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Kleene algebras are algebraic structures with operators 4, -, *, 0, and 1
satisfying certain axioms. They arise in various guises in a number of set-
tings: relational algebra [22, 23], semantics and logics of programs [14, 24],
automata and formal language theory [18, 19], and the design and analysis
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Abstract

We give a finitary axiomatization of the algebra of regular events
involving only equations and equational implications. Unlike Salo-
maa’s axiomatizations, the axiomatization given here is sound for all
interpretations over Kleene algebras.

Introduction

of algorithms [1, 21, 12].

An important example of a Kleene algebra is Regy,, the family of regular
sets over a finite alphabet . The equational theory of this structure has
been called the algebra of reqular events. This theory was first studied by
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Kleene [13], who posed axiomatization as an open problem. Salomaa [28]
gave two complete axiomatizations of the algebra of regular events in 1966,
but these axiomatizations depended on rules of inference that are not sound
in general under nonstandard interpretations. Redko [25] proved in 1964 that
no finite set of equational axioms could characterize the algebra of regular
events. The algebra of regular events and its axiomatization is the subject
of the extensive monograph of Conway [8]. The bulk of Conway’s treatment
is infinitary. In 1981, we gave a complete infinitary equational deductive
system for the algebra of regular events that is sound over all *-continuous
Kleene algebras [14]. A completeness theorem for relational algebras with *,
a proper subclass of Kleene algebras, was given by Ng and Tarski [23, 22], but
their axiomatization relies on the presence of a converse operator. Schematic
equational axiomatizations for the algebra of regular events, necessarily rep-
resenting infinitely many equations, have been given by Krob [17] and Bloom
[6].

There is some disagreement regarding the definition of Kleene algebras |8,
24, 14]. The literature contains several inequivalent definitions. In this paper
we introduce yet another: a Kleene algebra is any model of the equations and
equational implications given in §2.

By general considerations of equational logic, the axioms of Kleene al-
gebra listed in §2, along with the usual axioms for equality, instantiation,
and rules for the introduction and elimination of implications, constitute a
complete deductive system for the universal Horn theory of Kleene algebras
(the set of universally quantified equational implications

OélzﬂlA"'/\Oén:ﬂn — Oé:ﬂ (1)

true in all Kleene algebras) [30].

The main result of this paper is that this deductive system is complete
for the algebra of regular events. In other words, two regular expressions «
and /3 over Y denote the same regular set in Regy, if and only if the equation
o = 3 is a logical consequence of the axioms. Equivalently, Regy is the free
Kleene algebra on free generators .

This gives a more satisfactory solution to Kleene’s question than Salo-
maa’s solution, since the axiomatization is sound over an entire array of
important nonstandard interpretations arising in computer science. The re-
sult 1s proved by encoding the classical combinatorial constructions of the
theory of finite automata, e.g. state minimization, algebraically.



There is an extensive literature on the algebra of regular events [8, 4, 17]
and much of the development of this paper is a recapitulation of previous
work. For example, the construction of a transition matrix representing
a finite automaton equivalent to a given regular expression is essentially
implicit in the work of Kleene [13] and appears in Conway’s monograph
[8]; the algebraic approach to the elimination of ¢-transitions appears in the
work of Kuich and Salomaa [19] and Sakarovitch [27]; and the results on
the closure of Kleene algebras under the formation of matrices essentially
go back to Conway’s monograph [8] and the thesis of Backhouse [4]. We
extend this program by showing how to encode algebraically two fundamental
constructions in the theory of finite automata:

e determinization of an automaton via the subset construction, and

e state minimization via equivalence modulo a Myhill-Nerode equivalence

relation.
We then use the uniqueness of the minimal deterministic finite automaton
to obtain completeness.

Conway states a similar theorem without proof in the latter part of his
book [8, Theorem 5, p. 108]. Krob [17], based on work of Boffa [7], and
Archangelsky [3] have recently independently obtained similar results based
on different techniques.

1.1 Examples of Kleene Algebras

Kleene algebras abound in computer science. We have already mentioned
the regular sets Regy,.

In the area of relational algebra, the family of binary relations on a set
with the operations of U for 4, relational composition

R-S = {(z,2) |y (z,y) € R, (y,2) € 5}

for -, the empty relation for 0, the identity relation for 1, and reflexive tran-
sitive closure for * constitute a Kleene algebra.

In semantics and logics of programs, Kleene algebras are used to model
programs in Dynamic Logic and Dynamic Algebra [14, 24].

In the design and analysis of algorithms, n X n Boolean matrices and ma-
trices over the so-called min, + algebra are used to derive efficient algorithms
for reachability and shortest paths in directed graphs [1, 21]. A Kleene alge-
bra in which + gives the vector sum of two polygons and - gives the convex



hull of the union of two polygons has been used to solve a cycle problem in
graphs [12]. These Kleene algebras appear in [1, 21, 12] in the guise of closed
semirings, which are similar to the S-algebras of Conway [8] (also called
Kleene semirings). Closed semirings and S-algebras are defined in terms
of an infinitary summation operator 3., whose sole purpose, it seems, is to
define *. These structures are all closely related; the precise relationship is
drawn in [15].

1.2 Salomaa’s Axiomatizations

Before one can fully appreciate the axiomatization of §2, it is important to
understand Salomaa’s axiomatizations [28] and their limitations. Let Ry
denote the interpretation of regular expressions over ¥ in the Kleene algebra

Regy, in which
Rx(a) = {a}, a€X.

This is called the standard interpretation.

Salomaa [28] presented two axiomatizations Fy and F; for the algebra of
regular events and proved their completeness. Aanderaa [2] independently
presented a system similar to Salomaa’s Fy. Backhouse [4] gave an algebraic
version of F]. These systems are equational except for one rule of inference
in each case that is sound under the standard interpretation Ry, but not
sound in general over other interpretations.

To describe the system F}, let us say a regular expression possesses the
empty word property (EWP) if the regular set it denotes under Ry contains
the null string e. The EWP can be characterized syntactically: a regular
expression « has the EWP if either

o o= 1;

o o = 3% for some f3;

e « is a sum of regular expressions, at least one of which has the EWP;

or

e « is a product of regular expressions, both of which have the EWP.
The system F; contains the rule

v+ af =0, «doesnot have the EWP
aty=p '

(2)



The rule (2) is sound under the standard interpretation Ry, but the
proviso “a does not have the EWP” is not algebraic in the sense that it
is not preserved under substititution. Consequently, (2) is not valid under
nonstandard interpretations. For example, if o, 3, and 7 are the single
letters a, b and ¢ respectively, then (2) holds; but it does not hold after the
substitution

a1 b—1 c¢—0.

Another way to say this is that (2) must not be interpreted as a universal
Horn formula. Salomaa’s system Fj is somewhat different from £} but suffers
from a similar drawback.

In contrast, the axioms for Kleene algebra given in §2 below are all equa-
tions or equational implications in which the symbols are regarded as uni-
versally quantified, so substitution is allowed.

2 Axioms for Kleene Algebra

A Kleene algebra is an algebraic structure
K = (K, +, - %0 1)

satisfying the following equations and equational implications:

a+(b+c) = (a+b)+c (3)
a+b = b+a (4)
a+0 = «a (5)
at+a = a (6)
a(be) = (ab)e (7)

la = a (8)
al = «a 9)
alb+e¢) = ab+ ac (10)
(a +b)c = ac+ b (11)
0a = 0 (12)
a0 = 0 (13)
l+aa™ < oF (14)
l+a*a < o (15)



r — a’b

b+ ax
b+ za

IA A

<
< z — ba*

where < refers to the natural partial order on K:
a S b — a + b=">.
Instead of (16) and (17), we might take the equivalent axioms

ax r — afr < =z (18)

r — zat < =z (19)

IA A

ra

Axioms (3-6) say that (K, +, 0) is an idempotent commutative monoid.
Axioms (7-9) say that (K, -, 1) is a monoid. Axioms (3-13) say that
(K, +, -, 0, 1) is an idempotent semiring.

The remaining axioms (14-19) deal with *. They say essentially that
* behaves like the Kleene star operator of formal language theory or the
reflexive transitive closure operator of relational algebra. Using (14) and the
distributivity axiom (11), we see that

b+ aa™b < a®b

Y

thus the left hand side of the implication (16) is satisfied when a*b is sub-
stituted for z; moreover, (16) says that a™b is the least element of K for
which this is true. In short, a®b is the least prefixpoint of the monotone map
z— b+ azx.

Axioms (16-19) are studied by Pratt [24], who attributes (16) and (17) to
Schroder and Dedekind. The equivalence of (16) and (18) (and, by symmetry,
of (17) and (19)) are proved in [24].

No attempt has been made to reduce the axioms above to a minimal set
and no claim is made as to their independence.

All the structures mentioned in §1, in particular Regy., are Kleene alge-
bras.

2.1 Elementary consequences

In this section we derive some basic consequences of the Kleene algebra ax-
ioms. These properties are quite elementary and have been observed before
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by many different authors. We do not claim any of them as original results,
but include them merely for the sake of completeness. We refer the reader
to [8, 4] for a comprehensive introduction.

It is straightforward to verify that the relation < is a partial order, and is
monotone with respect to all the Kleene algebra operators in the sense that
if @ < b, then ac < be, ca < ¢b, a + ¢ < b+ ¢, and o™ < b*. With respect to
<, K is an upper semilattice with join given by + and minimum element 0.

Basic properties of * such as

*
1 < «
*
a < «a
* ok *
aa” = a
*¥ *
a = a

are also easily derived. See [8] for formal proofs.

Lemma 1 In any Kleene algebra, o™ is the unique element satisfying (14)
and (16). 1t is also the unique element satisfying (15) and (17).

Proof. By (14), a* satisfies the inequality
l4+ax < =

when substituted for z. By (16), it is the least such element. Thus a™ is
unique.
The second assertion is proved by a symmetric argument involving (15)

and (17). 0O

Proposition 2 In any Kleene algebra, the inequalities (14) and (15) can be
strengthened to equations:

l—l—aa>I< = 4F

14+ afa = d*.
Proof. The inequality 1 + aa® < @™ is given by (14). To show

a* < 1—|—aa*,



it suffices by (16) and (9) to show that
1—|—a(1—|—aa*) < 14ad™.

But this is immediate from (14) and the monotonicity of - and +.
The proof of 1 + a®a = a™ is symmetric. a

The following result was observed by Pratt [24].

Proposition 3 Under the assumptions (3-14), the implications (16) and
(18) are equivalent. Under the assumptions (3-13) and (15), the implications
(17) and (19) are equivalent.

Proof. We prove the first statement; the second is symmetric. First
assume (16) and the premise of (18). By assumption, ax < =, therefore
z 4+ ar < x. By (16), a®r < z. Discharging the hypothesis, we obtain the
implication (18).

Now assume (18) and the premise of (16). By assumption, b 4+ ax < z,
thus b < z and ax < z. By (18), a™z < &, and by monotonicity, a®b < a*x,
therefore a®b < . Discharging the hypothesis, we obtain the implication
(16). O

The following proposition is a key tool in the completeness prootf of §5.
Proposition 4 In all Kleene algebras,
ar =xb — afx=ab".
Proof. Suppose first that ax < xb. Then
axb® < abb*

by monotonicity, and

by (14) and distributivity, therefore by monotonicity,

z+azb™ < x4 zbb*
< ab*.

oo



By (16),
afr < ab* .
By a symmetric argument using (15) and (17),
zb<ar — ab*<da*z.
The proposition follows from these two implications. a
Corollary 5 In all Kleene algebras,
(cd)*c = ¢(de)* .
Proof. Substitute ¢ for z, ¢d for a, and de for b in Proposition 4. O

Corollary 6 Let p be an invertible element of a Kleene algebra with inverse
p~t. Then

pTlatp = (pap)”
Proof. We have
a*p = (pp~'a)p
= plp~"ap)*
by Corollary 5. The result follows by multiplying on the left by p~!. a

Proposition 7 In all Kleene algebras,
(a—l—b)>I< = a*(ba*)* )

Proof. To show

(a + b)* < a*(ba*)* , (20)
observe that
1 < a*(ba*)*
aa*(ba*)* < a*(ba*)*
ba*(ba*)* < (ba*)*
< a"(ba™)",

Ne)



therefore

L+ (a+ b)a*(ba*)* 1+ aa*(ba*)* + ba*(ba*)*

a*(ba*)* )

IA A

Then (20) follows from (16).
To show the reverse inequality, we use the monotonicity of all the opera-
tors:

a*(ba”)* < (a+0)"((a+b)(a+b))"
(a+0)"((a+0)")"

(a—l—b)>I< )

IAIACIA

3 Matrices over a Kleene Algebra

Under the natural definitions of the operators +, -, *, 0, and 1, the family
M(n,K) of n x n matrices over a Kleene algebra K again forms a Kleene
algebra. This is a standard result proved for various classes of algebras in
[8, 4]. None of Conway’s or Backhouse’s algebras are Kleene algebras in our
sense, and their results do not imply the result we need here, so we must
provide an explicit proof. Nevertheless many of the techniques are similar.

Define + and - on M(n, K) to be the usual operations of matrix addition
and multiplication, respectively, Z, the n X n zero matrix, and I, the n x n
identity matrix. The partial order < is defined on M(n,K) by

A<B < A+B=8B.
Under these definitions, it is routine to verify
Lemma 8 The structure
(M(n,K), +, -, Z,, 1,,)

is an idempotent semiring; that is, the Kleene algebra axioms (3-13) are

satisfied.

10



Proof. See [8, 4]. O

The definition of E* for E € M(n,K) comes from [8, 19, 9]. We first

consider the case n = 2. This construction will later be applied inductively.

Let
a b
e

Let f=a+ bd*c and define

o l s N ]

def* 4 4 dFefFbd* (21)

This construction is motivated by a two-state finite automaton over the
alphabet ¥ = {a,b,c,d} with states {s,#} and transitions s > s, s LR t,
tS5 s, t 2 ¢. For each pair of states u, v, consider the set of input strings in
¥* taking state u to state v in this automaton. Each such set is regular and

is represented by a regular expression corresponding to those derived for the
matrix £*:

s—s : (a+ bd*c)>I<

s—t : (a+ bafkc)*bal>I<

t—s d*c(a + bd*c)>I<

t—t o d*+d"c(a+bd ) bd" .

Lemma 9 The matriz E* defined in (21) satisfies the Kleene algebra azioms
(14-17). That is,

I+ EE* < BEf (22)
I+EE < EF (23)
and for any X,
EX < X —» E*X < X (24)
XE < X - XE" <X (25)

11



Proof. We show (22) and (24). The arguments for (23) and (25) are
symmetric.
The matrix inequality (22) reduces to the four inequalities

L+af*+bd*ef* < f*
af bd® + b(d* + d*cf*od*) < frod*
cff +dd¥ef* < dfef*
<

1+ cf*od™ + d(d* + d*cf bd") d* + dFef*od*

in K. These are equivalent to the inequalities
L+ ff Ir
(L4 [f5pd* < f*bd*
(1 +dd*)ef* d*cf*
(14 dd*)(1 + cf*bd™) d* (1 4 cf*bd*)

VAN VAN VAN VAN

respectively, which follow from the axioms and basic properties of §2.

We now establish (24). We show that (24) holds for X an arbitrary
column vector of length 2; then (24) for X any 2 X n matrix follows by
applying this result to the columns of X separately.

Let
X = |7,
¥
We need to show that under the assumptions

ax + by
cx + dy

x (26)

<
<y (27)

we can derive

e+ Frod*y
dcf*z 4+ (d" + d cfFbd")y

x (28)
y - (29)

We establish (28) and (29) in a sequence of steps. With each step, we identify
the premises from which the conclusion follows by one of the axioms or basic

<
<

12



properties of §2.

ar < x (26) (30)

by < w (26) (31)

cr <y (27) (32)

Iy <y 1) (33)

Iy o<y (3), (19) (34)

bd™y < by (34), monotonicity (35)

bd*y < =z (31), (35) (36)

bd*ca < bd*y (32), monotonicity (37)

bd*cx < x (36), (37) (38)

fx < =z (30), (38) (39)

r < ow (39), (18) (40)

fod*y < f*ax (36), monotonicity (41)

ffod*y < (40), (41) (42)

dcef*er < dfex (40), monotonicity (43)

dfex < d*y (32), monotonicity (44)

deffes <y (34), (43), (44) (45)

d*cf*bd™y < d*cf*r  (36), monotonicity (46)

deffod'y <y (45), (46) (47)

The conclusion (28) now follows from (40) and (42) and (29) follows from
(45), (34), and (47). 0

We now apply this argument inductively.

Lemma 10 Let E € M(n,K). There is a unique matriz E* € M(n,K)
satisfying the Kleene algebra axioms (14—17). That is,

I+ EE* < Bf (48)
I+E*E < Bf (49)
and for any n x m matriz X over K,
EX < X —» E*X < X (50)
XE < X — XE* < X. (51)

13



Proof. Partition F into submatrices A, B, C', and D such that A and D

are square.
Al B
E = [%W] (52)

By the induction hypothesis, D* exists and is unique. Let ' = A + BD*(C.
Again by the induction hypothesis, F'* exists and is unique. We define

" F* F*BD*

ET = [ D*CF* }D*—I—D*CF*BD>I< ] (53)
and claim that E* satisfies (14-17). The proof is essentially identical to the
proof of Lemma 9. We must check that the axioms and basic properties of §2
used in the proof of Lemma 9 still hold when the primitive symbols of regular
espressions are interpreted as matrices of various dimensions, provided there
is no type mismatch in the application of the operators.

The uniqueness of E™* follows from Lemma 1. a

Combining Lemmas 8 and 10, we obtain

Theorem 11 The structure
(M(n,IC), —I'v ) *7 Zrm ]n)
is a Kleene algebra.

We remark that the inductive definition (53) of E* in Lemma 10 is inde-
pendent of the partition of £ chosen in (52). This is a consequence of Lemma
1, once we have established that the resulting structure is a Kleene algebra
under some partition; cf. [8, Theorem 4, p. 27].

In the proof of Lemma 10, we must check that the basic axioms and
properties of §2 still hold when the primitive letters of regular expressions are
interpreted as matrices of various shapes, possibly nonsquare, provided there
is no type mismatch in the application of operators; e.g., one cannot add two
matrices unless they are the same shape, one cannot form the matrix product
AB unless the column dimension of A is the same as the row dimension of
B, and one cannot form the matrix A* unless A is square. In general, all
the axioms and basic properties of Kleene algebra listed in §2 hold when the

14



primitive letters are interpreted as possibly nonsquare matrices over a Kleene
algebra, provided that there are no type conflicts in the application of the
Kleene algebra operators. A quick review of the axioms and basic properties
of §2 in light of this more general interpretation will suffice to convince the
reader of the truth of this statement.

For example, the Kleene algebra theorem

*

*
ar = b — ax = zb

(Proposition 4) holds even when a is an m x m matrix, b is an n X n matrix,
and x is an m X n matrix.
For another example, consider the distributive law

alb+¢) = ab+ac.

Interpreting a, b, and ¢ as matrices over a Kleene algebra K, this equation
makes sense provided the shapes of b and ¢ are the same and the column
dimension of a is the same as the row dimension of b and ¢. Other than that,
there are no type constraints. It is easy to verify that the distributive law
holds for any matrices a, b and ¢ satistying these constraints.

For a more involved example, consider the equational implication of Propo-
sition 4:

*

*
ar=2zb — a x=2zb .

The type constraints say that ¢ and b must be square (say s x s and ¢ x ¢
respectively) and that @ must be s x . Under this typing, all steps of the
proof of Proposition 4 involve only well-typed expressions, thus the proof
remains valid.

4 Finite Automata

Regular expressions and finite automata have traditionally been used as syn-
tactic representations of the regular languages over an alphabet Y. The re-
lationship between these two formalisms forms the basis of a well-developed
classical theory. Classical developments range from the more combinatorial
[20, 11] to the more algebraic [29, 10, 5, 9, 27]. The approach taken in this
paper must ultimately be attributed to Conway [8].
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In this section we define the notion of an automaton over an arbitrary
Kleene algebra. In subsequent sections, we will use this formalism to derive
the classical results of the theory of finite automata (equivalence with regular
expressions, determinization via the subset construction, elimination of e-
transitions, and state minimization) as consequences of the axioms of §2.

In the following, although we consider regular expressions and automata
as syntactic objects, as a matter of convenience we will be reasoning mod-
ulo the axioms of Kleene algebra. Officially, regular expressions will denote
elements of Fy, the free Kleene algebra over ¥. The Kleene algebra Fx, is con-
structed by taking the quotient of the regular expressions modulo provable
equivalence. The associated canonical map assigns to each regular expres-
sion its equivalence class in Fy. Since we will be interpreting expressions
only over Kleene algebras, and all interpretations factor through Fy via the
canonical map, this usage is without loss of generality.

The following definition is closer to the algebraic definition used for ex-
ample in [8, 5] than to the combinatorial definition used in [20, 11].

Definition 12 A finite automaton over K is a triple
A = (u,Av),

where u,v € {0,1}" and A € M(n,K) for some n.

The states are the row and column indices. The vector u determines the
start states and the vector v determines the final states; a start state is an
index ¢ for which u(¢) = 1 and a final state is one for which v(i) = 1. The
n x n matrix A is called the transition matriz.

The language accepted by A is the element

u'A*v e K.
O

For automata over Fy, the free Kleene algebra on free generators X, this
definition is essentially equivalent to the classical combinatorial definition of
an automaton over the alphabet ¥ as found in [20, 11]. A similar definition
can be found in [8].
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Example 13 Consider the two-state automaton in the sense of [20, 11] with
states {p, ¢}, start state p, final state ¢, and transitions

a a b b
p—p q—49 p—4q q9—4q.
Classically, this automaton accepts the set of strings over ¥ = {a, b} contain-
ing at least one occurrence of b. In our formalism, this automaton is specified

G

Modulo the axioms of Kleene algebra, we have
*
a b 0
ol s W]
B [1 0]‘ a™ a*b(a—l—b)* ‘ 0
N 0 (a+b)* 1
= a*b(a + b)* ) (54)

The language in Regy accepted by this automaton is the image under Ry
of the expression (54). O

Definition 14 Let A = (u, A,v) be an automaton over Fy, the free Kleene
algebra on free generators ¥. The automaton A is said to be simple if A can
be expressed as a sum

A= J+> a-A, (55)

a€EX
where J and the A, are 0-1 matrices. In addition, A is said to be e-free if J
is the zero matrix. Finally, A is said to be deterministic if it is simple and
e-free, and u and all rows of A, have exactly one 1. a

In Definition 14, € refers to the null string. The matrix A, in (55) cor-
responds to the adjacency matrix of the graph consisting of edges labeled a
in the combinatorial model of automata [11, 20] or the image of a under a
linear representation map in the algebraic approach of [29, 5]. An automaton
is deterministic according to this definition iff it is deterministic in the sense
of [11, 20].

The automaton of Example 13 is simple, e-free, and deterministic.

17



5 Completeness

In this section we prove the completeness of the axioms of §2 for the algebra of
regular events. Another way of stating this is that Regy. is isomorphic to Fx,
the free Kleene algebra on free generators X, and the standard interpretation
Ry : Fx — Regy, collapses to an isomorphism of Kleene algebras.

The first lemma asserts that Kleene’s representation theorem [13, 5, 9, 27]
is a theorem of Kleene algebra.

Lemma 15 For every regular expression o over ¥ (or more accurately, its
image in Fx, under the canonical map), there is a simple automaton (u, A, v)
over Fx such that

a = ulA*v.

Proof. The proof is by induction on the structure of the regular expres-
sion. We essentially implement the combinatorial constructions as found for
example in [11, 20]. The ideas behind this construction are well known and
can be found for example in [8].

For a € ¥, the automaton

(o] [06] 7))

ol e Y

= [ool [yt Y]

= a.

suffices, since

For the expression a4 3, let A = (u, A,v) and B = (s, B,t) be automata
such that

a = ulA*v

g = s'B*t.

18



Consider the automaton with transition matrix

0T

and start and final state vectors

] e 1

respectively. This construction corresponds to the combinatorial construction
of forming the disjoint union of the two sets of states, taking the start states
to be the union of the start states of A and B, and the final states to be the
union of the final states of A and B. Then

[ats] - [t

o) 4] 2]

= ulA*y 1+ sTB*t
= a+f.

and

For the expression af, let A = (u, A,v) and B = (s, B,t) be automata
such that

a = ulA*v

g = s'B*t.

Consider the automaton with transition matrix
Al vst
0| B

and start and final state vectors



respectively. This construction corresponds to the combinatorial construction
of forming the disjoint union of the two sets of states, taking the start states
to be the start states of A, the final states to be the final states of B, and
connecting the final states of A with the start states of B by e-transitions
(this is the purpose of the vs? in the upper right corner of the matrix). Then

Al vst ¥ B A*‘A*USTB*
0| B o] B ’

and

ol P

= ulA*vsT B*t
= af.
For the expression o, let A = (u, A,v) be an automaton such that
a = ulAtv.

We first produce an automaton equivalent to the expression aa™®. Consider
the automaton

(u, A+oul, v).

This construction corresponds to the combinatorial construction of adding
e-transitions from the final states of A back to the start states. Using Propo-
sitions 7 and 5,
uT(A + vuT)*v = uTA*(vuTA*)*v
= ul A% p(uT A% 0)*
= aa™ .

* *

Once we have an automaton for ™, we can get an automaton for o™ =
1 + aa™ by the construction for + given above, using a trivial one-state
automaton for 1. O

Now we get rid of e-transitions. This construction is also folklore and can
be found for example in [19, 27]. This construction models algebraically the
combinatorial idea of computing the ¢-closure of a state; see [11, 20].
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Lemma 16 For every simple automaton (u, A,v) over Fx, there is a simple
e-free automaton (s, B,t) such that

uT'A*v = sTB*t.

Proof. By Definition 14, the matrix A can be written as a sum A = J4 A’
where J is a 0-1 matrix and A’ is e-free. Then

ul' Ay = uT(A’—I—J)*v

— UTJ*(A/J*)*U
by Proposition 7, so we can take
st o= I J*
B = AJ*
t = v.
Note that J* is 0-1 and therefore B is e-free. O

The following two results are algebraic analogs of the determinization of
automata via the subset construction and the minimization of determinis-
tic automata via the collapsing of equivalent states under a Myhill-Nerode
equivalence relation. These results are apparently new, although the deter-
minization result was recently given independently by Krob [17, §10.2] using
different techniques.

Lemma 17 For every simple e-free automaton (u, A,v) over Fy, there is a
deterministic automaton (u, A,v) over Fy, such that

* T Rk
u'A*o = T A*D .

Proof. We model the subset construction [11, 20] algebraically. Let
(u, A,v) be a simple e-free automaton with states ¢). By Definition 14, A
can be expressed

A = Za-Aa

a€EX

where each A, 1s a 0-1 matrix.
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Let P(Q) denote the power set of (). We identify elements of P(Q) with
their characteristic vectors in {0,1}". For each s € P(Q), let e; be the

P(Q) x 1 vector with 1 in position s and 0 elsewhere.
Let X be the P(Q) x Q matrix whose s row is sT; i.c.,

X = ST,

For each a € X, let A, be the P(Q) x P(Q) matrix whose s row is e;r 4 ;
in other words,

Ty _
e, Aa = ey, .
Let
A = Z a- A,
a€EX
U = ey
v = Xv.

The automaton (ﬁ,fl, v) is simple and deterministic.
The relationship between A and A is expressed succinctly by the equation

XA = AX. (56)

Intuitively, this says that the actions of the two automata in the two spaces
K? and KP(@ commute with the projection X. To prove (56), observe that
for any s € P(Q),

e’XA = sTA

= Za-STAa

a€EX

= Za-esTAaX

a€EX
= Z a- eZAaX
a€EX
= eZ;lX .
By Proposition 4 (or rather its extension to nonsquare matrices as de-

scribed in §3),



The theorem now follows:

a

Lemma 18 Let (u, A,v) be a simple deterministic automaton and let (u, A, v)
be the equivalent minimal deterministic automaton obtained from the classical
state minimization procedure [11, 20]. Then

* _T—%_
uW'AYy = uwlA D

Proof. In the combinatorial approach [11, 20], the unique minimal au-
tomaton is obtained as a quotient by a Myhill-Nerode equivalence relation af-
ter removing inaccessible states. We simulate this construction algebraically.

Let @ denote the set of states of (u, A,v). For ¢ € Q, let ¢, € {0,1}%
denote the vector with 1 in position ¢ and 0 elsewhere. For a € X, let A, be
the 0-1 matrix as given in Definition 14 (55). Then

A = Za-Aa.

a€EX

For each a € ¥ and p € Q, let 6(p, a) be the unique state in ) such that the

th : T .
p row of A, is €5(p,a)i €

egAa =

T
65(p7a) .

The state 6(p, a) exists and is unique since the automaton is deterministic.
First we show how to get rid of unreachable states. A state ¢ is reachable

if
u'Afe, # 0,

otherwise it is unreachable. Let R be the set of reachable states and let
U = ()— R be the set of unreachable states. Partition A into four submatrices

ARR, ARU, AUR, and AUU such that for S,T - {R, U}, AST 1s the S x T

submatrix of A. Then Apgy is the zero matrix, otherwise a state in U would
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be reachable. Similarly, partition the vectors v and v into ug, vy, vy and vy.
The vector ug is the zero vector, otherwise a state in U would be reachable.

We have

ul A%
. T ARR 0 * UR
- [“R‘O]'[AUR AUU] '[vU]
_[UT‘O]_ Akp | 0 | vr
a r Afu AvrARg ‘ Ay vu
= u%A;RvR )

Moreover, the automaton (ug, Agr,vgr) is simple and deterministic, and all
states are reachable.

Assume now that (u, A, v) is simple and deterministic and all states are
reachable. An equivalence relation = on () is called Myhill-Nerode if p = ¢
implies

6(p,a) 6(¢q,a), a€X, (57)
gv = egv . (58)

€

(In combinatorial terms, = is Myhill-Nerode if it is respected by the action
of the automaton under any input symbol a € X, and the set of final states

is a union of =-classes.)
Let = be any Myhill-Nerode equivalence relation, and let

] = {¢€Qlq=p}
Q= = {lpllre@}.

For [p] € Q/=, let ef,; € {0,1}9/= denote the vector with 1 in position [p]
and 0 elsewhere. Let Y be the Q x ()/= matrix whose [p|*® column is the
characteristic vector of [p]; i.e.,

For each a € ¥, let A, be the Q/= x@Q/= matrix whose [p|'® row is

Cls(p.a)l; b€y



The matrix A, is well-defined by (57). Let
1 - Ya4
= uly .
Also, let T € {0, 1}9/= be the vector such that
e[j;]ﬁ = egv .

The vector T is well-defined by (58). Note also that

Tv— T —
e, Yo = €p)V
T
= e,v,
therefore
Yo = v.

The automaton (@, A, ) is simple and deterministic.
As in the proof of Lemma 17, the action of A and A commute with the
linear projection Y':

AY = YVA. (59)
To prove (59), observe that for any p € @,

egAY = Z a-elAY



Now by Proposition 4,

AYY = YA,
therefore
AT = YA
— uW'A*YD
= ul A%

a

Theorem 19 (Completeness) Let a and 3 be two regular expressions over
Y denoting the same reqular set. Then o = 8 is a theorem of Kleene algebra.

Proof. Let A = (s,A,t) and B = (u, B,v) be minimal deterministic finite
automata over Fy such that

Rz(Oé) = Rz(STA*t)
Rs(B8) = Rx(u'B*v).

By Lemmas 15, 17, and 18, we have

a = sLA%

g = ul'B*v
as theorems of Kleene algebra. Since
Rs(a) = Rs(B),

by the uniqueness of minimal automata, A and B are isomorphic. Let P be
a permutation matrix giving this isomorphism. Then

A = PT'BP
s = Py
t = Py .
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Using Corollary 6, we have

a = sTA™
= (PTu)T(PTBP)*(PTv)
u P(PTBP)* PTo
= w'PPTB PPy
= u'B*v

= 3.

6 Open Problems

An intriguing question is whether the techniques developed here can be ex-
tended to automata on infinite objects. An algebraic treatment of Safra’s
construction [26] might conceivably be used to establish completeness of the
propositional p-calculus. Progress toward this goal has recently been made
by Walukiewicz [31].

Another question is whether the axioms presented in §2 are complete for
the universal Horn theory of the *-continuous Kleene algebras.
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