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The Myhill-Nerode Theorem as stated in [6] says that for a set R of strings
over a finite alphabet ¥, the following statements are equivalent:

(i) R is regular

(ii) R is a union of classes of a right-invariant equivalence relation of finite
index

(iii) the relation =g is of finite index, where x =g y iff Vz € ¥ 22 € R «
yz € R.

This result generalizes in a straightforward way to automata on finite
trees. I rediscovered this generalization in connection with work on finitely
presented algebras, and stated it without proof or attribution in [7, 8], being
at that time under the impression that it was folklore and completely elemen-
tary. It was again rediscovered independently by Z. Fulop and S. Vagvolgyi
and reported in a recent contribution to this Bulletin [5]. In that paper they
attribute the result to me.

In fact, the result goes back at least ten years earlier to the late 1960s. 1t is
difficult to attribute it to any one paper, since it seems to have been in the air
at a time when the theory of finite automata on trees was undergoing intense
development. In a sense, it is an inevitable consequence Myhill and Nerode’s
work [9, 10], since “conventional finite automata theory goes through for
the generalization—and it goes through quite neatly” [11]. The first explicit
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mention of the equivalence of the tree analogs of (i) and (ii) seems to be
by Brainerd [2, 3] and Eilenberg and Wright [4], although the latter claim
that their paper “contains nothing that is essentially new, except perhaps
for a point of view” [4]. A relation on trees analogous to =p was defined
and clause (iii) added explicitly by Arbib and Give’on [1, Definition 2.13],
although it is also essentially implicit in work of Brainerd [2, 3].

All the cited papers from the 1960s involve heavy use of universal algebra
and/or category theory. In these papers, a tree automaton is a finite ¥-
algebra, and the map 5 (see below) is a Y-algebra homomorphism. Although
exceedingly elegant, this approach renders the result less accessible to the
average computer science undergraduate. Fulop and Vagvolgyi take a some-
what different approach, appealing to the theory of term rewriting systems,
tree transducers, and NTS grammars. Again, although this approach reveals
some interesting and fundamental connections, it is rather involved and not
suitable fare for undergraduates.

In contrast, the proof I had in mind when writing [7, 8] is a straightfor-
ward and comparatively mundane generalization of [6]. It can be appreciated
by computer science undergraduates familiar with the Myhill-Nerode The-
orem but with no knowledge of universal algebra, category theory, or term
rewriting systems.

My purposes in writing this note are threefold: to set the record straight
with respect to attribution; to apologize to Filop and Vagvolgyi for giving
them the impression that I should be credited with the result; and to present
an elementary proof in the style of [6].

Definitions

Let X be a finite ranked alphabet. The rank of f € ¥ is called its arity. The
set of n-ary elements of ¥ is denoted ¥,,. The set of ground terms over X
is denoted T%. A congruence on Ty is an equivalence relation = such that
fs1...8, = fti...t, whenever f € ¥, and s, =¢;, 1 < < n. A congruence
= is finitely generated if it is generated by a finite subrelation. It is of finite
index if there are only finitely many =-classes. It respects A C Ty if Ais a
union of =-classes.
A (deterministic, bottom-up) tree automaton over ¥ is a tuple

M = (Q,%, F,0)



where () is a set of states, F' C () is a set of final states, and ¢ is a transition
function

S, x Q" — Q.

In other words, 6 takes an input symbol f € ¥ and an n-tuple of states
Q1 - -y n, Where n is the arity of f, and produces a next state 6(f, ¢1,...,qn) €
Q.

Tree automata over ¥ run on ground terms over Y. Informally, an au-
tomaton starts at the leaves and moves upward, associating a state with
each subterm inductively. If the immediate subterms #;,...,%, of the term
ft1...1, arelabeled with states ¢, ..., ¢, respectively, then the term f¢,...¢,
will be labeled with state 6(f,¢1,...,¢,). The term is accepted if the state
labeling the root is in F'.

Formally, define the labeling function §:Ts — () inductively by

S(fty . ty) = 8(F,6(t),...,6(tn)) .

Note that the basis of the induction is included in this definition: g(c) = 6(c)
for ¢ nullary.

The term ¢ is said to be accepted by M if g(t) € F. The set of terms
accepted by M is denoted L(M). A set of terms is called regular if it is L(M)
for some M.

This definition extends the usual definition of automata on finite strings
in a natural way: we can think of an automaton on strings over a finite
alphabet ¥ as a tree automaton over ¥ U {0} turned on its side, where we
assign O arity 0 and elements of ¥ arity 1.

The Myhill-Nerode Theorem for Trees

For a given R C Ty, define s =g t if for all terms u with exactly one
occurrence of a variable x and no other variables,

ulr/s]€ R < wulz/t]e R.

Theorem (Myhill-Nerode Theorem for trees) Let R C Ty. The fol-

lowing are equivalent:



(i) R is reqular
(ii) there exists a finitely generated congruence of finite index respecting R
(iii) the relation =g is of finite index.

Proof. (i) — (iii) Suppose R = L(M) where M = (Q, X, F,§). We show
that if 5(3) = g(t) then s =g t, thus there are no more =-classes than states
of M. If 5(3) = g(t) and v is any term with exactly one occurrence of a
variable x, then according to the behavior of the machine,

d(ule/s]) = o(ule/t]).

This follows formally from an easy inductive argument on the depth of wu.

Thus
uefs € R o Bule/s])eF o Sule/)eF o u/eR.

Since u was arbitrary, s =g t.

(iii) — (ii) We show that =p is a finitely generated congruence respecting
R. Tt is clearly an equivalence relation. It is also a congruence, since if f is
n-ary and s; =g t;, 1 < ¢ < n, then for any u with exactly one occurrence of
a variable z,

ule/fs1...818itiy1 .. ) ER — wulx/fsy... syt .. ly/si] € R
o ule/fs1.. o sioytivn -Gy /] € R
— u[x/fsl---si—ltiti—l—l---tn] € R 5

therefore
f81 Ce Si—lsiti-l—l Ce tn =R f81 Ce Si—ltiti-l—l Ce tn R

and fsy...s, =r ft1...1, follows from transitivity. It respects R, since if
s =g t, then

seER o zfx/s]e R « z[zf/tj]eR < t€R.

It is finitely generated, since any congruence = of finite index is: if U C Ty

is a complete set of representatives for the =-classes, then = is generated by
the finite subrelation consisting of all equations in = of the form

fui...u, = u



for wy,...,uy,u € U and f € ¥,,. This is because every term is equivalent
to some u € U in the congruence generated by this subrelation, as an easy
inductive argument shows.

(i) — (i) Let = be the congruence, and let [{] denote the =-class of
t. Form an automaton M with states @ = {[t] | t € Ty}, final states
F ={[t] |t € R}, and transition function

S(F [t [ta]) = [ftr...ta] .

The function ¢ is well-defined, since if [s;] = [t;], 1 <¢ <n, then [fs,...5,] =
[ft1...1,]. Moreover, an easy induction shows that 6(¢) = [t] for all ¢, thus

teR — [tJeF o §l)eF o teLl(M).
O

In complete analogy with the case of strings, the congruences on Ty of
finite index respecting R are in one-to-one correspondence (up to isomor-
phism) with the deterministic bottom-up finite tree automata with no inac-
cessible states accepting R, and there is a unique minimal such automaton
corresponding to the congruence =p.
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