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Abstract

An interleaver is a hardware device commonly used
in conjunction with error correcting codes to counteract
the e�ect of burst errors� Interleavers are in widespread
use and much is known about them from an engineering
standpoint�

In this paper we propose a mathematical model that
provides a rigorous foundation for the theoretical study
of interleavers� The model captures precisely such no�
tions as block and convolutional interleavers� spread�
periodicity� causality� latency� and memory usage�

Using this model� we derive several optimality results
on the latency and memory usage of interleavers� We
describe a family of block interleavers and show that
they are optimal with respect to latency among all block
interleavers with a given spread� We also give tight
upper and lower bounds on the memory requirements
of interleavers�

� Introduction

Interleaving is a standard signal processing tech�
nique used in a variety of communications systems�
An interleaver is a hardware device that takes symbols
from an �xed alphabet as the input and produces the
identical symbols at the output in a di�erent temporal
order� The classical use for interleaving is to disperse
sequences of bits in a bitstream so as to minimize the
e�ect of burst errors introduced in transmission�

Error correcting codes can correct errors successfully
as long as there are not toomany errors in a single code�
word� However� errors sometimes tend to be bursty
in the sense that there can be a local concentration
of many errors� too many for typical error correction
schemes to handle� This situation occurs for example
in �i� burst error channels such as wireless communica�
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tions channels� and �ii� concatenated coding� in which
the �rst stage of decoding generates burst errors� such
as in Viterbi decoders 	
� ��� Another very recent appli�
cation of interleaving is in parallel concatenated turbo
coding 	
��

There are two classical kinds of interleavers� com�
monly referred to as block and convolutional 	
� ��� In
a block interleaver� the input data is written along the
rows of a memory con�gured as a matrix� and then
read out along the columns� A variation of a block in�
terleaver is a pseudorandom block interleaver� in which
data is written in memory in sequential order and read
in a pseudorandom order 	�� ��� In a convolutional in�
terleaver� the data is multiplexed into and out of a �xed
number of shift registers 	�� ���

In this paper� we propose a mathematicalmodel that
is motivated by these classical designs and the need to
understand the foundations of interleaving in the realm
of turbo coding� Our model captures the notions of
block and convolutional interleavers as well as various
notions such as spread� periodicity� causality� latency�
delay� and memory usage�

Using this model� we study the latencies of a popu�
lar family of interleavers called block interleavers� We
identify a certain class of block interleavers and show
that they are optimal with respect to latency among all
block interleavers of a given spread� More speci�cally�
we show that for spread s�

�i� there do not exist block interleavers with period
less than s��

�ii� there are exactly two block interleavers of period
s�� and both have latency �s� � �s�

�iii� the interleaver a �� as � 
 mod s� � 
 has period
s� � 
 and latency �s� � �s� 
�

�iv� this latency is optimal among block interleavers of
spread s�

The interleavers described in �iv� were introduced in
	���

In addition to these results� we also derive exact
upper and lower bounds on memory requirements of



interleavers� We characterize the number of memory
cells necessary to implement a given interleaver and
describe a hardware implementation that achieves this
bound�

� Mathematical Framework

In the information theory literature� an interleaver
is usually understood to be a single input� single out�
put �nite�state device that takes sequences of symbols
in a �xed alphabet and produces an output sequence
over the same alphabet that is identical to the input
sequence except for order� Every interleaver has a cor�
responding de�interleaver that acts on the output of
the original interleaver and puts the symbols back into
their original order �with a possible time delay��

For our study� the input�output alphabet is irrele�
vant� it is only the permutation on time instants that
is important� In other words� if the input sequence is
� � � � a��� a��� a�� a�� a�� a�� � � � and the output sequence
is � � � � b��� b��� b�� b�� b�� b�� � � �� then we focus on the
permutation � � Z� Zsuch that ai � b��i�� Thus� for
the purposes of this paper� we de�ne an interleaver to
be a periodic permutation � � Z� Zof the integers�
Here permutation means that the map � is one�to�one
and onto� and periodic means that for some p � 
�

��x� p� � ��x� � p

for all x� The number p is called a period of �� Equiv�
alently� � is periodic with period p if it commutes with
Dp under composition� where D is the successor func�
tion�

D
def
� �x�x � 
�

Periodicity models the fact that interleavers are real�
ized as �nite�state devices�

The only interleavers of period 
 are the powers ofD�
These are called delay interleavers� The fundamental
period of an interleaver is the gcd of all its periods�

The family of all interleavers forms a group under
composition� The lcm of the periods of two interleavers
is a period of their composition�

��� Shifting

A shift of an interleaver � is an interleaver of the
form

Dk � � �Dm � �x���x�m� � k

�Here we are using standard ��notation for functions�
�x�M�x
 is the function that on input a produces M�a
�

for some k�m� We say that interleavers � and � are
shift equivalent� or that � is a shift of �� if there exist
integers k�m such that

� � Dk � � �Dm�

This relation identi�es two interleavers if one can be
obtained from the other by shifting the input or the
output or both�

We say that interleavers � and � are strongly shift
equivalent� or that � is a strong shift of �� if there exists
an integer n such that

� � D�n � � �Dn�

This relation identi�es two interleavers if one can be
obtained from the other by shifting the input and the
output the same distance� The strong shift equivalence
class of � contains exactly p elements� where p is the
fundamental period of ��

��� Causality

An interleaver is causal if for all x� ��x� � x� This
property models the fact that in an actual implemen�
tation� a symbol cannot come out before it goes in�
An interleaver is minimal causal if it is causal and if
��x� � x for some x� Every interleaver has a unique
�up to strong shift equivalence� minimal causal shift�

In the literature on interleavers� it is common to
restrict attention to causal interleavers� because non�
causal ones are not realizable� However� for theoretical
purposes� the property of causality can sometimes be
a red herring� The key properties of interleavers are
shift�invariant� and it often simpli�es the mathematics
considerably to ignore causality� We will see several
examples of this below�

��� Delay and Latency

For an interleaver �� de�ne

���
def
� max

x
��x�� x�

���
def
� min

x
��x�� x � ���

��� �

The quantity ��� is called the delay of �� This is the
maximum time delay between the arrival of an input
symbol and the time it should be produced as an out�
put� An interleaver is causal i� ��� � � and is minimal
causal i� ��� � ��

A related concept is latency� which we de�ne to be
the shift�invariant quantity

��
def
� ��� � ��� �

�



In other words� denoting the action of � onZby arrows�
it is the sum of the lengths of the longest leftward and
longest rightward arrow�� An interleaver is causal i�
��� � �� and is minimal causal i� ��� � ��� Thus the
minimal causal shift of � has the minimum delay among
all causal shifts of ��

The de�interleaver corresponding to � is just the in�
verse ���� It follows immediately from the de�nitions
that � and ��� have the same latency�

In a real implementation� we would use a causal shift
of � for interleaving and a causal shift of ��� for de�
interleaving� De�ne the minimum total delay of an
interleaver � to be the minimum sum of delays for in�
terleaving and de�interleaving using causal shifts of �
and ���� Since the delays of both these causal shifts
are at least the latency of �� one might expect the
minimum total delay to be at least twice the latency�
Somewhat surprisingly� it turns out that it is exactly
the latency�

Theorem � The minimum total delay of an inter�
leaver is equal to its latency� It is achieved by com�
posing minimal causal shifts of the interleaver and its
inverse�

Proof� Let Dm � � be a causal shift of �� then m �
���� � Let D

k � ��� be a causal shift of ���� then k �
���

��� � Before we can compose these two interleavers�
we must take a strong shift of one of them so that the
outputs of the �rst interleaver line up with the inputs
of the second� Strongly shifting Dk � ��� by m� we
obtain

Dm �Dk � ��� �D�m�

Composing this with Dm � � gives

Dm �Dk � ��� �D�m �Dm � � � Dm�k�

which is just the identity shifted by m � k� this is the
total delay� This number is minimized by taking m �
���� and k � ���

��� � ��� � in which case m � k � �� �
the latency of �� �

Example � Consider the minimal causal interleaver

��k� �

��
�

k � � if k � � mod ��
k if k � 
 mod ��
k � 
 if k � � mod �

�
�

with latency �� Its inverse is

����k� �

��
�

k � 
 if k � � mod ��
k if k � 
 mod ��
k � � if k � � mod ��

�In case there are no leftward arrows� read �negative of the
length of the shortest rightward arrow� for �length of the longest
leftward arrow��

Shifting the output by � gives the minimal causal in�
terleaver

D� � ����k� �

��
�

k � 
 if k � � mod ��
k � � if k � 
 mod ��
k if k � � mod ��

���

also with latency �� Composing �
� and ��� gives

D� � ��� � � � D��

s s s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s

� 
 � � 
 � � � � �

D� � ���

�

�
�R

�
�R

�
�R

�
�R

�
�R

�
�RHHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

� � �

� � �

�

��� Spread

We say that an interleaver � has spread s� t if j��x��
��y�j � t whenever jx�yj � s� Intuitively� � has spread
s� t if any two input symbols in an interval of length s
are separated by a distance of at least t at output� An
interleaver has spread s� t i� its inverse has spread t� s�

In this paper we focus on the case s � t� We abbre�
viate spread s� s by spread s� The property of having
spread s is invariant under shift and inverse�

It is desirable to have large spread� since this is
how we counteract burst errors� In practice� a typi�
cal spread might be 
�� However� larger spreads entail
longer latencies� We analyze this tradeo� in Section ��

��� Memory

Intuitively� the memory required by a causal inter�
leaver � is the maximum number of input symbols that
must be remembered from some time i � 
 to time i�
Formally� for causal interleavers� we can de�ne this to
be

max
i
jfx j x � i and ��x� � igj�

In Section 
 we give a shift�independent de�nition and
show that for block interleavers� this quantity is ex�
actly ����� � where �

� is a permutation interleaver shift�
equivalent to �� We also give tight upper and lower
bounds on memory usage for any causal interleaver�

��� Examples of Interleavers

����� Multiplexed Interleavers

A multiplexed shift register interleaver 	�� �� 
� is de�
scribed in the literature as a hardware device that

�




� de�multiplexes the input sequence into p subse�
quences�

�� introduces a uniform delay on each subsequence�

�� multiplexes the p results�

AAU

���
��
�� HHHHHj�

���
�in � out

These devices can be implemented e�ciently in hard�
ware using a set of p shift registers� where the lengths
of the registers determine the delay�

In terms of our model� a multiplexed interleaver with
period p is one that is shift equivalent to an interleaver
with p j ��x� � x for all x� Such an interleaver � is
uniquely determined �up to shift equivalence� by the
integers ki � ���x�� x�	p� � � i � p� 
�

����� Block Interleavers

Another wide class of interleavers in common use are
the block interleavers� An interleaver � is a block inter�
leaver of blocksize p if p is a period of � and there is an
interval of length p whose image under � is also an in�
terval of length p� The blocksizes of a block interleaver
� are exactly the periods of ��

The property of being a block interleaver of blocksize
p is invariant under shift and inverse�

Any block interleaver is shift equivalent to a permu�
tation interleaver� A permutation interleaver is given
by a permutation on f�� 
� � � � � p � 
g repeated with
period p� For example� the period � interleaver

k ��

��
�

k � 
 if k � � mod ��
k � � if k � 
 mod ��
k � � if k � � mod �

is D� � � �D��� where � is the permutation interleaver
described by the permutation ����
 �� in cycle notation�

Not all interleavers are block interleavers� For ex�
ample� the interleaver

k ��

��
�

k � 
 if k � � mod ��
k � � if k � 
 mod ��
k � � if k � � mod �

is not� However� if p is a period� then for any x� y �
f�� 
� � � � � p � 
g� x �� y� the residues of ��x� and ��y�
modulo p must be distinct� Thus an arbitrary inter�
leaver is completely determined �up to shift equiva�
lence� by a permutation on f�� 
� � � � � p� 
g along with
a delay of a multiple of p on each element� In other

words� every interleaver is shift equivalent to a compo�
sition of a permutation interleaver and a multiplexed
interleaver�

An interleaver that is not a block interleaver is called
a convolutional interleaver�

� Block Interleavers of Minimal La�

tency

The following are our main results on latency�

Theorem � For block interleavers of spread s�

�i� there are none with period s� � 
 or less�

�ii� up to shift equivalence� there are exactly two with
period s�� and both have latency �s� � �s�

�iii� the permutation interleaver a �� as�
 mod s��

has period s� � 
 and latency �s� � �s� 
�

�iv� this latency is optimal among block interleavers of
spread s�

We remark that the interleaver a �� as mod s� �

 has nonoptimal latency �s� � �s� the same as the
interleavers of �ii��

Proof� �i� Let � be an arbitrary block interleaver of
spread s� By shift�invariance� we can assume that � is
a permutation interleaver� Let I � ��I� � 	�� p � 
��
where p is a period of ��

Certainly p � s� since otherwise we would have

j��a� p�� ��a�j � ��a� � p� ��a� � p � s�

j�a � p�� aj � p � s�

contradicting spread s� Thus jIj � s�
De�ne an s�interval to be a subinterval of I of length

s� De�ne an s�anti�interval to be a subset of I of
size s such that no two elements are of distance less
than s from each other� A necessary condition for �
to have spread s is that it send s�intervals to s�anti�
intervals� This condition is not su�cient� for we must
also worry about what happens at the boundary of ad�
jacent blocks�

Since p � s� s � 
 � I and every element of I is
contained in at least one s�interval� Let J be an s�
interval containing ����s � 
�� Then ��J� 	 I is an
s�anti�interval� Let ��J� � fa�� a�� � � � � as��g with

a� � a� � 
 
 
 � as���

Note that s�
 � a�� since no s�anti�interval containing
s� 
 can contain any smaller element�






Since ��J� is an s�anti�interval� we must have

ai�� � ai � s� � � i � s� ��

Combining these in a telescoping sum� we have

as�� � a� �
s��X
i��

ai�� � ai

� s � 
 �
s��X
i��

s

� s � 
 � �s� 
�s

� s� � 
�

Thus s� � 
 � I� so jIj � s��

�ii� We show there are exactly two permutation in�
terleavers of spread s and period s�� namely

is� j �� �s� 
� j�s� i� � � i� j � s� 
 ���

and its inverse

is � j �� js� �s� 
� i�� � � i� j � s � 
� �
�

The permutations ��� and �
� can be described intu�
itively as follows� Let I be the interval 	�� s� � 
�� Ar�
range the elements of I in an s � s matrix R in row
major order� thus Rij � is � j� � � i� j � s � 
� The
permutations ��� and �
� are obtained by rotating R
a quarter turn counterclockwise and clockwise� respec�
tively�

For � � i� j � s� 
� let

Ii � fis� is� 
� is� �� � � � � is � s� 
g�

Jj � fj� s� j� �s � j� � � � � �s � 
�s� jg�

The sets Ii and Jj are the elements appearing in the
i�th row and j�th column of R� respectively� Note that
the sets Ii are s�intervals �among others�� and the sets
Jj are s�anti�intervals �among others�� As observed
above in �i�� a necessary condition for a permutation
� � I � I to have spread s is that it send s�intervals to
s�anti�intervals�

Now let � be an arbitrary permutation of I of spread
s� We will show that � must be either ��� or �
��

By inspecting the matrix R� it can be observed that
each of s � 
 and s� � s is contained in exactly one s�
anti�interval� namely Js�� and J�� respectively� Since
every distinct s�interval must go to a distinct s�anti�
interval under �� there can be at most one s�interval
containing ����s� 
� and at most one s�interval con�
taining ����s� � s�� But there are only two elements
of I contained in exactly one s�interval� namely � � I�
and s� � 
 � Is��� Thus either

A� ���� � s�� s and ��s�� 
� � s� 
� in which case
��I�� � J� and ��Is��� � Js��� or

B� ���� � s� 
 and ��s�� 
� � s�� s� in which case
��I�� � Js�� and ��Is��� � J��

These two cases will give rise to ��� and �
�� respec�
tively�

In case A� we claim more generally that

��Ii� � Ji� � � i � s� 
� ���

We have just shown this for i � � and i � s� 
� Pro�
ceeding by induction� suppose we have shown it for � �
i � k� 
� k � s� 
� Let c � ����s� � s� k�� There is
exactly one s�anti�interval containing s��s�k disjoint
from J�� � � � � Jk��� namely Jk� Since every distinct s�
interval containing c disjoint from I�� � � � � Ik�� must go
to a distinct s�anti�interval disjoint from J�� � � � � Jk��
under �� there can be at most one s�interval containing
c disjoint from I�� � � � � Ik��� There are only two ele�
ments of I for which this is true� namely ks and s��
�
and we have already argued that ��s��
� � s�
 �� Jk�
therefore c � ks and ��Ik� � Jk�

In case B� a symmetric argument shows that

��Ii� � Js���i� � � i � s� 
� ���

Now ��� is also a permutation interleaver of spread
s and period s�� thus satis�es either ��� or ���� But
if � satis�es ���� then ��� cannot satisfy ���� because
s� � s � Is�� but ����s� � s� � � �� Js��� Thus ���

must satisfy ���� that is�

����Ii� � Js���i� � � i � s� 
�

Inverting� we have

��Jj� � Is���j� � � j � s � 
� ���

Using the fact that row Ii and column Jj intersect in
the single element is� j� ��� follows immediately from
��� and ����

By a symmetric argument� � and ��� cannot simul�
taneously satisfy ���� thus if � satis�es ��� then ���

must satisfy ���� in other words�

��Jj� � Ij � � � j � s � 
�

This and ��� imply �
��
To verify that the interleavers ��� and �
� indeed

have spread s� we need only observe the form of the
image of any s�interval contained in I� as well as any
interval of length s straddling a boundary between two
blocks� In all cases the rotation of R �or two adjacent
copies of R� a quarter turn in either direction takes
such a set to an s�anti�interval�

�



�iii� Consider the permutation interleaver

a �� as � 
 mod s� � 
� � � a � s��

In particular�

s� 
 �� s� � s� 
�

s� � s� 
 �� ��

By inspection� it can be ascertained that these are
the longest leftward and rightward arrows� respectively�
giving a latency of �s� � �s � 
� As we show in �iv��
this is the optimal latency for block interleavers with
spread s�

�iv� Consider an arbitrary permutation interleaver
� of spread s and period p�

� � 	�� p� 
� � 	�� p � 
��

We will show that � has latency at least �s� � �s� 
�
By �ii� we can assume without loss of generality that
p � s�� As in �ii�� subdivide the interval 	�� p � 
�
into disjoint contiguous s�intervals I�� I�� � � � � Is��� � � �
where

Ik
def
� 	ks� �k � 
�s� 
�

�the last subinterval will be shorter if p is not a multiple
of s�� Since ��I�� is an s�anti�interval� all ��i� for i � I�
must occupy di�erent Ik� Thus at least one such ��i�
lies in Ik for some k � s � 
� in other words�

maxfb��i�	sc j i � I�g � s� 
�

Thus

maxf��i�� i j i � I�g � min Is�� �max I�

� �s� 
�s� �s� 
�

� s� � �s� 
� ���

The same argument holds for ���� since the periods�
latencies and spreads of � and ��� are the same� Thus

maxf����i�� i j i � I�g � s� � �s� 
� ���

Let I� � fa�� a�� � � � � as��g� where the elements are
numbered in order of their images under ��

��a�� � ��a�� � 
 
 
 � ��as����

If ��a�� �� I�� we are done� in this case�

maxf��i�� i j i � I�g � min Is �max I�

� s� � �s� 
�

� s� � s� 
� �
��

and the latency is at least the sum of ��� and �
���
which is �s� � �s � �� Similarly� number the elements
of I�� � 	�s��
� as a��� a��� � � � � a�s� where

��a�s� � 
 
 
 � ��a��� � ��a����

As above� if ��a��� �� I��� we are done�
Assume therefore that ��a�� � I� and ��a��� � I���

Either

a� � a�� � s or �

�

��a��� ��a��� � s� �
��

since � has spread s� By the symmetry between � and
���� we can assume �
�� without loss of generality� if
�
�� is false but �

� is true� interchange � and ���

throughout�
Since ��I�� is an s�anti�interval� we must have

��ai���� ��ai� � s� � � i � s� ��

Combining these in a telescoping sum� we have

��as��� � ��a�� �
s��X
i��

��ai���� ��ai�

� ��a�� � �s� 
�s� �
��

and symmetrically�

��a��� � ��a�s� � �s� 
�s� �

�

By �
��� we have

��as���� as�� � ��as���� �s� 
�

� ��a�� � �s� 
�s� �s� 
�

� ��a�� � s� � �s� 
� �
��

Symmetrically� using �

�� we also have

a�s � ��a�s� � �s� ��a�s�

� �s� ��a��� � �s� 
�s

� ���a��� � s� � �s� �
��

The latency of � is at least the sum of �
�� and �
���

���as���� as��� � �a�s � ��a�s��

� ���a�� � s� � �s� 
� � ����a��� � s� � �s�

� ��a��� ��a��� � �s� � 
s� 


� s � �s� � 
s� 
 by �
��

� �s� � �s� 
�

�

�



� Memory�Optimal Interleavers

We have de�ned the memory required by a causal
interleaver � to be the maximum number of input sym�
bols that must be remembered from some time i�
 to
time i� in other words� the maximum over all integers
i of the quantity

jfx j x � i and ��x� � igj� �
��

For example� for the multiplexed shift register inter�
leavers described in Section ����
� the memory required
is no more than the sum of the lengths of the shift reg�
isters�

We argue below that the quantity �
�� is indepen�
dent of i� and that it is both a lower and an upper
bound on the memory needed to implement �� For
the latter� we describe a hardware implementation that
uses exactly this many memory cells�

We are also interested in minimizing the memory
usage over all causal shifts �� We show that memory
usage is minimized by the unique minimal causal shift
of �� Thus the minimal causal shift of a given inter�
leaver optimizes both memory and total delay among
all causal shifts of ��

As above� we will �nd it mathematically convenient
to ignore causality� For any interleaver �� causal or
not� and x� y �Z� de�ne

e��x� y�
def
�

�

 if y � ��x�
� otherwise�

m��i� j�
def
�

X
x � i

y � j

e��x� y��
X
x � i

y � j

e��x� y��

Intuitively� if we draw arrows from x to ��x�� then
m��i� j� is the number of arrows going from i � 
 or
before to j or after less the number of arrows going
from i or after to j�
 or before� Because of periodicity�
there are only �nitely many such arrows� so m��i� j�
exists� Note that m��i� i� is the number of arrows that
cross over a vertical line between i � 
 and i from left
to right less the number that cross from right to left�
If � is causal� there are no arrows that cross from right
to left� as already observed� in this case m��i� i� is a
lower bound on the number of memory cells required
to implement ��

The following are some basic properties that follow
from these de�nitions�

Lemma � For any interleaver � and integers
x� y� i� j� k�m�

�i� e����x� y� � e��y� x��

�ii� eDk���Dm�x� y� � e��x�m� y � k��

�iii� m����i� j� � �m��j� i��

�iv� m��i�m� j � k� � m��i� j� �m� k�

�v� mDk���Dm�i� j� � m��i� j� �m� k�

Proof� All these properties follow in a straightfor�
ward way from the de�nitions� We prove �iv� explicitly�
First�

m��i� j � 
� �
X
x � i

y � j � �

e��x� y��
X
x � i

y � j � �

e��x� y�

�
X
x � i

y � j

e��x� y��
X
x � i

y � j

e��x� y�

��
X
x � i

y � j

e��x� y� �
X
x � i

y � j

e��x� y��

�
X
x � i

y � j

e��x� y��
X
x � i

y � j

e��x� y�

�
X
x�i

e��x� j��
X
x�i

e��x� j�

� m��i� j��
X
x

e��x� j�

� m��i� j�� 
�

By iterating�

m��i� j � k� � m��i� j�� k�

Using this fact and �iii��

m��i�m� j � k� � m��i�m� j�� k

� �m����j� i�m�� k

� �m����j� i� �m� k

� m��i� j� �m� k�

�

It follows immediately from Lemma 
�iv� that for
all i� j � Z� m��i� i� � m��j� j�� thus this quantity
depends only on �� We denote this number by m��

De�ne a cycle of an interleaver � to be a minimal
nonempty set of elements ofZclosed under � and ����
A cycle is nontrivial if it contains more than one el�
ement� If � is causal� then every nontrivial cycle is
in�nite� If � is minimal causal� then it has trivial cy�
cles as well�

�



Example � The minimal causal interleaver

k ��

��
�

k � 
 if k � � mod ��
k � � if k � 
 mod ��
k if k � � mod �

has two nontrivial cycles

f� � � ������� �� 
� �� 
�� 
�� 
�� 
�� ��� �
� � � �g �
��

f� � � ������� 
� �� �� �� 
�� 
�� 
�� �
� ��� � � �g �
��

as well as in�nitely many trivial cycles

� � � � f��g� f�
g� f�
g� f�g� f�g� f�g� f

g� f

g� � � �

�

It is apparent that the number of nontrivial cycles of
a causal interleaver � is just m�� since for any i� there
is exactly one x �Zin each nontrivial cycle with x � i
and ��x� � i�

Theorem � �i� If � is minimal causal� then m� is
minimum among all causal shifts of �� Thus the
minimal causal shift minimizes both the total delay
and memory among causal shifts of a given inter�
leaver�

�ii� For a minimal causal block interleaver � with block
I � 	�� p� 
� and ��I� � 	m�m� p� 
�� m� � m�

�iii� For a causal interleaver �� m� memory cells are
necessary and su	cient for implementing ��

Proof� �i� Let � be minimal causal� It follows from
Lemma 
�v� that mDk�� � m� � k� thus m� is mini�
mum among causal shifts of ��

�ii� Let us call an interleaver � zero�memory if m� �
�� By Lemma 
�v�� every interleaver � has a unique
�up to strong shift equivalence� zero�memory shift

�� � D�m� � ��

Then

���� � ��� �m��

If � is minimal causal� then ��� � �� therefore ���� �
�m�� The result for block interleavers follows from
this and the additional observation that permutation
interleavers are zero�memory� at any block boundary�
there are no arrows crossing in either direction�

�iii� Let � be causal� We have already argued that
m� is a lower bound on memory usage� We now de�
scribe a simple hardware implementation of � using
synchronous clocked logic that achieves this bound�

Our device uses m� shift registers of length 
� one for
each nontrivial cycle of �� The idea is that at any time
i� the cell associated with a given cycle c holds the sym�
bol that was input at time x � i and will be output
at time ��x� � i� where x lies on c� Since ��x� lies
on c as well� the symbol vacates the cell at the same
time the next symbol comes in� Trivial cycles require
no memory� the symbols are passed directly from input
to output with no time delay�

For example� consider the interleaver of Example
�� Let c and d be the shift registers associated with
the nontrivial cycles �
�� and �
��� respectively� The
following is a protocol that tells at each time instant
which register the input should be written to and the
output should be read from�

Time Write to
Read from
���

���
�� d
�� c
�
 direct
� c

 d
� direct
� d

 c
� direct
� c
� d
� direct
� d

� c
���

���

Note that this protocol is periodic with period ��
In general� the protocol will be periodic with period

some multiple of p� say np� which could be exponential
in the number of cycles� A basic hardware implementa�
tion simply requires a cyclic counter of period np with
combinatorial logic to convert the counter value to a
memory address as described by the table above� �

As noted� the period np can be exponential in the
number of cycles� which could make this implementa�
tion impractical� Moreover� the counter must maintain
its own state� which requires additional internal mem�
ory of size log�np�� We present two alternative imple�
mentations that address these issues� The �rst stores
symbols as just described� but uses an array of smaller
cyclic automata� each no larger than the number of
cycles� to generate the memory addresses� This imple�
mentation uses the traditional memory architecture� in
which each symbol is stored at a �xed addressable lo�
cation� this makes it necessary to maintain extra state

�



information beyond the minimum required to identify
the current interleaver phase f�� 
� � � � � p�
g� Our sec�
ond implementation uses a shift register architecture
and only a cyclic counter of length p�

Method � For each x � Z� let cx denote the cycle
of � occupied by x� For any residue i mod p� consider
the sequence of cycles

� � � � ci��p� ci�p� ci� ci�p� ci��p� ci��p� � � � ����

associated with successive integers congruent to
i mod p� If one of these cycles is trivial� then by period�
icity� they all are� In this case we just mark i as repre�
senting only trivial cycles� The protocol will maintain
a counter modulo p� and at time instants congruent
to i mod p will pass the input symbol directly to the
output�

Otherwise� all cycles in the sequence ���� are non�
trivial� We claim that the sequence is periodic with
period at most the number of cycles� To see this� sup�
pose q 
 � is the minimum number such that for some
j congruent to i mod p� both j and j � qp lie on the
same cycle� Then q is at most the number of cycles�
and j � qp � �m�j� for some m� since that is what it
means for j and j � qp to lie on the same cycle� Then
by periodicity�

�m�j � p� � �m�j� � p � j � qp� p�

so j�p and j�p�qp lie on a common cycle as well� It
follows that the sequence ���� is periodic with period
q� In this case we associate with the residue i a cyclic
�nite�state automaton that tells at each successive inte�
ger congruent to i mod p the next cycle in the sequence
����� In fact� the same automaton can be used for all
residues of integers on a common cycle� in other words�
the cyclic automata associated with �k�x� mod p and
x mod p are the same� albeit perhaps out of phase� Ev�
ery nontrivial cycle is associated with exactly one state
of exactly one such automaton� so that the sum of the
sizes of the cyclic automata is just m�� the number of
nontrivial cycles�

In the interleaver of Example �� p � �� The residue
� mod � is marked as direct� the input is passed di�
rectly to the output at any time instant congruent to
� mod �� The residues � mod � and 
 mod � are both
associated with the cyclic automaton c � d� except
out of phase� indicating that at times � � � � �� �� �� �� � � �
the appropriate cycles are � � � � c� d� c� d� � � � respectively�
and at times � � � � 
� 
� �� 
�� � � � the appropriate cycles
are � � � � d� c� d� c� � � � respectively�

Method � Consider a single shift register of max�
imum length m� implementing a queue in which inser�

tions are allowed at any position� An insertion at posi�
tion k causes the values currently occupying positions
k � 
� k � �� � � � � �� 
� � to be shifted down� producing
the symbol currently at position � as output� while the
remainder of the register remains �xed� If k � �� then
the new symbol is sent directly to the output�

At each time i� a position ki is selected and the
new symbol inserted at that position in the queue� In�
tuitively� ki is chosen so that the new symbol will be
inserted behind all stored symbols that must be output
before time ��i�� This method essentially implements
a priority queue in which the priorities are the output
times� However� we need not store the actual priorities�
since the pattern of insertions is periodic with period
p� we can just calculate once and for all the insertion
position for each residue modulo p� Speci�cally� this is

ki �
X
x � i

i � y � ��i�

e��x� y�

� m� �
X
x � i

y � ��i�

e��x� y�� ��
�

It can be seen from ��
� that the length of the shift
register never exceeds m��

Continuing Example �� we �nd that the appropriate
insertion points are k� � �� k� � 
� and k� � ��

A dual implementation would insert symbols at one
end of the queue and extract them from the appropriate
position in the middle� This is essentially the above
implementation for the interleaver

�x� � �����x�

executed backwards�

� Future Research

A number of interesting questions present them�
selves� perhaps the most interesting of which is to try
to apply these techniques to ascertain optimal latencies
for convolutional �nonblock� interleavers�

Acknowledgments

The authors would like to thank Subramanya
P� N� Rao� Moss Sweedler� and Stephen Wicker for
many helpful discussions on interleaving� The support
of the National Science Foundation under grants NCR�
������
 and CCR���
���� is gratefully acknowledged�

�



References

��� C� Berrou� A� Glavieux� and P� Thitimajshima� Near
Shannon limit error�correcting coding and decoding�
Turbo codes� ICC� pages ��	
������ �

��

��� S� Dolinar and D� Divsalar� Weight distributions for
turbo codes using random and nonrandom permuta�
tions� Technical Report TDA Progress Report 
������
JPL� August �

��

��� J� G� David Forney� Burst�correcting codes for the clas�
sic bursty channel� IEEE Transactions on Communica�

tions� COM��
������������� October �
���
�
� J� George C� Clark and J� B� Cain� Error�Correction

Coding for Digital Communications� Plenum Press�
�
���

��� J� L� Ramsey� Realization of optimum inter�
leavers� IEEE Transactions on Information Theory� IT�
�	���������
�� May �
���

�	� I� Richer� A simple interleaver for use with Viterbi de�
coding� IEEE Transactions on Communications� COM�
�	����
�	�
��� March �
���

��� S� B� Wicker� Error Control Systems for Digital Com�

munications and Storage� Prentice Hall� Englewood
Cli�s� NJ� �

��


�


