
Kleene Algebra with Tests and
Commutat iv i ty Conditions
D e x t e r Kozen*

ABSTRACT We give an equational proof, using Kleene algebra with tests
and commutativity conditions, of the following classical result: every while
program can be simulated by a while program with at most one while
loop. The proof illustrates the use of Kleene algebra with extra conditions
in program equivalence proofs. We also show, using a construction of Co-
hen, that the universal Horn theory of *-continuous Kleene algebras is not
finitely axiomatizable.

1 Introduction

Kleene algebras are algebraic structures with operators +, -, *, 0, and 1
satisfying certain axioms. They arise in various guises in many contexts:
relational algebra [28, 34], semantics and logics of programs [19, 29], au-
tomata and formal language theory [25, 26], and the design and analysis of
algorithms [1, 17, 21]. Many authors have contributed to the development
of Kleene algebra [2, 3, 4, 5, 6, 9, 12, 18, 19, 20, 22, 24, 26, 30, 31, 32, 33].

In semantics and logics of programs, Kleene algebra forms an essential
component of Propositional Dynamic Logic (PDL) [13], in which it is mixed
with Boolean algebra and modal logic to give a theoretically appealing and
practical system for reasoning about computation at the propositional level.

Syntactically, PDL is a two-sorted logic consisting of programs and propo-
sitions, defined by mutual induction. A test ~? can be formed from any
proposition ~; intuitively, ~? acts as a guard that succeeds with no side
effects in states satisfying ~ and fails or aborts in states not satisfying ~.
Semantically, programs are modeled as binary relations on a set of states,
and ~? is interpreted as the subset of the identity relation consisting of all
pairs (s, s) such that ~ is true in state s.

From a practical point of view, many simple program manipulations,
such as loop unwinding and basic safety analysis, do not require the full
power of PDL, but can be carried out in a purely equational subsystem
using the axioms of Kleene algebra. However, tests are an essential ingredi-

*Computer Science Department, Cornell University, Ithaca, New York 14853-7501,
USA.. k o z e n @ c s , c o r n e l 1 .~du

15

ent, since they are needed to model conventional programming constructs
such as conditionals and wh i l e loops. We define in w a variant of Kleene
algebra, called Kieene algebra with tests, for reasoning equationally with
these constructs.

Cohen has studied Kleene algebra in the presence of extra Boolean and
commutat ivi ty conditions. He has given several practical examples of the
use of Kleene algebra in program verification, such as lazy caching [10] and
concurrency control [11]. He has also shown that Kleene algebra with extra
conditions of the form p = 0 remains decidable [9], but that *-continuous
Kleene algebra in the presence of extra commutativity conditions of the
form pq = qp, even for atomic p and q, is undecidable [8].

In this paper we give two results, one of a more practical nature and
the other theoretical. In w we give a complete equational proof of a clas-
sical folk theorem [14, 27] which states that every wh i l e program can be
simulated by another wh i l e program with at most one wh i l e loop, pro-
vided extra Boolean variables are allowed. The approach we take is that
of Mirkowska [27], who gives a set of local transformations that allow ev-
ery wh i l e program to be transformed systematically to one with at most
one w h i l e loop. For each such transformation, we give a purely equational
proof of correctness. This result illustrates the use of Kleene algebra with
tests and commutat ivi ty conditions in program equivalence proofs.

In w we observe that Cohen's construction establishing the undecidabil-
ity of *-continuous Kleene algebra with added commutativity conditions
actually shows that the universal Horn theory of the *-continuous Kleene
algebras is not recursively enumerable, therefore not finitely axiomatizable.
This resolves an open question of [22].

2 K l e e n e A l g e b r a

A Kieene algebra [22] is an algebraic structure

(g, + , . , *, 0, 1)

satisfying (1)-(15) below. As usual, we omit t h e . from expressions, writing
pq for p �9 q. The order of precedence of the operators is * > - > +; thus
p + qr* should be parsed as p + (q(r*)). The unary operator + is defined
by q+ = qq*.

p + (q - l - r) =- (p + q) + r (1)
p- t -q = q + p (2)
p + O = p (3)

p + p -= p (4)
p(qr) = (pq)r (5)

]6

iv = p (6)

pl = p (7)

. (q + r) = p q + p r (8)

(p + q) r = p r + q r (9)

Op = 0 (10)

pO = 0 (11)

l + pp* = p* (12)

l + p * p = p* (13)

q + pr <_ r ---* p*~ S r (14)

q + r p < r --* qp* < r (15)

where < refers to the natural partial order on K:

p < q ~ p + q = q .

Instead of (14) and (15), we might take the equivalent axioms

p r < r ---* p * r < r (16)

rp <_ r ---* rp* _< r . (17)

Axioms (12)-(17) say essentially that * behaves like the Kleene star oper-
ator of formal language theory or the reflexive transitive closure operator
of relational algebra. See [23] for an introduction.

A Kleene algebra is said to be *-cont inuous if it satisfies the infinitary
condition

where

pq*r = s u p p q n r (18)
n>_o

qO = 1
qn+l = qqn

and the supremum is with respect to the natural order <. We can think of
(18) as a conjunction of the infinitely many a x i o m s p q n r < pq*r, n > 0,
and the infinitary Horn formula

A/\ pqnr <_ s ---* pq* r < s .

n>_O

In the presence of the other axioms, the *-continuity condition (18) im-
plies (14)-(17), and is strictly stronger in the sense that there exist Kleene
algebras that are not *-continuous [20].

]7

All true identities between regular expressions, interpreted as regular
sets of strings, are derivable from the axioms of Kleene algebra [22]. In the
author 's experience, two of the most useful such identities are

p*(qp*)* -- (p + q) * (19)

p(qp)* = (pq)*p. (20)

For example, to derive the more complicated identity (p 'q)* = lq-(p.-kq)*q,
we could reason equationally as follows:

(p 'q)* = l q-p*q(p*q)* by(12)

= 1 +p*(qp*)*q by (20)

= 1 § (p + q) * q by (19).

2.1 K l e e n e A lgebra wi th Tes t s

To accommodate tests, we introduce the following variant of Kleene alge-
bra. A Kleene algebra with tests is a two-sorted algebra

(g , B, +, . , * , 0, 1 , -)

where B C K and - is a unary operator defined only on B, such that

(K, + , - , *, 0, 1)

is a Kleene algebra and

(B, + , . , - , 0, 1)

is a Boolean algebra. The elements of B are called tests. We reserve the
letters p, q, r, s, t, u, v for arbitrary elements of K and a, b, c, d, e for tests. In
PDL, a test would be written b?, but since we are using different symbols
for tests we can omit the ?.

The sequential composition operator �9 acts as conjunction when applied
to tests, and the choice operator + acts as disjunction. Intuitively, a test
bc succeeds iff both b and c succeed, and b + c succeeds iff either b or c
succeeds.

It follows immediately from the definition that b < 1 for all b E B. It
is tempting to define tests in an arbitrary Kleene algebra to be the set
{b E K [b < 1}. This is the approach taken by Cohen [9]. This makes sense
in algebras of binary relations [28, 34], but in general the set {b E K I b ~ 1}
may not extend to a Boolean algebra. For example, in the (min,+) Kleene
algebra of the theory of algorithms (see [21]), b < 1 for all b, but the
idempotence law bb = b fails. Thus care must be taken with this approach.

We deliberately forgo this approach in favor of the explicit Boolean sub-
algebra in order to avoid these difficulties. Even over algebras of binary re-
lations, we would like to admit models with programs whose inpu t /ou tpu t

18

relations are subsets of the identity (i.e,, have no side effects) but whose
complements are nevertheless uncomputable. We intend tests b to be viewed
as simple predicates that are easily recognizable as such, and that are im-
mediately decidable in a given state (and whose complements are therefore
also immediately decidable).

2.2 While Programs

For the results of w we work with a PASCAL-like programming language
with sequential composition p; q, a conditional test i f b t h e n p else q, and
a looping construct wh i l e b do p. Programs built inductively from atomic
programs and tests using these constructs are called while programs. We
take the sequential composition operator to be of lower precedence than
the conditional test or wh i l e loop, parenthesizing with b e g i n . . , e n d where
necessary; thus

w h i l e b do p ; q

should be parsed as

b e g i n w h i l e b do p e n d ; q

and not

w h i l e b do b e g i n p ; q e n d

We occasionally omit the e lse clause of a conditional test. This can be
considered an abbreviation for a conditional test with the dummy else
clause 1 (true).

These constructs are modeled in Kleene algebra with tests as follows:

p ;q = pq

i f b t h e n p e l s e q = bp+bq
i f b t h e n p = bp +-b

w h i l e b d o p = (bp)*-b.

See [23] for further discussion.

2 .3 C o m m u t a t i v i t y Condi t ions

We will also be reasoning in the presence of commutativity conditions of
the form bp = pb, where p is an arbitrary element of the Kleene algebra
and b is a test. T h e practical significance of these conditions will become
apparent in w Intuitively, the execution of program p does not affect the
value orb. It stands to reason that f fp does not affect b, then neither should
it affect b. This is indeed the case:

19

L e m m a 1 In any Kleene algebra with tests, the following are equivalent:

(i) . b = b.

50 pb = bp

5ii) bpb + bpb = O.

Proof. By symmetry, it suffices to show the equivalence of (i) and (iii).
Assuming (i),

bpb + bpb = pbb + bbp = pO + Op = O .

Conversely, assuming (iii), we have bpb = bpb = O, thus

pb = (b + ~) p b = bpb+~pb = @ b + O = bpb
bp = bp(b + b) = bpb + bpb = bpb + O = bpb .

[]

Of course, any pair of tests commute, i.e., bc = cb; this is an axiom of
Boolean algebra.

We conclude this section with a pair of useful results that are fairly
evident from an intuitive point of view, but nevertheless require formal
justification.

L e m m a 2 In any Kleene algebra with tests, if bq ~ qb, then

bq* = (bq)*b = q*b -= b(qb)*.

R e m a r k Note that i t is not the case that bq* = (bq)*: when b = 0, the
left hand side is 0 and the right hand side is 1.

Proof. We prove the three inequalities

bq* < (bq)*b < q*b < bq*;

the equivalence of b(qb)* with these expressions follows from (20). For the
first inequality, it suffices by axiom (15) to show that b + (bq)*bq < (bq)*b.
By Boolean algebra and the commutat ivi ty assumption, we have bq = bbq --
bqb, therefore

b+ (bq)*bq -=- b+ (bq)*bqb = (1 + (bq)*bq)b = (bq)*b.

The second inequality follows from b < 1 and the monotonicity of the
Kleene algebra operators.

For the last inequality, it suffices by (14) to show b + qbq* < bq*:

b+qbq* = b+bqq* = b (l + q q *) = bq*.

Note that in this last argument, we did not use the fact that b was a test.
[]

20

T h e o r e m 3 In any Kleene algebra, i f p is generated by a set of elements
all of which commute with q, then p commutes with q.

Proof. Let p be an expression in the language of Kleene algebra, and
assume that all atomic subexpressions of p commute with q. The proof is
by induction on the structure of p. The basis and all inductive cases except
for programs of the form r* are straightforward. For the inductive case
p = r*, we have by the induction hypothesis that qr = rq, and we need
to argue that qr* = r*q. The inequality in one direction is given by the
argument in the last paragraph in the proof of Lemma 2, which uses (14),
and in the other direction by a symmetric argument using (15). []

3 A Folk Theorem

In this section we give an equational proof, using Kleene algebra with tests
and commutat ivi ty conditions, of a classical result: every w h i l e program
can be simulated by a w h i l e program with at most one w h i l e loop, pro-
vided eztra Boolean variables are allowed. This theorem is the subject of a
treatise on folk theorems by Harel [14], who notes that it is commonly but
erroneously at tr ibuted to BShm and Jacopini [7], and argues with some
justification that it was known to Kleene. The version as stated here is
originally due to Mirkowska [27], who gives a set of local transformations
that allow every wh i l e program to be transformed systematically to one
with at most one wh i l e loop. We consider a similar set of local transfor-
matious and give a purely equational proof of correctness for each. This
result illustrates the use of Kleene algebra with tests and commutat ivi ty
conditions in program equivalence proofs.

It seems to be a commonly held belief that this result has no purely
schematic (i. e., propositional, uninterpreted) proof [14]. The proofs of [15,
27], as reported in [14], use extra variables to remember certain values at
certain points in the program, either program counter values or the values of
tests. Since having to remember these values seems unavoidable, one might
infer tha t the only recourse is to introduce extra variables , along with an
explicit assignment mechanism for assigning values to them. Thus, as the
argument goes, proofs of this theorem cannot be purely propositional.

We do not agree completely with this conclusion. The only purpose of
these extra variables is to preserve values across computations. In our treat-
ment, we only need to preserve the values of certain tests b over certain
computations p. We can handle this equationally by introducing a new test
c, which we can assume is set to the value of b in some precomputation,
and postulating a commutat ivi ty condition of the form ep = pc, which says
intuitively that the value of c is not affected by the execution of p. No
explicit assignment mechanism is necessary; we just assume that e already
has the correct value.

21

3.1 A n E x a m p l e

To illustrate this technique, consider the simple program

i f b t h e n b e g i n p ; q e n d (21)
e l se b e g i n p ; r e n d

If the value of b were preserved by p, then we could rewrite this program
more s imply as

p ; i f b t h e n q e lse r (22)

Formally, the assumption that the value of b is preserved by p takes the
form of the commuta t iv i ty condition bp = pb. By Lemma 1, we also have
bp = pb. Expressed in the language of Kleene algebra, the equivalence of
(21) and (22) becomes the equation

bpq + = p(bq +

This identi ty can be established by simple equational reasoning:

p(bq+br) = pbq+pbr by (8)

= bpq + bpr by the commutat iv i ty assumptions.

But what if b is not preserved by p? This situation seems to call for a
Boolean variable to remember the value of b across p, and an assignment
mechanism to set the value of the variable. However, we do not need to
take such a drastic step. We can stay within the realm of uninterpreted
equational logic by introducing a new atomic test c and commuta t iv i ty
condition pc = cp, intuitively modeling the idea that c tests a variable tha t
is not modified by p. We make the program (22) test c instead of b. We then
preface bo th programs with the guard bc + b-5 (in the language of w h i l e
programs, i f b t h e n c e lse ~) which asserts that initially b and c have
the same value. Intuitively, we are assuming that c has already been set to
the value of b in some (omitted) precomputation. We can even include an
a tomic program s and pretend that s performs this precomputat ion if we
like, al though this is not really necessary: if the two programs are already
equivalent without the s in front, then they are certainly equivalent with
it.

We can now give a purely equational proof of the equivalence of the two
programs

bc + b-~;
i f b t h e n b e g i n p ; q e n d (23)

e lse b e g i n p ; r e n d

and

bc + ~-~;
p ; i f c t h e n q e lse r (24)

22

using the axioms of Kleene algebra with tests and the commutativi ty con-
ditions pc = cp and p'~ = cp. Expressed in the language of Kleene algebra,
the equivalence of (23) and (24) becomes

(be + b-d)(bpq + bpr) = (bc + b-d)p(cq + -dr) . (25)

Using the distributive laws (8) and (9) and the laws of Boolean algebra, we
can simplify the left hand side of (25) as follows:

(be + e)(bpq + pr) = bcbpq + -dbpq + bc pr + -db-p
= bcpq + b-dpr .

The right hand side of (25) simplifies in a similar fashion to the same
expression:

(be + b-d)p(cq + -dr) = bcpcq + bep~q + b~p-dr + b-dp-dr

= bccpq + b-dcpq -I- bc-dpr + b~-~pr

= bcpq + b'~pr .

Here the commutativi ty assumptions are used in the second step.
We can even do away with the guard bc + b~ in this argument by the

following consideration. If we assume that c is assigned the value of b in
the precomputation in both programs, then we might as well test c instead
of b in (23) as well as (24). But then we don't need the guard at all, since
the two programs are already equivalent without it by the original two-line
proof given at the beginning of this section with b replaced by c.

3 . 2 N o r m a l F o r m

A program is in normal f o rm if it is of the form

p ; wh i l e b do q (26)

where p and q are while-free. The subprogram p is called the precomputa-
tion of the normal form.

We show that every program can be transformed to a program in nor-
mal form. This is done inductively on the structure of the program. Each
programming construct accounts for one case in the inductive proof, and
we consider each case separately. For each case, we give a transformation
that moves an inner wh i l e loop to the outside and an equational proof of
its correctness.

3 . 3 C o n d i t i o n a l

We first show how to move two programs in normal form in the t h e n and
e lse clauses of a conditional, respectively, outside the conditional. Consider

23

the program

i f b t h e n b e g i n Pl ; wh i l e C 1 do ql e n d
else b e g i n p~ ; wh i l e c2 do q2 e n d (27)

We can assume without loss of generality that b commutes with Pl, P2, ql,
and q2. If not, we could introduce a new test whose value would be set
to the value of b in the preeomputation, then use it in place of b in the
conditional test, as described in w

Under these assumptions, we show that (27) is equivalent to

i f b t h e n Pl else P2 ;
wh i l e bcl + -be2 do

i f b t h e n ql e lse q2
(28)

Note that if the two programs in the t h e n and else clauses of (27) are in
normal form, then (28) is in normal form.

Written in the language of Kleene algebra, (27) becomes

(29)

and (28) becomes

(bpl+bp2)((bcl +bc2)(bql+bq2))*bcl+bc2. (30)

The subexpression bcl + bc2 of (30) is equivalent by propositional reasoning
to b~l + b~2- Here we have used the familiar propositional equivalence

=

and a De Morgan law. The starred expression in (30) can be simplified
using distributivity and Boolean algebra:

(bcl + -bc2)(bq~ + bq2) = bclbql + bcl-bq2 + -bc2bql + bc2bq2
= bclql +bc2q2 .

Substituting these simplified expressions in the original expression (30), we
obtain

(@1 + bp2)(bClql .4- -bc2q2)* (b-dl .4- be2) �9 (31)

Using distributivity, this can be broken up into the sum of four terms:

bpl (bcl ql -4" "bc2 q2) * b-dl
+ bpl(bclql +bc2q2)*b~2
+ bp2(bclql + -bc2q2)*b-51
+ p2(bclal +

(32)

(33)

(34)
(35)

24

Under the commutativity assumptions, Lemma 2 implies that (33) and (34)
reduce to 0; and for the remaining two terms (32) and (35),

bpl(bclqlA-bc2q2)*b~l =

bp~(bClql+bc2q2)*bc2 =

The sum ofthese two terms is (29).

bpl(bbclql "4- bbc2q2)* cl
bpl(Clql)*~l

bp2(bbclql'4-b-bc2q2)*E2

2.4 Nested Loops

We next consider the case that is perhaps the most interesting: denesting
two nested while loops. This construction is particularly remarkable in
that no commutativity conditions (thus no extra variables) are needed;
compare the corresponding transformations of [15, 27], as reported in [14],
which do use extra variables.

We show that the program

while b do beg in

P; (36)
while e do q

end

is equivalent to the program

i f b then begin
P;
while b + e do (37)

i f c t hen q else p
end

This construction transforms a pair of nested while loops to a single while
loop inside a conditional test. No commutativity conditions are assumed in
the proof.

After this transformation, the while loop can be taken outside the con-
ditional using the transformation of w (this part does require a commu-
tativity condition). A dummy normal form such as 1; while 0 do 1 can be
supplied for the missing else clause. Note that if the program inside the
b e g i n . . , end block of (36) is in normal form, then the resulting program
will be in normal form.

Not surprisingly, the key property used in the proof is the denesting prop-
erty (19), which equates a regular expression of *-depth two with another
of *-depth one.

Translating to the language of Kleene algebra, (36) becomes

(bp(cq)*~)*b (38)

25

and (37) becomes

bp((b + c)(cq + -dp))*b + c + b . (39)

The b in (39) is for the nonexistent else clause of the outermost conditional
of (37). Unwinding the outer loop in (38) using (12) and distributing b over
the resulting sum, we obtain

+ bp(cq)*'~(bp(cq)*-d)*-b.

Removing b and bp from this expression and (39), it suffices to show

(cq)*-5(bp(cq)*-f)*b ..= ((b + e)(cq -4- -bp))*b + c .

Using (20) on the left hand side and propositional reasoning on the right,
this simplifies to

(cq)*(-~bp(cq)*)*'f6 = ((b + c)(cq + -@))*-~ .

Removing the ~b on both sides, this further simplifies to

(cq)*(-dbp(cq)*)* = ((b + c)(cq + @))* . (40)

Now here is the key step at which the loop is denested. Applying (19) to
the left hand side of (40), we obtain

(eq +-e@)* = ((b + c)(cq + @))*,

so it suffices to show the equivalence of the subexpressions

cq -4" -~bp -=- (b + c)(cq + -~p) .

The right hand side is easily transformed to the left using the basic laws of
Kleene and Boolean algebra:

(b + e)(eq + -dp) =- bcq -4- b-bp + ccq -4- e'bp

= bcq + cq +-6bp

= (b+ 1)cq+-6bp

= cq + -~bp .

3 .5 E l i m i n a t i n g P o s t c o m p u t a t i o n s

We wish to show that a program occurring after a whi le loop can be
absorbed into the whi l e loop. Consider a program of the form

wh i l e b do p; q (41)

26

By introducing a new test if necessary, we can assume without loss of
generality that b commutes with q. (Intuitively, the value of the new test
will have to be set implicitly both in the precomputation and at the end of
p. Formally, we would establish the equivalence of the two programs

(bc + b~) ; whi le b do beg in p ; (bc + -b'd) e n d

(bc + bE) ; whi le c do b e g i n p ; (bc + b'6) e n d

We leave this as an exercise.) Under this assumption, we show that the
program (41) is equivalent to the program

i f b t h e n q
e lse w h i l e b do b e g i n

p; (42)
i f b t h e n q

e n d

Note that if p and q are while-free, then (42) consists of a program in
normal form inside a conditional, which can be transformed to normal
form using the construction of w

Written in the language of Kleene algebra, (41) becomes

and (42) becomes

(bp)*bq (43)

+ b(bp($q + (44)

Unwinding one iteration of (43) using (12) and distributing bq over the
resulting sum, we obtain

+ bp(bp)* q .

By distributivity, (44) is equivalent to

-bq + b(bp'bq + bpb)*b .

Eliminating the term bq from both sides, it suffices to prove

bp(bp)*bq -- b(bpbq + bpb)*b . (45)

At this point we seem to have reached an impasse, since b does not nec-
essarily commute with p, so Lemma 2 does not apply. The trick here is to
use the denesting rule (19) in the wrong direction. Starting with the right
hand side,

b(bpbq + bpb)*-b
= b(bpb)*(bpbq(bpb)*)*b by (19)

27

= (b@)*b(b~q(1 + @b(@b)*))*~
= (@)*b(b~q + bp~q@b(@b)*)*~

= (bp)*b(bp-bq)*-6

: (bp)*b(1 + bp-bq(1 + bpbq(bp-bq)*))b
= (bp)*(b-b + bp-bq-6 + bpbqbpbq(bp-bq)*-b)
-: (bp)*bp-bq-b
= @(@)*~q

by (20) and (12)

since bqb = "bbq = 0

by (12)

since bb = bqb = 0

by (20).

3. 6 Composition
The composition of two programs in normal form

Pl ;
w h i l e bl do ql ;

P2 ;
w h i l e b2 do q2

(46)

can be t ransformed to a single program in normal form. We have actually
already done all the work needed to handle this case. First, we use the result
of w to absorb the while-free program p~ into the first w h i l e loop. We
can also ignore Pl, since it can be absorbed into the precomputat ion of the
resulting normal form when we are done. It therefore suffices to show how
to t ransform a program

w h i l e b d o p ; (47)
w h i l e c d o q

to normal form, where p and q are while-free.
As argued previously, we can assume without loss of generality tha t the

test b commutes with the program q by introducing a new test if necessary
and assuming tha t its value is set in the precomputat ion and at the end
of p. Since b also commutes with c by Boolean algebra, by Theorem 3 we
have tha t b commutes with the entire second wh i l e loop. This allows us to
use the t ransformat ion of w absorbing the second wh i l e loop into the
first. The resulting program looks like

i f b t h e n w h i l e c d o q
e l se w h i l e b d o b e g i n

P;
i f b t h e n w h i l e c do q

e n d

(48)

At this point we can apply the t ransformation of w to the subprogram

i f b t h e n w h i l e c d o q

28

using a dummy normal form for the omitted else clause, giving two nested
loops in the else clause of (48); then the transformation of w to the else
clause of (48); finally, the transformation of w to the entire resulting
program, yielding a program in normal form.

The transformations of w167 give a systematic method for moving
while loops outside of any other programming construct. By applying
these transformations inductively from the innermost loops outward, we
can transform any program into a program in normal form.

None of these arguments needed explicit Boolean variables or any as-
signment mechanism. Where did they go? Of course they would be there
in a real implementation, but they do not play a role in the proofs because
they are hidden in "without loss of generality..." assumptions. The point
is that it is not significant exactly how a Boolean value is preserved across
a computation, but rather that it can be preserved; and for the purposes
of formal verification, this fact is completely captured by a commutativity
assumption. Thus we are justified in our claim that we have given a purely
equational proof of this result.

4 Undecidability

Cohen [8] has shown that *-continuous Kleene algebra with extra commu-
tativity conditions of the form pq = qp is undecidable. We reproduce his
construction below.

Theo rem 4 (Cohen) It is undecidable whether a given identity holds in
all *-continuous Kleene algebras satisfying a given finite se~ of identities of
the form pq = qp.

Proof. We encode Post's Correspondence Problem (PCP) (see [16]). Let
I be an instance of PCP consisting of k pairs of strings xi ,yi E {p,q}+,
1 < / < k, where p and q are atomic symbols. For c~ E {1, . , . , k}*, define
xq inductively by

and define ya similarly. A solution to the instance I of PCP is a string
E {1, . . . ,k} + such that x~ = y~.
Let {p', q'} be a disjoint copy of {p, q}, and let z' e {p~, q'}* denote the

image of the string z E {p, q}* under the homomorphism p ~-. p~, q ~-. q'.
Consider the commutativity conditions

uv' = v 'u , ,ve {p ,q} . (49)

2 9

Let s and t be the expressions

X t

t = iPP' + qq ')* i (P+ q)+ + (P' + q')+ + (Pq' + qP') iP+ q +P ' + q')*) �9

Intui t ively, m o d u l o the c o m m u t a t i v i t y condit ions (49), the regular expres-
sion s represents the set of all ' z~y~, and the regular expression t denotes
the set of all non-solut ions to I .

We c la im t h a t the inequal i ty s < t is a logical consequence of the iden-
t i t ies (49) and the ax ioms of *-continuous Kleene a lgebra if and only if
the ins tance I of P C P has no solution. In other words, the universal Horn
fo rmu la

ppl = pJp A pql = qt p A qpl = plq A qql = qlq -+ s < t

holds in all *-cont inuous Kleene algebras iff I has no solution.
Suppose I h a s n o solution. For a E { 1 , . . . , k} +, let ~ = c q a 2 - - - crn where

n >_ 1 and each ~i E { 1 , . . . , k } , 1 < i < n. Let z be the longest c o m m o n
prefix of x~ and y~. By the c o m m u t a t i v i t y conditions, z~y~ is equivalent to
a s t r ing of the fo rm zz~pqJw or zz~qp~w for w an a rb i t r a ry string, or zz~w
for w a nonnul l s t r ing of all p r imed or all unpr imed symbols . There are
no o ther possibili t ies, since ~ is not a solut ion to I . By the c o m m u t a t i v i t y
condi t ions and Kleene algebra, all such strings can be shown to be less t han
or equal to t. By [21, pp. 221,246], s is the s u p r e m u m of all these elements,
therefore s < t.

Conversely, if I has a solut ion a = c~lc~2-..c~n E { 1 , . . . , k } ~, n > 1,
say ~ = y~ = z, we c la im t h a t s < t is not a logical consequence of (49)
and the ax ioms of *-continuous Kleene algebra. I t suffices to construct a
�9 -cont inuous Kleene a lgebra sat isfying i49) in which s ~ t. Consider the
Kleene a lgebra of b inary relat ions on the set of strings {p, q}* U {p', q'}*,
where the opera to r s have their s t andard re la t ion- theoret ic in terpre ta t ions .
We in terpre t the symbols p, q, p ' , q~ as follows:

u = {i x , x u) l x E { p , q } * } U { i u ' x ' , x ') I x E { p , q } * } , u E { p , q }

u ' = {i x ' , x ' u ') l x E { p , q } * } w { (u x , x) i x E { p , q } * } , u E { p , q } .

Let e = {i r e)}. I t is s t ra ight forward to verify t ha t the equat ions i49) hold
in this model , and t ha t epp' = eqq' = e. I t follows tha t eiP p' + qq~)* = e
and ezzle = e. Since zz I = x~y~ < s, we have e < ese, therefore ese # 0.

Now it also follows tha t epq' = eqp' --- 0 and eip+q)+ e = eiP' +q')+ e = O,
therefore

ete = e(i p + q) + + i p ' +q ')+ +(pq ' + q p ') i p + q + p ' + q ') *) e

-= eiP + q)+e -4- eiP' -4- q')+e A- eipq' -4- qP')iP -t- q + p' -t- q')* e

O.

Since ese # 0 and ete = O, we cannot have s < t. []

30

Let H(KA) (respectively, H(KA*)) denote the universal Horn theory
of the Kleene algebras (respectively, the *-continuous Kleene algebras).
Cohen's proof establishes more than just the undecidability of H(KA*): it
actually shows that H(KA*) is not recursively enumerable, therefore not
finitely axiomatizable. This is because his proof gives a many-one reduction
of PCP to the complement of H(KA*); i.e., the given instance of PCP is
satisfiable iff the resulting Horn formula is no~ valid. Since PCP is r.e.-
complete, its complement is not r.e., therefore neither is H(KA*). This
answers an open question of [22], which asked whether the axioms of Kleene
algebra were complete for H(KA*); in other words, do H(KA) and H(KA*)
coincide? The answer is no: the former is recursively enumerable (it is a
universal Horn theory), whereas the latter is not.

5 Related Results and Open Problems

Using [21, pp. 221,246], it can be shown that the equational theory of *-
continuous Kleene algebras with tests is complete for relational models, and
also admits a free language-theoretic model consisting of sets of "guarded
strings". Using this result and a technique based on [22], it can be shown
that the equational theories of Kleene algebras with tests and *-continuous
Kleene algebras with tests coincide. This result is the analog of [22] for the
case of Kleene algebras with tests.

Although Theorem 4 shows that *-continuous Kleene algebra with gen-
eral commutativity conditions is undecidable, the only commutativity con-
ditions needed in the proof of w are of the form bq = qb, where b is a test.
Lemma 1 shows that these conditions are equivalent to conditions of the
form p = 0. Cohen [9] shows that Kleene algebra with conditions p = 0
reduces efficiently to Kleene algebra without conditions. A construction
similar to Cohen's can be used to show that Kleene algebra with tests and
conditions p = 0 reduces efficiently to Kleene algebra with tests alone, and
similarly for *-continuous Kleene algebra with tests.

The following interesting questions present themselves:

1. The equational theory of Kleene algebras with tests can be shown
decidable by a simple reduction to PDL. What is its complexity? It
is at most deterministic exponential time (since PDL is) and at least
PSPACE-hard (since the equational theory of Kleene algebras is).
We conjecture that it is PSPACE-complete.

2. What is the complexity of H(KA*)? It is not r.e., but how high does
it go?

3. By the results of w there must exist a universal Horn sentence that is
true in all *-continuous Kleene algebras but violated in some Kleene
algebra. Is there a natural example of such a sentence?

31

Acknowledgements
Ernie Cohen, David Gries, David Harel, Vaughan Pratt, and Fred B. Schnei-
der provided valuable comments. I am indebted to Ernie Cohen for his kind
permission to include his previously unpublished Theorem 4.

6 REFERENCES

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1975.

[2] S. Anderaa. On the algebra of regular expressions. Appl. Math., pages
1-18, January 1965.

[3] K. V. Archangelsky. A new finite complete solvable quasiequational
cMculus for Mgebra of regular languages. Manuscript, Kiev State Uni-
versity, 1992.

[4] Roland Carl Backhouse. Closure Algorithms and the Star-Height Prob-
lem of Regular Languages. PhD thesis, Imperial College, 1975.

[5] Stephen L. Bloom and Zolts l~sik. Equational axioms for regular sets.
Technical Report 9101, Stevens Institute of Technology, May 1991.

[6] Maurice Boffa. Une remarque sur les syst~mes complets d'identit~s
rationnelles. Informatique thdoretique et Applications/Theoretical In-
formatics and Applications, 24(4):419-423, 1990.

[7] C. BShm and G. Jacopini. Flow diagrams, Turing machines, and lan-
guages with only two formation rules. Comm. Assoc. Comput. Mach.,
9(5):366-371, May 1966.

[8] Ernie Cohen, February 1994. Personal communication.

[9] Ernie Cohen. Hypotheses in Kleene algebra.
ftp ://ftp. bellcore, com/pub/ernie/res earch/homepage, html,
April 1994.

[10] Ernie Cohen. Lazy caching.
ftp ://ftp. bellcore, tom/pub/ernie/res earch/homepage, html,
1994.

[11] Ernie Cohen. Using Kleene algebra to reason about concurrency
control.
ftp ://ftp. bellcore, com/pub/ernie/res earch/homepage, html,
1994.

[12] John Horton Conway. Regular Algebra and Finite Machines. Chap-
man and Hall, 1971.

32

[13] Michael J. Fischer and Richard E. Ladner. Propositional dynamic
logic of regular programs. J. Comput. Syst. Sci., 18(2):194-211, 1979.

[14] David Hard. On folk theorems. Comm. Assoc. Comput. Mach.,
23(7):379-389, July 1980.

[15] K. Hirose and M. Oya. General theory of flowcharts. Comment. Math.
Univ. St. Pauli, 21(2):55-71, 1972.

[16] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

[17] Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons
and zero-sum cycle problems. SIAM J. Comput., 19(5):883-901, 1990.

[18] Stephen C. Kleene. Representation of events in nerve nets and fi-
nite automata. In Shannon and McCarthy, editors, Automata Studies,
pages 3-41. Princeton University Press, 1956.

[19] Dexter Kozen. On induction vs. *-continuity. In Kozen, editor, Proc.
Workshop on Logic of Programs, volume 131 of Lect. Notes in Comput.
Sci., pages 167-176. Springer, 1981.

[20] Dexter Kozen. On Kleene algebras and closed semirings. In Rovan,
editor, Proc. Math. Found. Comput. Sci., volume 452 of Lect. Notes
in Comput. Sci., pages 26-47. Springer, 1990.

[21] Dexter Kozen. The Design and Analysis of Algorithms. Springer,
1991.

[22] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events, lnfor, and Comput., 110(2):366-390, May
1994.

[23] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
789-840. North Holland, 1990.

[24] Daniel Krob. A complete system of B-rational identities. Theoretical
Computer Science, 89(2):207-343, October 1991.

[25] Werner Kuich. The Kleene and Parikh theorem in complete semir-
ings. In Ottmann, editor, Proc. l~th Colloq. Automata, Languages,
and Programming, volume 267 of Lect. Notes in Comput. Sci., pages
212-225. EATCS, Springer, 1987.

[26] Werner Kuich and Arto Salomaa. Semirings, Automata, and Lan-
guages. Springer, 1986.

33

[27] G. Mirkowska. Algorithmic Logic and its Applications. PhD thesis,
University of Warsaw, 1972. In Polish.

[28] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis,
University of California, Berkeley, 1984.

[29] Vaughan Pratt. Dynamic algebras as a well-behaved fragment of rela-
tion algebras. In D. Pigozzi, editor, Proc. Conf. Algebra and Computer
Science, volume 425 of Leer. Notes in Comput. ScL, pages 77-110.
Springer, June 1988.

[30] Vaughan Pratt. Action logic and pure induction. In J. van Eijck,
editor, Proc. Logics in AI: European Workshop JELIA '90, volume
478 of Lect. Notes in Comput. Sci., pages 97-120. Springer, September
1990.

[31] V. N. Redko. On defining relations for the algebra of regular events.
Ukrain. Mat. Z., 16:120-126, 1964. In Russian.

[32] Jacques Sakarovitch. Kleene's Theorem revisited: a formal path from
Kleene to Chomsky. In A. Kelemenova and J. Keleman, editors,
Trends, Techniques, and Problems in Theoretical Computer Science,
volume 281 of Lect. Notes in Computer Science, pages 39-50. Springer,
1987.

[33] Arto Salomaa. Two complete axiom systems for the algebra of regular
events, o r. Assoc. Comput. Mach., 13(1):158-169, January 1966.

[34] A. Tarski. On the calculus of relations. J. Symb. Logic, 6(3):65-106,
1941.

