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Abstract

The modular group occupies a central position in
many branches of mathematical sciences� In this paper
we give average polynomial�time algorithms for the un�
bounded and bounded membership problems for �nitely
generated subgroups of the modular group� The latter
result a�rms a conjecture of Gurevich ����

� Introduction

��� The Modular Group

The modular group � is a remarkable mathematical
object� It has several equivalent characterizations�

�i� SL��Z��� I� the quotient of the group SL��Z� of
��� integer matrices with determinant 	 modulo
its central subgroup f�Ig


�ii� the group of complex fractional linear transfor�
mations

z ��
az � b

cz � d

with integer coe
cients satisfying ad� bc � 	


�iii� the free product of cyclic groups of order � and �

i�e�� the group presented by generators R�S and
relations R� � S� � 	


�iv� the group of automorphisms of a certain regular
tesselation of the hyperbolic plane �Figure 	�
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Figure 	� A tesselation of the hyperbolic plane�

�v� the group of sense�preserving automorphisms of
the undirected cubic plane tree �Figure ���

The modular group is intimately connected with
the theory of elliptic curves� modular functions and
modular forms� hyperbolic geometry� and number the�
ory �	��

For instance� it is known that elliptic curves can
be uniformly parametrized by the Weierstrass � func�
tion� This function is invariant under the action of a
group of transformations of the plane isomorphic to
Z�Z� This action gives rise to a discrete Euclidean
tesselation of the plane� In contrast� a hyperbolic uni�
formization is a uniform parametrization of the ellip�
tic curve by functions that are invariant under the

�Reproduced from Klein 	�
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Figure �� The undirected cubic plane tree

modular group � or some subgroup of it� Here the
so�called congruence subgroups of � play a dominant
role� The Taniyama�Weil conjecture states that all
elliptic curves with rational coe
cients admit such a
uniformization by functions invariant under some con�
gruence subgroup of �� It is known that a counterex�
ample to Fermat�s Last Theorem would invalidate this
conjecture� While some di
culties remain� it appears
that Andrew Wiles has made a signi�cant advance to�
wards resolving this conjecture�

The modular group is also deeply connected with
many algorithmic issues� For instance� the ordinary
Euclidean integer gcd algorithm can be understood in
terms of a basis reduction algorithm on � � � integer
matrices� where the reducing operations are elements
of the modular group in the form �i� above� This con�
nection allows us to apply a result of Yao and Knuth
�	�� concerning the integer gcd algorithm in our anal�
ysis�

Some algorithms of Sch�onhage �	�� 	�� can be best
understood in light of the modular group�

A recent paper by Yap �	�� is concerned with the
modular group and its connection with lattice basis
reduction algorithms� The basis reduction algorithms
of Lenstra� Lenstra and Lov�asz �	�� have had consid�
erable impact on algorithm design and analysis� rang�
ing from integer programming to polynomial factor�
ization�

Finally� we note that the modular group has found
applications in computational learning theory ����

��� Subgroup Membership

In this paper we consider four natural decision
problems for the modular group ��

The Unbounded Subgroup Membership Prob�
lem Given a �nite subset S � � and an element
x 	 �� is x contained in the subgroup of � generated
by S�

The Bounded Subgroup Membership Problem
Given a �nite subset S � �� an element x 	 �� and
n 
 � in unary� can x be expressed as a product of at
most n elements of S and their inverses �repetitions
allowed��

The Unbounded Submonoid Membership
Problem Given a �nite subset S � � and an el�
ement x 	 �� is x contained in the submonoid of �
generated by S�

The Bounded Submonoid Membership Prob�
lem Given a �nite subset S � �� an element x 	 ��
and n 
 � in unary� can x be expressed as a product
of at most n elements of S �repetitions allowed��

The only di�erence between the subgroup and sub�
monoid membership problems is that in the subgroup
membership problems� inverses are allowed� The sub�
group membership problems reduce to the submonoid
membership problems by simply including the inverses
in the set S�

We assume that these problems are presented in the
form �i� of x	�	
 that is� as �� � integer matrices with
entries written in binary�

��� Average�Case Complexity

The study of NP�hard problems that are hard on
average was initiated by Levin �		� and generated con�
siderable subsequent interest ��� �� �� �� 	���

Suppose the inputs to an algorithm occur randomly
according to a distribution with the property that the
probability that the input size is n is either zero or
at least n�k for some �xed k� Such a distribution is
called regular� �For de�niteness� Gurevich ��� takes
the probability of the event jxj � n to be proportional
to n���logn���� but any regular distribution will do��

A deterministic algorithm runs in polynomial time
on average if there exists an � � � such that

X
x

T �x��

jxj
Pr�x� � � �

where T �x� is the running time of the algorithm on
input x� For regular distrubutions� it su
ces to show
that there exists an � � � such that for all n�X

jxj�n

T �x�� �Prn�x� � nO��� �

where Prn�x� denotes the conditional probability that
x occurs given that the size of the input instance is n
��� ���

�



Gurevich ��� applied this notion to several algebraic
problems� In particular� he showed that certain matrix
decomposition problems involving the modular group
are hard on average�

Gurevich de�ned the bounded subgroup member�
ship problem stated in x	�� and conjectured that it
was polynomial time on average�

��� Main Results

In this paper we show�

Theorem ��� The bounded and unbounded member�
ship problems for �nitely generated subgroups and sub�
monoids of the modular group can be solved in polyno�
mial time on average�

This a
rms Gurevich�s conjecture�
We do not know whether the subgroup membership

problems are NP�hard� However� the semigroup mem�
bership problems are quite easily shown to be NP�hard
by a straightforward encoding of the subset sum prob�
lem�

��� Overview

Our approach is to convert x and every element
in S to the representation �iii� of x	�	 �i�e�� words in
fR�Sg
 reduced modulo the identities R� � S� � 	��
and work in that representation�

This will be of little use if the representation �iii� is
too long or if it is hard to compute from the represen�
tation �i�� It turns out that it is easy to compute� but
may be exponentially long in the worst case� However�
it is short on average�

Our analysis makes use of an intermediate repre�
sentation ������ which is similar to �iii�� but for which
a polynomial bound on the average length is known�
The lengths of minimal representations in �iii� and
����� are mutually proportional�

Our analysis proceeds in two steps�

�i� In x�� we give deterministic polynomial�time al�
gorithms in representation �iii� for the bounded
and unbounded membership problems� These
algorithms reduce the problems to a certain
automata�theoretic reachability problem�

�ii� In x� we show that the process of converting an
input instance from representation �i� to repre�
sentation �iii� and then executing the algorithm
of x� on the resulting data gives an average�case
polynomial�time algorithm� This part of the ar�
gument relies on an estimate of Yao and Knuth
�	���

The same techniques also handle other related
groups such as SL��Z� or the congruence subgroups
of �� We do not treat these cases in this paper�

� Representations of �

To understand this work� one must �rst understand
the relationships among the di�erent representations
�i���v� of � described in x	�	� See �	� 	�� 	�� �� for
details�

In the representation �i�� elements of � are repre�
sented as � � � matrices with integer entries� The
group � is generated by the matrices

T �

�
	 	
� 	

�
R �

�
� �	
	 �

�

S � TR �

�
	 �	
	 �

� ���	�

Any two of these three matrices generate ��
These matrices correspond to the fractional linear

transformations

T � z �� z � 	 R � z �� �
	

z
S � z �� 	�

	

z
�����

on C � respectively� The matrices ���	� represent
the transformations ����� in homogeneous coordinates�
viewing them as linear transformations on the projec�
tive complex line� This gives the relationship between
the representations �i� and �ii��

Note that R is of order � and S is of order � �recall
we are working modulo �I�� In fact � is the free
product of the cyclic groups generated by R and S�
This gives the relationship with representation �iii��

To see the relationship with �iv�� observe that the
transformations ����� preserve the upper half planeH�
H can be regarded as a model of hyperbolic geometry�
where geodesic lines are semicircles or lines perpendic�
ular to the real axis� Under the appropriate metric� �
is a group of isometries of H� The region

fz 	 C j �
	

�
� �z �

	

�
� jzj � 	g

is a fundamental region for the action of �� and its
orbit gives a tesselation ofH� This region corresponds
to the union of the two uppermost central regions� one
shaded and one not� shown in Figure 	� Several works
by M� C� Escher are based on this universe�

To understand the connection to �v�� we observe
that the in�nite undirected cubic plane tree shown in
Figure � is embedded in Figure 	 by considering the

�



segment of the circle of radius 	 centered at � from
e��i�� to e�i�� as a directed edge E� then taking the
orbit of this edge under the action of the group� Every
element of � is uniquely identi�ed with a directed edge
produced in this way�

With this identi�cation� observe that R reverses the
direction of E� T corresponds to a left turn out of E�
and S � TR rotates about the vertex at the head of
E� In any product X� � � �Xn 	 fT�R� Sg
 applied in
order from right to left� the destination of E can be
calculated by reading the string X� � � �Xn from left to
right and interpreting T as �turn left � R as �reverse
direction � and S as �rotate clockwise about the ver�
tex before you � We can also de�ne U � ST ��turn
right ��

The group � has the following presentation in terms
of T �turn left�� U �turn right�� and R �reverse��

TRU � URT � R

TRT � U URU � T �����

R� � 	

The equations ����� can be applied as term rewrit�
ing rules to reduce any string in fR� T� Ug
 to nor�
mal form �R � ���T � U �
�R � ��� Every element
of � can be expressed uniquely as a product of this
form� and the length of any expression of this form
is within two of minimal among all expressions in
fR� T� U�R��� T��� U��g
 denoting the same group
element� This is a consequence of the fact that short�
est paths in the graph of Figure � are unique� A sim�
ilar statement holds for the presentation �iii�
 in this
case� normal forms are strings in fR�Sg
 with no oc�
currence of two consecutive R�s or three consecutive
S�s�

The presentations ����� and �iii� are interderivable
using the facts T � SR� U � SSR� S � TR� More�
over� these relations show that for any group element�
the lengths of the minimal representations in fR�Sg


and fR� T� Ug
 di�er by at most a factor of three�
In terms of representation �i�� the left and right

turns are

T �

�
	 	
� 	

�
U �

�
	 �
	 	

�
�

respectively� Note that elementary row and column
operations on �� � matrices �adding a row or column
to the other� are e�ected by multiplying on the left
or right by T or U � In this interpretation� the signi��
cance of the normal form �R����T�U �
�R��� is that
for any matrix� we can multiply by R on the left or
right if necessary to make all entries nonnegative� and

then there is a unique sequence of column operations
to bring the matrix to I while keeping entries non�
negative� The same is true for row operations� This
gives us an e�ective method for converting between
the representations �i� and ������

��� Integer GCD

The matrices T and U have the following signi��
cance regarding integer gcd� Let s�m�n� be the num�
ber of steps in the following subtractive Euclidean al�
gorithm for �nding the gcd of m and n� replace the
larger number by the di�erence of the two numbers
until both are equal� Note that s�m�n� is one less
than the sum of all partial quotients in the contin�
ued fraction representation of m�n� 	 � m � n� For
example�

�

	�
�

	

�� �
�� �

�

and s��� 	�� � �� � � � �� � 	 � ��
The matrices T and U correspond to the basic op�

erations of the subtractive gcd algorithm in the sense
that if m and n are relatively prime and appear in the
top row of a matrix A 	 �� then T�� and U�� applied
on the right hand side e�ect the column operations
corresponding to the steps of the subtractive gcd al�
gorithm� It follows that the length of the unique ex�
pression in fT� Ug
 equivalent to A is exactly s�m�n��

� Length of Representations

Gurevich showed that the size of any element A 	 �
in representation ����� is polynomial in the size of A in
representation �i� on average ��� Lemma ����� Our ob�
servation that minimal�length representations in �����
and �iii� are mutually proportional implies that the
size of A in representation �iii� is also polynomial in
the size of A in representation �i� on average� This
result� together with the polynomial time algorithm
of the next section� do not immediately imply an av�
erage polynomial�time complexity of the membership
problems� since the number of input matrices is not
�xed�

Gurevich�s argument is based on the following esti�
mate of Yao and Knuth�

Lemma ��� �Yao and Knuth ���	
X
m�n

s�m�n�

�
�

��
n�logn�� � O�n logn�log logn��� �

�



It follows immediately that for �xed n� the aver�
age value of s�m�n�� where m is chosen uniformly at
random among all positive integers less than and rel�
atively prime to n� is at most

O�
n�logn��

	�n�
� � O��logn�� log logn� � �����

where 	�n� is the Euler totient function� The in�
equality ����� follows from the estimate 	�n� �
!�n� log logn� ��� Theorem �����

Except for I� T � and U � ifA 	 � has nonnegative en�
tries and maximumentry n� and ifm is the other entry
in the same row as n� then 	 � m � n� �m�n� � 	� and
the rest of A is uniquely determined by the constraint
on the determinant of A� Since there are four ways
to choose the position of the maximal entry n in A�
such matrices are in four�to�one correspondence with
the pairs m�n such that 	 � m � n and �m�n� � 	�
It follows that the length of the unique expression in
fT� Ug
 corresponding to A 	 � is also polynomial on
average�

� Deterministic Algorithms

In this section we give deterministic polynomial�
time algorithms for the unbounded and bounded mem�
bership problems when the input is given in represen�
tation �iii� of x	�	� i�e� in terms of generators R�S and
relations R� � S� � 	�

Consider the term rewriting system over strings in
fR�Sg
 consisting of reduction rules R� � �� S� � ��
We write x� y if the string x reduces to the string y in
zero or more steps� A string is said to be reduced or in
normal form if no reduction rule applies� This system
has nonoverlapping redexes �the redexes are R� and
S��� thus it follows from term rewriting theory that
normal forms are unique� and x � y i� x and y have
a common normal form�

Suppose now we are given a set S of reduced strings
in fR�Sg
� a reduced string x 	 fR�Sg
� and �for the
bounded membership problem� an integer n in unary�
Let S
 denote the submonoid of fR�Sg
 generated
by S� The unbounded membership problem is to de�
termine whether there exists a string y 	 S
 such that
y � x� For the bounded membership problem� we re�
quire in addition that y 	 Sm for some m � n� We
will give an algorithm that runs in time polynomial in
n and the sum of the lengths of x and the elements of
S�

Note that this formulation of the problem asks for
membership of x in a �nitely generated submonoid of

�� If we wish to determine membership in a �nitely
generated subgroup� we can simply include the in�
verses of elements of S�

In a �xed reduction sequence x � y� we say that
an occurrence of a letter a in y comes from an occur�
rence of a in x if x � uav and y � zaw� where the
mentioned occurrences of a in x and y are as shown�
and the appropriately chosen subsequences of the re�
duction sequence give u � z and v � w� For a �xed
reduction sequence x� y� every letter of y comes from
a unique letter of x� The remaining letters of x must
eventually become part of a redex and disappear�

For any set H of strings� we denote by H�� the
set of strings ��equivalent to some string in H� Thus
S
�� denotes the set of strings representing elements
of the submonoid of � generated by S� This notation is
slightly nonstandard but convenient for our purposes�
Our task is to �nd an e
cient membership test for
S
�� for the unbounded membership problem andS
m�n S

m�� for the bounded membership problem�

��� An Automata�Theoretic Characteri�
zation

Let M be the �nite automaton with states

Q � fu j u is a su
x of some x 	 Sg �

start and �nal state � �the null string�� and transitions

au
a
�� u � a 	 fR�Sg �

u
�
�� v � u��v 	 S
�� �

We will show below that for any reduced x� x 	
S
�� i� x is accepted byM � Note thatM has linearly
many states and the � edges are transitive� Once we
construct the automaton for a given set of generators
S� we can test membership in S
�� of any string
e
ciently by reducing to normal form and then testing
whether the resulting string is accepted by M � This
will give us an e
cient algorithm for the unbounded
membership problem�

For the bounded membership problem� we will need
a slightly stronger formulation� De�ne

A�x� � fn j x 	 Sn��g

for any string x� Note x 	 S
�� i� A�x� �� �� Label

each ��transition u
�
�� v in M with the nonempty set

A�u��v�� Let � denote setwise addition�

X � Y � fm� n j m 	 X� n 	 Y g �

�



For any computation path 
 � u
x
�� v in the automa�

ton M � let A�
� denote the sum of the sets labeling
the ��transitions along the path 
� More formally�

A�
� � f�g � if 
 is of length �

A�
 � �au
a
�� u�� � A�
�

A�
 � �u
�
�� v�� � A�
� �A�u��v� �

Theorem ��� For any reduced x and n 
 �	 x 	
Sn�� if and only if there is an accepting computation

path 
 � �
x
�� � with n 	 A�
�� In other words	 for

any reduced x	

A�x� �
�

���
x

���

A�
� �

Proof� ��� We show by induction on the length of 


that if 
 � �
x
�� u and n 	 A�
� then xu 	 Sn��� The

result follows by taking u � �� If 
 is of length zero�
then A�
� � f�g and x � � 	 S	� If 
 � � ��au

a
�� u��

then x � ya� � � �
y
�� au� and n 	 A�� � � A�
��

By the induction hypothesis� xu � �ya�u � y�au� 	

Sn��� Finally� if 
 � � � �v
�
�� u� where � � �

x
�� v�

then n � k�m for some k 	 A�� � and m 	 A�v��u��
Then v��u 	 Sm��� and by the induction hypothesis�
xv 	 Sk��� Thus xu � xvv��u 	 Sn���

��� If x 	 S	��� then x � � since x is reduced�

In this case take 
 to be the null path �
x
�� � and

we are done� Otherwise� we show by induction that if
r 	 Sn��� st 	 S� and rs� y where y is reduced� then

there is a computation path 
 � �
y
�� t with n 	 A�
��

The result then follows by taking t � ��
For n � 	� we have r � �� Then y � s since s is

reduced� and there is a computation path � � �
�
�� st

of length one with 	 	 A�� � � A�st�� Combining this

with jsj transitions of the form au
a
�� u� we obtain a

computation path 
 � �
s
�� t with 	 	 A�
��

Now suppose n 
 �� If s � �� we have y � r 	
Sn��S and t 	 S� Then 	 	 A�t� and by the induction

hypothesis� we have a computation path � � �
y
�� �

with n�	 	 A�� �� Combining this with the transition

�
�
�� t� we obtain a path 
 � �

y
�� t with n 	 A�
��

If s �� � and the last symbol of y comes from the
last symbol of s in the reduction rs� y� then s � ua�
y � va� and ru � v for some u� v� By the induction
hypothesis� we have a computation path � � �

v
�� at

with n 	 A�� �� Combining this with the transition

at
a
�� t� we obtain a computation path 
 � �

y
�� t

with n 	 A�
��
Finally� if the last symbol of y does not come from

the last symbol of s� then the last symbol of y cannot
come from any symbol of s� since s is reduced� Thus

we can write r � upqv where u 	 Sk� v 	 Sm� pq 	 S�
the last symbol of y comes from the last symbol of p�
and qvs � �� Then up � upqvs � rs � y� Since y
is reduced� up � y� By the induction hypothesis� we

have a computation path � � �
y
�� q with k�	 	 A�� ��

Moreover� since qvs � �� we have q��t � vst 	 Sm���
thusm�	 	 A�q��t�� Combining � with the transition

q
�
�� t� we obtain a computation path 
 � �

y
�� t with

n � k �m� � 	 A�
�� �

Corollary ��� For any reduced x	 x 	 S
�� if and
only if M accepts x�

��� Construction of M

We have reduced the problem of determining mem�
bership in S
�� of arbitrary strings x to the prob�
lem of determining membership in S
�� of u��v for
u� v 	 Q� We now give an e
cient algorithm for this
problem�

Let N be the set of normal forms of strings u��v
for u� v 	 Q� Note S � N and N is �nite� Let B�x��
x 	 N � be the smallest family of sets closed under the
following rules�

�i� � 	 B���

�ii� 	 	 B�x�� x 	 S

�iii� B�x� �B�y� � B�z�� where z � xy�

If x is not reduced but x� y 	 N � we de�ne B�x� �
B�y��

We show below that A�x� � B�x� for x 	 N � This
gives a simple inductive method for determining the ��
transitions of M � mark � and all x 	 S as required by
rules �i� and �ii�� then mark z 	 N whenever x� y 	 N

are marked and xy � z� Then u
�
�� v i� the normal

form of u��v is marked�

Lemma ��� If u 	 Q	 pq 	 S	 r 	 Sn	 and urp � �	
then n� 	 	 B�u��q��

Proof� If n � �� then u��q � pq� and the conclusion
follows from rule �ii��

If n 
 	 and u � �� then we can write r � vs with
v 	 S� s 	 Sn��� and vsp � �� Then 	 	 B�u��v��
and by the induction hypothesis� n 	 B�v��q�� there�
fore n� 	 	 B�u��q� by rule �iii��

Similarly� if p � �� then we can write r � sv with
s 	 Sn��� v 	 S� and usv � �� Then 	 	 B����v��
and by the induction hypothesis� n 	 B�u����� there�
fore n� 	 	 B�u��q� by rule �iii��

�



Assume now that n 
 	 and both u and p are non�
null� The proof proceeds by induction on the length
of the reduction sequence urp� ��

If urp can be expressed as the concatenation of two
nonnull strings� each of which reduces to �� then the
�rst of these cannot be a substring of u and the second
cannot be a substring of p� since u and p are reduced�
Thus we can write r � stxy where tx 	 S� s 	 Sk� y 	
Sm� m � k � 	 � n� ust � xyq � �� By the induction
hypothesis� k � 	 	 B�u��x� and m � 	 	 B�x��q��
By rule �iii�� n� 	 � m � k � � 	 B�u��q��

If urp has no such decomposition� then in the re�
duction urp � �� if the last reduction rule applied is
RR� �� the �rst R must come from the leftmost sym�
bol of u and the second must come from the rightmost
symbol of p� otherwise we would have a decomposi�
tion as in the previous case� Thus u � Rx� p � yR�
and xry � �� By the induction hypothesis� we have
n� 	 	 B�x��Rq� � B�u��q��

If the last reduction rule applied is SSS � �� then
again the �rst S must come from the leftmost sym�
bol of u and the third must come from the rightmost
symbol of p�

If the second S comes from u� then we have u �
SSx and p � yS� where xry � �� By the induction
hypothesis we have n � 	 	 B�x��Sq� � B�u��q��

If the second S comes from p� then we have u �
Sx and p � ySS� where xry � �� By the induction
hypothesis we have n � 	 	 B�x��SSq� � B�u��q��

Finally� if the second S comes from r� then we have
u � Sx� r � yzSws� and p � tS� where zSw 	 S�
y 	 Sk� s 	 Sm� and xyz � wst � �� By the induction
hypothesis we have k � 	 	 B�x��Sw� and m � 	 	
B�w��Sq�� therefore by rule �iii� we have n � 	 �
m � k � � 	 B�x��SSq� � B�u��q�� �

Theorem ��� A�x� � B�x� for x 	 N �

Proof� We argue �rst that the sets A�x� satisfy all
the rules �i���iii� for x 	 N � thus B�x� � A�x�� The
rule �i� just says � 	 S	� �ii� just says that x 	 S� for
x 	 S� and �iii� says that if x in Sm and y 	 Sn� then
xy 	 Sm�n�

For the reverse inclusion� we show by induction on
n that for all u� v 	 Q� if n 	 A�u��v� then n 	
B�u��v�� If n � �� then u��v � �� and � 	 B�u��v�
by rule �i�� If n � 	� then u��v � x 	 S� and 	 	
B�u��v� by rule �ii��

Assume now that n 
 �� Let u��v � r 	 Sn� Then
ur � v� and since v is reduced� we have ur� v�

We proceed by induction on the length of v� If
v � �� then writing r � st with s 	 Sn�� and t 	 S�
we have ust� �� so n 	 B�u��v� by Lemma ����

Suppose now that v is nonnull� If the �rst letter of
v comes from u in the reduction ur� v� then it must
come from the �rst letter of u� since u is reduced�
Thus u � ay� v � aw� and yr � w� By the induction
hypothesis� n 	 B�y��w� � B�u��v��

If the �rst letter of v comes from r� then we can
write r � styz where s 	 Sk� z 	 Sm� ty 	 S� and the
�rst letter of v comes from the �rst letter of y� Then
ust� � and yz � v� By Lemma ���� k�	 	 B�u��y��
and by the induction hypothesis� m 	 B�y��v�� By
rule �iii�� n � m � k � 	 	 B�u��v�� �

��� Unbounded Membership

Once we have constructed the automaton M for a
given set of generators S� we can solve the unbounded
membership problem for a given string e
ciently by
reducing to normal form and then testing whether the
resulting string is accepted by M � Corollary ��� as�
serts the correctness of this procedure�

��� Bounded Membership

One approach to solving the bounded membership
problem is to observe that the closure rules �i���iii�
are essentially equivalent to the following context�free
grammar over a single�letter alphabet fag and nonter�
minals Ax� x 	 N �

A� � �

Ax � a � x 	 S

Az � AxAy � xy � z �

Then for x 	 N � A�x� is the set of lengths of strings in
fag
 generated from the nonterminal Ax� By Parikh�s
Theorem� this is a regular set� and we can deter�
mine membership in A�x� e
ciently using known al�
gorithms for context�free language recognition�

However� for the purpose of deciding whether there
exists an accepting computation path 
 � �

x
�� � with

m 	 A�
� and m � n� we do not need to know the
entire set A�u��v� but only its smallest element� In�
deed� if A�u��v� is nonempty but its smallest element
is greater than n� then we might as well delete the
edge u

�
�� v� since it cannot contribute to such an

accepting computation path�
Let r be the number of relations x � yz that hold

among elements of N � Here is an O�nr� algorithm
for determining all the minimum elements of A�x� for
x 	 N � For each x 	 N we have an integer variable
mx that holds a current estimate of minA�x�� We ini�
tialize mx to n�	� which we regard as�� We assume
that for each x 	 N we have a list Lx of all relations

�



z � xy or z � yx that hold among the elements of N
with x on the right hand side� The combined length
of all the lists Lx is at most �r�

Now minA��� � � and minA�x� � 	 for x 	 S� so
we set m� �� � andmx �� 	 for x 	 S and put � and all
x 	 S in a bag for further processing� We then repeat
the following procedure until the bag becomes empty�
Take the next x out of the bag and scan through the
list Lx� For each relation z � xy or z � yx on the
list� check whether mz � mx � my� If so� set mz ��
mx �my and put z in the bag�

Each x taken out of the bag takes O�jLxj� time to
process� and a particular x can enter the bag at most n
times� since mx is decremented each time� This gives
O�nr� in all�

Once we have computed the minimum element of
A�u��v� for each pair u� v 	 Q� we can weight the ��

transition u
�
�� v with this quantity and weight the

other transitions au
a
�� u zero� Then to compute the

minimum element of A�x� for a given reduced x� we
can use a variant of Dijkstra�s shortest path algorithm
to �nd a minimum�weight computation path �

x
�� �

and check that its weight is at most n� The correctness
of this method is given by Theorem ��	� This solves
the bounded membership problem�

� Average Case Algorithms

In this section we prove Theorem 	�	� which states
that the bounded and unbounded subgroup and sub�
monoid membership problems are polynomial�time on
average�

For a positive integer m� we take the size of m to
be logm� the base � logarithm of m� For a sequence
m of positive integers� we take the size of m� denoted
kmk� to be the sum of the sizes of its components�

An instance of the unbounded subgroup or sub�
monoid membership problem of x	�� is a sequence S
of � � � integer matrices with determinant one and
entries written in binary� An instance of the bounded
subgroup or submonoid membership problem is a pair
�S� n� where S is as above and n is a positive inte�
ger� For our analysis� we will measure the size of
such instances as follows� For a matrix with entries
a� b� c� d� we take ��A� � maxfjaj� jbj� jcj� jdjg� where
jaj denotes the absolute value of a� Let ��S� be the
sequence ���A� j A 	 S�� We de�ne the size of
an instance S of the unbounded membership prob�
lem to be kSk � k��S�k� and the size of an in�
stance �S� n� of the bounded membership problem to
be k�S� n�k � kSk� n�

Let 
�S� denote the sum of the lengths of the R�S
representations of the matrices in S� as described in
x��

Lemma 
�� Let m � �m�� � � � �mk�� For d 
 		 the

quantity
Pk

i���logmi�d is maximized subject to the

constraints 	 � mi	 	 � i � k	 and
Qk

i��mi � n
at the extremes mi � n and mj � 		 j �� i�

Proof� Taking ai � logmi� logn� the problem is

equivalent to maximizing
Pk

i�� a
d
i subject to the con�

straints � � ai� 	 � i � k� and
Pk

i�� ai � 	� This
occurs at the extremes� since the function is convex
and symmetric� �

Proof of Theorem 
�
� We treat the unbounded
membership problems �rst� As remarked in x	��� we
need only show that there exists an � � � such thatX

kSk�n

T �S�� �Prn�S� � nO��� � �����

where T �S� is the running time of the algorithm on in�
put S and Prn�S� denotes the conditional probability
that S occurs given that the size of the input instance
is n�

By results of x�� we have T �S� � 
�S�c for some
constant c� Since all instances of size n are equally
likely� PrnS � jfS j kSk � ngj�� for S of size n�
where jXj denotes the cardinality of the set X� Taking
� � 	�c� ����� becomesP

kSk�n 
�S�

jfS j kSk � ngj
� nO��� � �����

We now establish ������ For 
 � �
�� � � � � 
k� and
m � �m�� � � � �mk�� 
 � mmeans that 
i � mi� 	 � i �
k� and �
�m� � 	 means that 
i and mi are relatively
prime� 	 � i � k� The numerator of ����� is

X
kSk�n


�S� �
nX

k��

X
m �Nk

kmk � n

X
��S��m


�S� �����

and for m 	 Nk�X
��S��m


�S�

� 	�k
X
� � m

���m� � �

kX
i��

s�
i�mi�

� O�n
X
� � m

���m� � �

kX
i��

s�
i�mi�� � �����

�



The coe
cient 	�k re"ects the number of ways of
choosing the positions of the largest elements of the
matrices in S and the factor bounding the lengths of
the R�S and R� T� U representations as discussed in
x�� The vectors 
 represent the possible entries in the
same row as the largest entry of each matrix in S� As
discussed in x��	� once that row is given� the rest of
the matrix is uniquely determined� and the length of
the R� T� U representation of the ith matrix in S is
s�
i�mi��

Changing the order of summation in ������ we have

kX
i��

X
� � m

���m� � �

s�
i�mi�

�
kX

i��

�
kY

j � �

j �� i

	�mj���
X

�i � mi

��i�mi� � �

s�
i�mi��

� O�
kX

i��

mi�logmi�
�

kY
j � �

j �� i

	�mj�� ���#�

� O��
kY

j��

	�mj ��
kX

i��

mi

	�mi�
�logmi�

��

� O��
kY

j��

	�mj ��
kX

i��

�logmi�
�� � ���	��

Step ���#� uses Lemma ��	 and step ���	�� uses the
estimate 	�m� 
 !�m� log logm� ��� Theorem �����
Thus ����� is bounded by

O�n
nX

k��

X
m �Nk

kmk � n

�
kY

j��

	�mj ��
kX

i��

�logmi�
��

� O�n

nX

k��

X
m �Nk

kmk � n

kY
j��

	�mj �� � ���		�

The inequality ���		� follows from Lemma ��	�
The denominator of ����� is

jfS j kSk � ngj

�
nX

k��

X
m �Nk

kmk � n

X
��S��m

	

�
nX

k��

X
m �Nk

kmk � n

X
� � m

���m� � �

�k


 !�
nX

k��

X
m �Nk

kmk � n

kY
j��

	�mj�� � ���	��

Dividing the upper bound ���		� for the numerator of
����� by the lower bound ���	�� for the denominator of
������ we obtain the polynomial bound O�n
� for the
quotient�

Thus the condition ����� is ful�lled� and the algo�
rithm is polynomial time on average�

For the bounded membership problems� as above
we need to show for each n thatP

kSk�m�n 
�S� �m

jf�S�m� j kSk�m � ngj
� nO��� �

But the left hand side is bounded byP
kSk�n 
�S� �

P
kSk�n n

jfS j kSk � ngj

�
nX

m��

P
kSk�m 
�S�

jfS j kSk � mgj
� n �

which by ����� is polynomial in n� �
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