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Abstract. We explore the power of relational semantics and equational
reasoning in the style of Kleene algebra for analyzing programs with
mutable, statically scoped local variables. We provide (i) a fully com-
positional relational semantics for a first-order programming language
with constructs for local variable declaration and destructive update;
and (ii) an equational proof system based on Kleene algebra with tests
for proving the equivalence of programs in this language. We show that
the proof system is sound and complete relative to the underlying equa-
tional theory without local variables. We illustrate the use of the system
with several examples.
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1 Introduction

Reasoning about programs with mutable state is an important and difficult
problem. The notions of state and destructive update are fundamentally at odds
with the functional style, yet remain a popular paradigm and are found in most
programming languages, even nominally functional ones.

Most approaches to modeling state involve some representation of storage lo-
cations with pointers and memory cells. An early paper of Meyer and Sieber [23]
introduced a framework for analyzing ALGOL procedures. This paper gave sev-
eral interesting examples illustrating the subtleties of reasoning in the presence
of local state. Much later attention focused on the use of denotational semantics
to model a set of storage locations [12,24, 35,37]. The inability to prove some
simple program equivalences using traditional techniques led several researchers
to take a categorical approach [27, 34, 36]. See [26] for more information regarding
the history of these approaches.

More recently, researchers have investigated the use of operational seman-
tics to reason about ML programs with references. Mason and Talcott [20—22]
considered a A-calculus extended with state operations. By defining axioms in



the form of contextual assertions, Mason and Talcott were able to handle sev-
eral examples of Meyer and Sieber. Pitts and Stark [29-32] also use operational
semantics.

Several other recent approaches include game semantics [3-5, 19], real-time
dynamic logic [11], transformational semantics [28], and various program refine-
ment calculi [7,13,25], all of which attempt to capture the idea of local state in
some form.

In this paper, we explore the extent to which relational semantics and equa-
tional reasoning in the style of Kleene algebra with tests (KAT) [16] can simplify
the picture. KAT has previously been shown to be a mathematically rigorous,
simple, and versatile system for low-level verification tasks. It is a blend of Kleene
algebra (KA) and Boolean algebra that recasts several previous approaches to
program verification, such as Hoare logic of partial correctness or inductive as-
sertions, into a simple classical equational framework [6,17,18]. Programs in
KAT are normally interpreted as binary relations over a space of valuations of
program variables.

Our goal in this paper is to extend the semantics and deductive apparatus
to handle local variable declarations with static scoping. We consider first-order
programs as in ordinary KAT, but in addition we include a let construct

let =1t in p end (1)

for declaring a local variable with bounded scope. In contrast to the usual func-
tional interpretation, the variable x in (1) is mutable in that it can occur on the
left-hand side of an assignment x := e in p. In functional languages such as ML,
one must explicitly declare x to be a reference and explicitly dereference it to
obtain its value, which can occasionally be awkward.

In the presence of higher-order programs, the let construct (1) can be encoded
as a A-term (Az.p)t, but here we take (1) as primitive. The standard flat rela-
tional semantics used in first-order Kleene algebra with tests (KAT) and Dynamic
Logic (DL) involving valuations of program variables is extended to accommo-
date the let construct. Instead of a valuation, a state consists of a stack of such
valuations. The formal semantics captures the operational intuition that local
variables declared in a let statement push a new valuation with finite domain,
which is then popped upon exiting the scope. As in ordinary KAT, programs are
interpreted as binary relations on states.

In a companion paper [2], we presented a fully compositional relational se-
mantics for higher-order programs with destructive updates based on KAT and
showed how it could be used to avoid intricate memory modeling and the explicit
use of context in program equivalence proofs. We illustrated its use on several of
Meyer and Sieber’s benchmark examples [23], which proved to be quite amenable
to this treatment. The stack-based semantics of this paper is a special case of
[2], which involved a more complicated tree-like structure called a closure struc-
ture. However, in that paper we did not attempt to formulate an equational
axiomatization; all arguments were based on semantic reasoning.

In the first-order case, we find that the let construct interacts seamlessly
with the usual regular and Boolean operators of KAT, which have a well-defined



and well-studied relational semantics and deductive theory. We are able to build
on this theory to provide a deductive system for program equivalence in the
presence of let. Our main result is that the deductive system is complete relative
to the underlying equational theory without let. The chief advantages of this
approach over the related approaches mentioned above are its relative simplicity
and equational completeness.

This paper is organized as follows. In Section 2, we discuss KAT and its use
in program analysis. In Section 3, we define a compositional relational seman-
tics of programs with let. In Section 4, we give a set of proof rules that allow
let statements to be systematically eliminated. In Section 5, we show that the
proof system is sound and complete relative to the underlying equational theory
without local scoping, and provide a procedure for eliminating variable scoping
expressions. By this, we do not mean that every program is equivalent to one
without scoping expressions—that is not true, and a counterexample (Example
2) is given in Section 6—but rather that the equivalence of two programs with
scoping expressions can be reduced to the equivalence of two programs without
scoping expressions. We demonstrate the use of the proof system through several
examples in Section 6.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [9,14]. The axiom-
atization used here is from [15]. A Kleene algebra is an algebraic structure
(K, +, -, *, 0, 1) that satisfies the following axioms:

p+q+r=p+(qg+r) (2) (pg)r = plqr) (3)
p+a=q+p (4) pl=1p = p (5)
p+0=p+p = p (6) Op=p0 = 0 (7)

p(g+71) = pg+pr (8) (p+qr =pr+aqr 9)
1+pp* < p* (10)  g+pr<r—p g<r (11)
1+p*p < p* (12)  q+rmp<r—qgp*<r (13)

This is a universal Horn axiomatization. We use pgq to represent p - q. Axioms
(2)—(9) say that K is an idempotent semiring under +,-,0,1. The adjective
idempotent refers to the axiom p + p = p (6). Axioms (10)—(13) say that p*q is
the <-least solution to ¢ + pz < x and ¢p™* is the <-least solution to ¢ + zp < =z,
where < refers to the natural partial order on K defined by p < ¢ PN p+q=gq.
Standard models include the family of regular sets over a finite alphabet,
the family of binary relations on a set, and the family of n X n matrices over
another Kleene algebra. Other more unusual interpretations include the min,+
algebra, also known as the tropical semiring, used in shortest path algorithms,
and models consisting of convex polyhedra used in computational geometry.
There are several alternative axiomatizations in the literature, most of them
infinitary. For example, a Kleene algebra is called star-continuous if it satisfies



the infinitary property pg*r = sup,, pg"r. This is equivalent to infinitely many
equations

pg"r < pg*r, n>0 (14)
and the infinitary Horn formula

(/\ pg"r <s) = pgr <s. (15)
n>0

All natural models are star-continuous. However, this axiom is much stronger
than the finitary Horn axiomatization given above and would be more difficult
to implement in an automated deduction system such as KAT-ML [1], since it
would require meta-rules to handle the induction needed to establish (14) and
(15).

The completeness result of [15] says that all true identities between regular
expressions interpreted as regular sets of strings are derivable from the axioms.
In other words, the algebra of regular sets of strings over the finite alphabet P
is the free Kleene algebra on generators P. The axioms are also complete for the
equational theory of relational models; that is, every equation that holds in all
relational interpretations is derivable from the axioms.

See [15] for a more thorough introduction.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [16] is just a Kleene algebra with an embedded
Boolean subalgebra. That is, it is a two-sorted structure (K, B, +, -, *, 7, 0, 1)
such that

- (K, +, -, %, 0, 1) is a Kleene algebra,
- (B, +, -, , 0, 1) is a Boolean algebra, and
- B CK.

Elements of B are called tests. The Boolean complementation operator ~ is de-
fined only on tests. The axioms of Boolean algebra are purely equational. In
addition to the Kleene algebra axioms above, tests satisfy the equations

BC =CB BB=B
B+CD = (B+C)(B+D) B+1=1
B+C=BC BC=B+C
B+B=1 BB =0
B=B

The while program constructs are encoded as in propositional Dynamic
Logic [10]:
def
p;4q = pq
if B then p else ¢ < Bp + Bg

while B do p def (Bp)*B.



The Hoare partial correctness assertion {B} p {C} is expressed as an inequality
Bp < pC, or equivalently as an equation BpC = 0 or Bp = BpC. Intuitively,
BpC = 0 says that there is no execution of p for which the input state satisfies
the precondition B and the output state satisfies the postcondition C, and Bp =
BpC' says that the test C is always redundant after the execution of p under
precondition B. The usual Hoare rules translate to universal Horn formulas
of KAT. Under this translation, all Hoare rules are derivable in KAT; indeed,
KAT is deductively complete for relationally valid propositional Hoare-style rules
involving partial correctness assertions [17], whereas propositional Hoare logic is
not.
See [16-18] for a more detailed introduction to KAT.

2.3 Schematic KAT

Schematic KAT (SKAT) is a specialization of KAT involving an augmented syntax
to handle first-order constructs and restricted semantic actions whose intended
semantics coincides with the semantics of first-order flowchart schemes over a
ranked alphabet X [6]. Atomic actions are assignment operations z := ¢, where
x is a variable and ¢ is a X-term.

Five identities are paramount in proofs using SKAT:

ri=sy:=t = y:=tlg/shr:=s (yg&FV(s)) (16)
xi=sy:=t = z:=s;y:=tla/s] (z&FV(s)) (17)
ri=sx:=t = x:=tx/s] (18)
ol/the:=t = z:=tp (19)

ri=x = 1 (20)

where z and y are distinct variables and F'V (s) is the set of variables occurring
in s in (16) and (17). The notation s[x/t] denotes the result of substituting ¢ for
all occurrences of z in s. As special cases of (16) and (19), we have

xi=sy:=t = y:=tix:=s (ygFV(s),x & FV(t)) (21)
pizi=t = z:=tp (& FV(p)) (22)
s=tx:=s = s=tx:=t (23)

In (23), s =t is a test. See [6] for a more detailed development.

3 Relational Semantics

As our domain of computation we use a first-order structure 2 of some signa-
ture X'. A partial valuation is a partial map f : Var — ||, where Var is a set of
program variables and || denotes the underlying set of 2. The domain of f is de-
noted dom f. A stack of partial valuations is called an environment. Let o, 7, ...
denote environments. The notation f :: ¢ denotes an environment with head f



and tail o; thus environments grow from right to left. The empty environment is
denoted e. The shape of an environment f; :: -+ 1 f, is dom f; -+ :: dom f,,.
The domain of the environment fy :: --- =2 f,, is (J;—, dom f;. The shape of ¢ is
¢ and the domain of € is @. The set of environments is denoted Env. A state of
the computation is an environment, and programs will be interpreted as binary
relations on environments.

In Dynamic Logic and KAT, programs are built inductively from atomic
programs and tests using the regular program operators +, ;, and *. In the
first-order versions of these languages, atomic programs are simple assignments
x := t, where z is a variable and ¢ is a Y-term. Atomic tests are atomic first-order
formulas R(t1,... ,t,) over the signature X.

To accommodate local variable scoping, we also include let expressions in the
inductive definition of programs. A let expression is an expression

let 1 =t1,... ,2, = t, in p end (24)

where p is a program, the x; are program variables, and the ¢; are terms.

Operationally, when entering the scope (24), a new partial valuation is cre-
ated and pushed onto the stack. The domain of this new partial valuation is
{z1,...,zn}, and the initial values of z1,...,x, are the values of t1,... ,t,,
respectively, evaluated in the old environment. This partial valuation will be
popped when leaving the scope. The locals in this partial valuation shadow any
other occurrences of the same variables further down in the stack. When evaluat-
ing a variable in an environment, we search down through the stack for the first
occurrence of the variable and take that value. When modifying a variable, we
search down through the stack for the first occurrence of the variable and mod-
ify that occurrence. In reality, any attempt to evaluate or modify an undefined
variable (one that is not in the domain of the current environment) would result
in a runtime error. In the relational semantics, there would be no input-output
pair corresponding to this computation.

To capture this formally in relational semantics, we use a rebinding operator
[x/a] defined on partial valuations and environments, where z is a variable and
a is a value. For a partial valuation f : Var — ||,

f(y)a inydomfandy7égg’
flz/al(y) = § a if y € dom f and y = =,
undefined, if y & dom f.

For an environment o,

flz/a) =7, if o= f::7 and z € dom f,
olz/al =< fu7lx/al,if o = f 7 and x ¢ dom f,
£, ifo=ce¢.

Note that rebinding does not change the shape of the environment. In particular,
elz/a] = €. More generally, if € dom f for any partial valuation in o, then
olz/a] = 0.



The value of a variable z in an environment o is
(), ifo=f:7and z € dom f,
o(x) =< 7(x), ifo=f:7and z ¢ dom f,
undefined, if 0 = €.
The value of a term ¢ in an environment o is defined inductively on ¢ in the usual
way. Note that o(¢) is defined iff € dom o for all 2 occurring in ¢.

A program is interpreted as a binary relation on environments. The binary
relation associated with p is denoted [pl. The semantics of assignment is

[z :=t1 = {(0,0[z/c(t)]) | o(t) and o(z) are defined}.
Note that both = and ¢ must be defined by o for there to exist an input-output

pair with first component o.
The semantics of scoping is
[let z1 =t1,... ,x, =t in p end]
= {(o,tail(7)) | o(¢;) is defined, 1 < i < mn, and (f :: o,7) € [pl}, (25)
where f is the environment such that f(z;) = o(t;), 1 <i < n.
As usual with binary relation semantics, the semantics of the regular program

operators +, ;, and * are union, relational composition, and reflexive transitive
closure, respectively. For an atomic test R(t1,... ,t,),

I]:R(tla s 7tn)]]

={(0,0) | o(t;) is defined, 1 <i <n, and A, 0 F R(t1,... ,tn)}.
where F is satisfaction in the usual sense of first-order logic. The Boolean oper-
ator ! (weak negation) is defined on atomic formulas by

[R(t1,... ,tn)]

={(0,0) | o(t;) is defined, 1 <4 <mn, and A, 0 F =R(t1,...,tn)}.
Because of the definedness condition, this is not the same as classical negation —,
which we need in order to use the axioms of Kleene algebra with tests. However,
classical negation can be obtained from weak negation and the ability to check

whether a variable is undefined. That is, we must have a test undefined(z) with
semantics

Lundefined(z)1 = {(0,0) | o(z) is undefined}.

This is a very reasonable assumption. Even without this capability, the short-
circuiting Boolean operators can be defined by
Lo && ¢1 = [l N [¥]
Lo || 91 = Lpd U (LD N [91)
[(p && )1 = [l U ([l N [lp]) = Lo || 4]
(e || ¥)I=TelN [yl = [ && 9]
[l = Led.



These definitions give a relational semantics for the familiar short-circuiting
Boolean operators &&;, ||, and ! in languages such as C and Java.

Example 1. Consider the program

let =1

in zT:=y+z2;
lety=xz+2iny:=y+zz:=y+1end;
yi=zx

end.

Say we start in state (y = 5,z = 20). Here are the successive states of the com-
putation:

’ After ... | the state is . ‘
entering the outer scope (x=1)= ( =5,z = 20)
executing the first assignment (x=25) :: (y =5,z = 20)
entering the inner scope (y=27) = (x=25): (y=5,z=20)
executing the next assignment|(y = 47) :: (x = 25) :: (y =5,z = 20)
executing the next assignment|(y = 47) :: (x = 25) :: (y = 5,2 = 48)
exiting the inner scope (x=25) :: (y =5,z =48)
executing the last assignment (x =25) :: (y =25,z = 48)
exiting the outer scope (y = 25,z = 48)

Lemma 1. If (o,7) € [p], then o and T have the same shape.

Proof. This is true of the assignment statement and preserved by all program
operators. O

The goal of presenting a semantics for a language with local state is to allow
reasoning about programs without the need for context. A context C[-] is just
a program expression with a distinguished free program variable. Relational
semantics captures all contextual information in the state, thus making contexts
superfluous in program equivalence arguments. This is reflected in the following
theorem.

Theorem 1. For program expressions p and q, LC [p]l] = LC [q1]1 for all con-
texts C'[-] iff [p] = [qI.

This is a special case of a result proved in more generality in [2]. The direction
(—) is immediate by taking C'[-] to be the trivial context consisting of a single
program variable. The reverse direction follows from an inductive argument,
observing that the semantics is fully compositional, the semantics of a compound
expression being completely determined by the semantics of its subexpressions.

4 Axioms and Basic Properties

In this section we present a set of axioms that can be used to systematically elimi-
nate all local scopes, allowing us to reduce the equivalence problem to equivalence



in the traditional “flat” semantics in which all variables are global. Although the
relational semantics presented in Section 3 is a special case of the semantics pre-
sented in [2] for higher-order programs, an axiomatization was not considered in
that work.

Axioms

A. If the y; are distinct and do not occur in p, 1 < ¢ < n, then the following
two programs are equivalent:

let xy =t1,...,2, =t, in pend

let y3 =t1,... ,Yn =t in p[z;/y; | 1 <i < n]end
where p[z;/y; | 1 < i < n] refers to the simultaneous substitution of y;
for all occurrences of x; in p, 1 < i < n, including bound occurrences and
those on the left-hand sides of assignments. This transformation is known as
Q-CONVETSIon.

B. If y does not occur in s and y and x are distinct, then the following two
programs are equivalent:

letx=sinlet y =t in p end end

let y = t[z/s] inlet z = s in p end end

In particular, the following two programs are equivalent, provided z and y
are distinct,  does not occur in ¢, and y does not occur in s:

letx =sinlet y =t in p end end

let y=tinlet z = s in p end end
C. If x does not occur in s, then the following two programs are equivalent:

let z=sinlety=1tinpendend
let . = s in let y = t[z/s] in p end end

This holds even if  and y are the same variable.

D. If z1 does not occur in ts, ... ,t,, then the following two programs are equiv-
alent:
let x1 =t1,... ,2, =t, inpend
let x4 =t inlet 2o =to,... , 2, =t, in p end end

E. If ¢ is a closed term (no occurrences of variables), then the following two
programs are equivalent:

skip  let x =t in skip end

where skip is the identity function on states.



. If x does not occur in pr, then the following two programs are equivalent:
pilet x =tinqgend;r letx =1 in pgr end

. If x does not occur in p and t is closed, then the following two programs are
equivalent:

p+letx=tingend letx=tinp-+qend

The proviso “t is closed” is necessary: if value of ¢ is initially undefined, then
the program on the left may halt, whereas the program on the right never
does.

. If x does not occur in ¢, then the following two programs are equivalent:

(let z=tinpend)™ letz=ain (z:=tp)" end

where a is any closed term. The proviso that x not occur in ¢ is necessary,
as the following counterexample shows. Take t = x and p the assignment
y := a. The program on the right contains the pair (y = b,y = a) for b # q,
whereas the program on the left does not, since x must be defined in the
environment in order for the starred program to be executed once.

. If = does not occur in t and a is a closed term, then the following two
programs are equivalent:

letx=tinpend letx=ainzx:=t;pend
. If x does not occur in ¢, then the following two programs are equivalent:

letx=sinpend;z:=t x:=sp;x:=t

Theorem 2. Azioms A-J are sound with respect to the binary relation seman-
tics of Section 3.

Proof. Most of the arguments are straightforward relational reasoning. Perhaps
the least obvious is Axiom H, which we argue explicitly. Suppose that x does
not occur in ¢. Let a be any closed term. We wish to show that the following two
programs are equivalent:

(letz=tinpend)* leto=ain (z:=tp)* end

Extend the nondeterministic choice operator to infinite sets in the obvious way.
This is possible because infinite sums exist in relational interpretations. We have

(let z =t in p end)™ = Z (let z =t in p end)”
n
let z=ain (z:=t;p)* end=let z =ain Z (x:=t;p)" end

n
:Z let x =ain (z:=t;p)" end
n



the last by a straightforward infinitary generalization of Axiom G, which holds
in relational models. It therefore suffices to prove that for any n,

(letz=tinpend)” =let x =ain (x :=1t;p)" end

This is true for n = 0 by Axiom E. Now suppose it is true for n. Then

(let 2 =t in p end)" "

= (letz=tinpend)*;let z =1¢inpend

=letz=ain (z:=t;p)" end;let z =1 in p end (26)
=letx=ain (x:=t;p)";z:=tpend (27)
=letz=ain (z:=t;p)" end

where (26) follows from the induction hypothesis and (27) follows from the iden-
tity

letx=aingend;letz=tinpend = letz=ainqgx:=tpend (28)

To justify (28), observe that since x does not occur in ¢ by assumption, p is
executed in exactly the same environment on both sides of the equation.

When proving programs equivalent, it is helpful to know we can permute
local variable declarations and remove unnecessary ones.

Lemma 2.

(i) For any permutationm : {1,... ,n} — {1,...,n}, the following two programs
are equivalent:

let x1 =t1,... ,2, =t, in p end
let Tr(1) = tx(1)s- -+ s Tr(n) = tr(n) in p end.

(ii) If x does not occur in p, and if t is a closed term, then the following two
programs are equivalent:

p letxz=tin pend.

The second part of Lemma 2 is similar to the first example of Meyer and Sieber
[23] in which a local variable unused in a procedure call can be eliminated.

5 Flattening

To prove equivalence of two programs p, ¢ with scoping, we transform the pro-
grams so as to remove all scoping expressions to obtain two transformed pro-
grams p’, ¢, then prove the equivalence of p’, ¢’. It is important to note that the
transformed program p’ is not equivalent to the original program p in general.
However, p’,q' are equivalent in the “flat” semantics iff p, ¢ were equivalent in
the semantics of Section 3. Thus the process is complete modulo the theory of
programs without scope. The transformations are applied in the following stages.



Step 1 Apply a-conversion (Axiom A) to both programs to make all bound
variables unique. This is done from the innermost scopes outward. In particular,
no bound variable in the first program appears in the second program and vice-
versa. The resulting programs are equivalent to the originals.

Step 2 Let z1, ... ,x, be any list of variables containing all bound variables that
occur in either program after Step 1. Use the transformation rules of Axioms
A-J to convert the programs to the form let x1=a,... ,z,=a in p end and
let x1=a,... ,xp,=a in g end, where p and ¢ do not have any scoping expressions
and a is a closed term. The scoping expressions can be moved outward using
Axioms F-H. Adjacent scoping expressions can be combined using Axioms C
and D. Finally, all bindings can be put into the form x=a using Axiom I.

Step 8 Now for p, ¢ with no scoping and a a closed term, the two programs

let x1=a,... ,z,=a in p end

let x1=a,... ,z,=a in ¢ end
are equivalent iff the two programs

T =@ Ty = Q;P;X1 = Q5 Ty = aQ
T1:=Q Ty i=Q5Q;T1 = Q- Ty = a

are equivalent with respect to the “flat” binary relation semantics in which states
are just partial valuations. We have shown

Theorem 3. Azioms A-J of Section J are sound and complete for program
equivalence relative to the underlying equational theory without local scoping.

6 Examples

We demonstrate the use of the axiom system through several examples. The
first example proves that two versions of a program to swap the values of two
variables are equivalent when the domain of computation is the integers in binary
representation.

Example 2. The following two programs are equivalent:

let t==x r:=xdPy;
in x:=y; y:=xdy;

y:=t r:=xDy
end

where @ is the bitwise xor operator. The first program uses a local variable to
store the value of x temporarily. The second program does not need a temporary
value; it uses xor to switch the bits in place. Without the ability to handle local
variables, it would be impossible to prove these two programs equivalent, because



the first program includes an additional variable ¢. In general, without specific
information about the domain of computation and without an operator like &,
it would be impossible to prove the left-hand program equivalent to any let-free
program.

Proof. We apply Axiom I to the first program and Lemma 2 to the second
program to get

let t=a let t=a

in  t:=ux; in x:=xdy;
TI=Y; y=xdy;
y:=t T:=xdy

end. end

respectively, where a is a closed term. From Theorem 3, it suffices to show the

following programs are equivalent:

t:=a; t:=a;
t:=ux; T:=xDYy;
Ti=Y; Yy =z9y;
y =t T:=xDYy;
t:=a t:=a.

We have reduced the problem to an equation between let-free programs. The
remainder of the argument is a straightforward application of the axioms of
schematic KAT [6] and the properties of the domain of computation. See Ap-
pendix A for the rest of the proof. O

The second example shows that a local variable in a loop need only be de-
clared once if the variable’s value is not changed by the body of the loop.

Ezample 3. If the final value of = after exectuing program p is always a, that is,

if p is equivalent to p; (z = a) for closed term a, then the following two programs
are equivalent:

(let z = a in p end)* let z = a in p* end.
Proof. First, we use Axiom H to convert the program on the left-hand side to
let x =ain (z :=a;p)™ end.
It suffices to show the following flattened programs are equivalent:
ri=a;(z:=a;p) =0

x:=a;p*;r = a.

The equivalence follows from basic theorems of KAT and our assumption p =
p; (x = a). See Appendix A for the rest of the proof. O

The next example is important in path-sensitive analysis for compilers. It
shows that a program with multiple conditionals all guarded by the same test
needs only one local variable for operations in both branches of the conditionals.



Ezample 4. If x and w do not occur in p and the program (y = a); p is equivalent
to the program p; (y = a) (that is, the execution of p does not affect the truth
of the test y = a), then the following two programs are equivalent:

let z=0,w=0
in (if y=a then x:=1else w:=2);p;if y=a theny: =z else y :=w
end

let =0

in (if y=athen z:=1else x :=2);p;y :=2x
end.

Proof. First we note that it follows purely from reasoning in KAT that (y = a);p
is equivalent to (y = a);p; (y = a) and that (y # a);p is equivalent to p; (y # a)

and also to (y # a); p; (y # a).
We use laws of distributivity and Boolean tests from KAT and our assump-
tions to transform the first program into

let z=0,w=0
in (y=ax:=Lpy=ay:=2)+y#aw:=2;py#ay:=w)
end.

Axiom D allows us to transform this program into

let =0

in let w=0
in (y=ar:=Lpy=ay:=1)+y#aw:=2py#ay=uw)
end

end.

By two applications of Axiom G, we get

let z=0 let w=0
in y=ar=Lpy=gyi=c |+ |in yFawi=23pyFayi=w
end end

Using a-conversion (Axiom A) to replace w with z, this becomes

let =0 let =0
in y=azrz:=Lipy=ay=x|+|in yFar:=2py#£ay: ==
end end

This program is equivalent to

let z=0
in (y=ar=Lpy=agy:=x)+ Yy #ar:=2;py#ay:=1)
end.

by a simple identity

letx=ainp+qgend = letx=ainpend+letx=ain qend.



It is easy to see that this identity is true, as both p and g are executed in the

same state on both sides of the equation. It can also be justified axiomatically

using Axioms A, D, and G and a straightforward application of Theorem 3.
Finally, we use laws of distributivity and Booleans to get

let z=0
in (fy=athenz:=1else x:=2);p;y :=x
end.

which is what we wanted to prove. O

7 Conclusion

We have presented a relational semantics for first-order programs with a let con-
struct for local variable scoping and a set of equational axioms for reasoning
about program equivalence in this language. The axiom system allows the let
construct to be systematically eliminated, thereby reducing the equivalence ar-
guments to the let-free case. This system admits algebraic equivalence proofs for
programs with local variables in the equational style of schematic KAT. We have
given several examples that illustrate that in many cases, it is possible to rea-
son purely axiomatically about programs with local variables without resorting
to semantic arguments involving heaps, pointers, or other complicated semantic
constructs.
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A Examples

Ezample 2. In the main text (Section 6, Example 2), we reduced the problem
to an equation between let-free programs. The remainder of the argument is a
straightforward application of the axioms of schematic KAT and the properties
of the domain of computation. Fragments of the statements that changed from
one step to the next are in bold.

Using 18, the right-hand side is equivalent to

t:=a;
r:=rDY;
y=xdy;
T :=xDy;
t:=y;
t:=a.
By (16), this is equivalent to
t:=a;
z :x@ya
y=zdy;
t:=y;
T:=xDy;
t:=a.
By (16), this is equivalent to
t:=a;
=Dy,
t:=xPy;
Yy:=xDy;
=Dy,
t:=a.
By (17), this is equivalent to
t:=a;
T =T DY;
t:=xdy;
Y=t
Ti=TDY;
t:=a.

By (16), this is equivalent to



By (17) and the fact that @ « @ y = y, this is equivalent to

t:=aq;
T =z ®y;
t:=xDy;
T i=Y;
Y=t
t:=a.

Finally, by (18), this is equivalent to

]
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which is the left-hand side with which we started. O

Ezample 3. In the main text (Section 6, Example 3), we reduced the problem
to showing the equivalence of the following two flattened programs:

ri=a;(z:=a;p) "0 :=a T:=a;p" ;T :=a.

The equivalence follows from basic theorems of KAT and our assumption p =
p; (x = a). Changes from step to step are in bold.
Using (18) on the left-hand side gives us

We next use the sliding rule, z; (y; 2)* = (z;y)*™; 2 to get
= ax = a; (p;x := a) ™z = a.
See [15] for more information about the sliding rule. Again applying (18), we get
x = a;(p;x:=a)";2 = a.
Applying our assumption p = p; (x = a) yields

r:=a;(p;(x = a)jx :=a)*;2 :=a.



Using (23) and (20) gives us
z:=a;(p;(x =a);1) ;2 :=a.
Finally, using (5) and our assumption gives us
xi=a;p ;T = a,

which is what we wanted. O



