsry Rept.), Proc. 22nd IEEE Symp. on Foundations of
Computer Science (1981) [421427,

{20} W.P. De Roever, R gr ch : Semantics and proof theory, Ph.D. Theus, Free
University, Amsterdam, 1974
[21) R. Street1, Propositional dynamic logic of looping and , Proc. 13th ACM Symp. on Theory

of Computing (1981) pp. 375-38].
{22) D.Scottand). W. De Bakker, A theory of programs, Unpublished manuscript, |BM. Vienns, 1969.

| e ':‘

