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Abstract. Set constraints are inclusion relations between expressions
denoting sets of ground terms over a ranked alphabet. They are the
main ingredient in set-based program analysis. In this paper we pro-
vide a Gentzen-style axiomatization for sequents @ + ¥, where & and
¥ are finite sets of set constraints, based on the axioms of termset al-
gebra. Sequents of the restricted form @ - L correspond to positive set
constraints, and those of the more general form & - ¥ correspond to sys-
tems of mixed positive and negative set constraints. We show that the
deductive system is (i) complete for the restricted sequents ¢ + L over
standard models, (ii) incomplete for general sequents & F ¥ over stan-
dard models, but (iii) complete for general sequents over set-theoretic
termset algebras.

1 Introduction

Set constraints are inclusions between expressions denoting sets of ground terms.
They have been used extensively in program analysis and type inference for many
years [AM91a, AM91b, Hei93, HJ90b, JM79, Mis84, MR85, Rey69, YO8&8]. Con-
siderable recent effort has focussed on the complexity of the satisfiability prob-
lem [AKVW93, AKW95, AW92, BGW93, CP9%4a, CP94b, GTT93a, GTTI3b,
HJ90a, Ste94]. Set constraints have also recently been used to define a constraint
logic programming language over sets of ground terms that generalizes ordinary
logic programming over an Herbrand domain [Koz94].

Set constraints exhibit a rich mathematical structure. There are strong con-
nections to automata theory [GTT93a, GTT93b], type theory [KPS93, KPS94],
first-order monadic logic [BGW93, CP94a], Boolean algebras with operators
[JT51, JT52], and modal logic [Koz93]. There are algebraic and topological
formulations, corresponding roughly to “soft” and “hard” typing respectively,
which are related by Stone duality [Koz93, Koz95].
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An axiomatization of the main properties of set constraints was proposed in
[Koz93]. General models of these axioms are called termset algebras. In [Koz93],
a representation theorem was proved showing that every termset algebra is iso-
morphic to a set-theoretic termset algebra. These models include the standard
models in which set expressions are interpreted as sets of ground terms, as well
as nonstandard models in which set expressions are interpreted as sets of states
of term automata [KPS92].

In this paper we propose a Gentzen-style axiomatization involving sequents
of the form @ - ¥, where @ and ¥ are finite sets of set constraints. The intended
interpretation of the sequent @ + ¥ is that if all the constraints in @ hold of
some model, then at least one of the constraints ¥ holds in that model.

This axiomatization can be thought of as a deductive system for refuting
unsatisfiable systems of mixed positive and negative constraints. Deriving the
sequent @ - ¥ is tantamount to refuting the mixed system @U{s £t | s =t € ¥}.
Systems of the restricted form @ F L correspond to systems of positive set
constraints alone.

For this deductive system, we prove

(i) completeness over standard models for satisfiability of positive set constraints
alone (if ¢ is unsatisfiable, then @ is refutable, i.e., @ - L is derivable);
(ii) incompleteness over standard models for satisfiability of mixed positive and
negative constraints (7.e., not all valid sequents ¢ ¥ are derivable);
(iii) completeness over nonstandard models (all set-theoretic termset algebras)
for satisfiability of mixed positive and negative constraints (i.e., all valid
sequents ¢ - ¥ are derivable).

We feel that these results are of both theoretical and practical interest. The-
oretically, they shed light on the distinction between exclusively positive and
mixed positive and negative constraints. Although several interesting results in-
volving the decidability and complexity of negative constraints have appeared
[CP94b, GTTI3b, AKW95, Ste94], the distinction between the two cases is still
far from clear from a deductive standpoint.

Practically, we were interested in recasting the axioms of [Koz93] in a Gentzen
style so as to take advantage of one of a number of automated deduction systems
to implement a constraint solving package [Gri87]. We foresee this as being a
useful alternative approach to building a set constraint solver for use in program
analysis or constraint logic programming over set constraints.

This paper is organized as follows. In §2-§5 we briefly review the basic
definitions and known results we will need regarding set constraints, termset
algebras, term automata, and normal forms. These are included here for the
sake of self-containment. In §6 we present our main results. Finally, in §7 we
draw conclusions and discuss future work.

2 Set Expressions and Set Constraints

Let X be afinite ranked alphabet consisting of symbols f, each with an associated
arity. Symbols in X of arity 0, 1, 2, and n are called nullary, unary, binary,



and n-ary, respectively. Nullary elements are denoted by a,b, ... and are called
constants. The set of elements of X of arity n is denoted X,. In the sequel, the
use of expressions of the form f(t1,...,%,) carries the implicit assumption that
f 1s of arity n.

The set of ground terms over X is denoted T';. It is the least set such that
ifty,...,tp € Ty and f € 2, then f(t1,...,t,) € Te. U X = {z,y,...} isa
set of variables, then Tx(X) denotes the set of ground terms over 2 and X,
considering variables in X as symbols of arity 0.

Let B= (U, N, ~, 0, 1) denote the usual signature of Boolean algebra. Let
Y4+ B denote the signature consisting of the disjoint union of X’ and B. Boolean
operators such as — (set difference) and @ (symmetric difference) are defined
from these as usual. A set ezpression over X is an element of Ty p(X). We use
s,t,...to denote set expressions. A typical set expression could be:

flg(z Uy), ~(g(a) Nb))

where ¢, f are symbols of arity 1 and 2, respectively, a, b are constants, and
z,y € X. A Boolean expression over X is an element of Tp(X).

A positive set constraint is a formal inclusion s C ¢, where s and f are set
expressions. For notational convenience we allow equational constraints s = ¢,
although inclusions and equations are interdefinable: s C ¢ 1s equivalent to sUt =
t,and s =1t tos®t C 0. A negative set constraint is the negation of a positive
set constraint: s € ¢t or s # t. We use ¢, 4, ... to denote set constraints and
@, ¥, ... to denote finite sets of set constraints.

3 Axioms of Termset Algebra

In [Koz93], the following axiomatization of the algebra of sets of ground terms
was introduced:

fGoseVy, )= f0 e, JUSC ) (D)
fGove—y, ) =00 n )= f(.y) (2)
U=t (3)

fex
S, Dngd,... 1) =0, f#yg (4)
f(xl,...,xn):0:>\/(xi:0) (5)
axioms of B_oolean algebra (6)

The ellipses in (1) and (2) indicate that the explicitly given arguments occur in
corresponding places, and that the implicit arguments in corresponding places
agree. Models of the axioms are called termset algebras. The standard interpre-
tation 277, where the Boolean operators have their usual set-theoretic interpre-
tations and elements f € 3, are interpreted as



foE)yn =2t
f(AlaaAn):{f(tlaatn)|t26Ala 1§Z§TL},

forms a model of these axioms.
Some immediate consequences of these axioms are

f(...;0,..) =0 (7)
flooy~a, )= f(. L0 )= f(ooo,z,.) (8)
flo.edy,..)=fl..,x,..)d (. y,..0) (9)
flo.yeny,..)=fl.. e, )N f .y, (10)
eCy=>f(..,2,..)Cf(...,y,...). (11)

Also, a generalized DeMorgan law can be derived:

~f(ey, ) = (o100

97

ol 1, (12)

The law intuitively says that a ground term not having head symbol f and ith
subterm satisfying x; either has head symbol different from f or has head symbol
f but one of its i"" subterms does not satisfy z;. The law is useful for pushing
occurrences of the negation operator ~ inward.

4 Term Automata and Models

Following Courcelle [Cou83], we define (X-)terms.

Definition1. Let w denote the set of natural numbers and let X' be a finite
ranked alphabet. A (X-)term is a partial function ¢ : w* — ¥ whose domain is
nonempty, prefix-closed, and respects arities in the sense that if ¢(y) is defined
then

{i]t(vi) is defined} = {1,2,...,arity(t(y))} .
If « is in the domain of ¢, the subterm of ¢ rooted at « is the the term Ag.t(af3).
A term is (in)finite if its domain is (in)finite, and is regular if it has only finitely
many subterms.

Frample 1. The finite term f(g(a), f(a, g(b))) is formally a partial map ¢ with
domain {e¢,1,2,11,21,22,221} such that t(e) = ¢(2) = f, t(1) = t(22) = g,
t(11) = #(21) = a, and t(221) = b. The infinite term f(a, f(a, f(a,...))) is
formally a map s whose domain is the infinite set described by the regular
expression 2% + 2*1 such that s(a) = f for o € 2* and s(«) = a for o € 2*1.
The infinite term s is regular since it has only two subterms, namely s and a.



4.1 Term Automata

It is well known that an infinite regular term can be represented by a finite
labeled graph such that the infinite term is obtained by “unwinding” the graph
(see [Cou83, Col82]). We use the automata-theoretic formulation introduced in

[KPS92] of this idea.

Definition2. A term automaton over X is a tuple M = (Q, X, £, §) where:

— (@ is a set of states (not necessarily finite)

— X is a ranked alphabet

— 0@ — X is a labeling

— 6 :Q xw — Q is a partial function such that for all ¢ € @,

{i]6(q,7) is defined} = {1,2,.. ., arity(£(q))} .

The function é§ extends uniquely to a partial function 5 Q x w* — @ according
to the inductive definition

8(q,0) = q
8(q,vi) = 8(8(¢,7),1) .

with the understanding that & is strict (undefined if one of its arguments is
undefined). For each ¢ € @, the partial function

o~

ty = Av.£(6(q,7))

is a Y-term in the sense of Definition 1. Notice that ¢, may equal ¢, even though

PFq.

Every term in the sense of Definition 1 is ¢, for some state ¢ of some term
automaton. In fact, ¢ = ¢; in the syntactic term automaton

Iy = ({Z-terms}, X, £, §)

where £(t) = t(¢) and 6(t,¢) = Ay.t(éy), 1 < ¢ < arity(4(t)). In this sense the
notion of term automaton (Definition 2) is a generalization of the notion of term
(Definition 1).

A term is regular if and only if it is ¢, for some state ¢ of some finite term
automaton [KPS93, Lemma 8]. For example, if ¢ is the state labeled f in the

term automaton
1
e . :

Foo2

then 7, is the infinite regular term s of Example 1.
A term automaton M 1s closed if for any f € X, and ¢q1,...,q, € @ there
exists a ¢ € () such that

lg)=fand 8(¢,i)=¢;, 1 <i<n. (13)



A model is a closed term automaton M. We refer to the states of M—
rather then their associated partial functions ¢,—as the terms of M, and use
the notation t € M to indicate t € Q. A term t’ of M is a subterm of t at depth
k if there exist a vy € w® such that §(t,v) = t'. A term t of M is (in)finite if ¢;
is (in)finite, and said to be labeled by ¢’ if ¢ty = ¢'. The model is standard if the
function ¢ — 1, : @ — Tz is a bijection. We denote a standard model by T's.

Remark. For any term automaton M = (Q, X, ¢, é) there is a closed term
automaton M’ = (@', X, ¢', §') such that @ C @', ¢’ and ¢’ coincide with ¢ and
8 on states from @, and (' is a minimal set of states—with respect to subset
inclusion—with these properties; M’ is said to be a minimal closure of M. M’
can be obtained as follows: Let My = M and let M,;;1 be obtained from M;
by adding exactly one new term t to @; for every f € X, and t1,...,t, € @
for which (13) doesn’t hold. ¢; 41 is the extension of 4; that maps t to f and é;41
is the extension of é; that maps (t,¢) to t;, 1 <i < n. Define M’ as the w-limit
of these term automata.

4.2 Term Automata and Set-Theoretic Termset Algebras

Let M be the term automaton (@, X, ¢, é). For f € X,, define the partial
function R}V‘ : @ — Q" and the set-theoretic function fM : (29) — 29 by

[ (8(q, 1), ... 8(q,n)) ,if b(q) = f
R}M(q) - {undeﬁned , otherwise. (14)

fMAL A ={g€EQ | g) = fand 6(q,0) € A;, 1 <i<n}
= (R (Ar x o x Ap) (15)

Set expressions are interpreted over 29, the powerset of @, which forms an
algebra of signature X’+B, where the Boolean operators have their usual set-
theoretic interpretations and elements f € X are interpreted as fM. If M is
closed, one can show that this gives a termset algebra. Such an algebra, or a
subalgebra of such an algebra, is called a set-theoretic termset algebra.

Let M be a model. A set valuation over M is a map

o X — 929

assigning a subset of terms of M to each variable in X. We can extend any set
valuation ¢ uniquely to a (¥+B)-homomorphism

o:Tyyp(X)— 29

by induction on the structure of set expressions in the usual way. A set valuation
o over M satisfies the positive set constraint s C ¢ if o(s) C o(t), and satisfies
the negative set constraint s ¢ if o(s) € o(t). We write o Eaq @ if o satisfies
all set constraints in @; @ is said to be satisfiable in M and ¢ a solution to &.
The set @ is satisfiable if it is satisfiable over some model. We write & = ¥ if
o Em @ implies ¢ Eap ¢ for some ¢ € . When no confusion is possible, we
suppress the subscript M.



5 Systems in Normal Form and Solutions

Let X' C X. Positive (negative) literals from X' are expressions z (~ z) for
r € X'. A maximal conjunction of literals from X’ is a conjunction of positive
and negative literals from X’ where each variable in X’ occurs exactly once.

A triple (tp, @, A) is a system of set constraints in normal form (or just a
system in normal form) if there is a finite set X’ C X such that (i) tp € Tp(X")
is of the form U,¢cp o, for some set U of maximal conjunctions of literals from X",
(ii) for each f € X, and aq, ..., an € U there is exactly one set constraint in @
of the form f(ay,...,a,) C UaeEf(&1 ..... oy @ where Etiq,,. . a,) C U, and (iii)
A is a finite set of Boolean expressions {{J,er, @, -+, Uqer,, @}, where I C U
for 1 < k < m. The set U is referred to as the set of atoms® specified by t5.

The triple (tp, @, A) corresponds to the set of set constraints {tp =
BUoUUuer, @ #0,--,Uner, @ # 0} and is said to be (un)satisfiable
if the latter is. A set valuation satisfies (tp, @, A) if it satisfies the correspond-
ing set constraints. If A is empty, we denote the system in normal form by
(tp, @) and call it a system of positive set constraints in normal form (or just
a positive system in normal form). Every system of mixed positive and negative
set constraints is equivalent to a system in normal form [AKW95].

Fach positive system in normal form (¢p, @) has an associated hypergraph;
the nodes are the elements of U and the hyperedges are specified by the sets
Ef(ay,..,an)- Let M be a model. A run over M through the hypergraph is a
function 6 :  — U such that

0(t) € Erocty),.ottn) o

where £(t) = f € X, and é(t,¢) = t;, for 1 < i < n. Each subset U’ C U
induces a subhypergraph by restricting the nodes and hyperedges to U’. The
subhypergraph induced by U’ is closed if for each f € X, and ay,...,a, € U’
the set Ft(a,,.. a,) MU’ is nonempty. It can be proved that (tg, @) is satisfiable
over a standard model if and only if there is a nonempty U’ C U that induces
a closed subhypergraph in the hypergraph associated with (tp, ®). Intuitively,
from a run # one can obtain a set valuation oy over a standard model satisfying
(tp, @), and—vice versa—from a set valuation ¢ satisfying (tp, @) one can
obtain a run 8, over a standard model through the hypergraph associated with

(tp, ®). For details see [AKVW93, Ko0z93, Koz95].

6 Completeness and Incompleteness

In this section we give a Gentzen-style axiomatization for sequents @ - ¥, based
on the axioms of termset algebra. The intended interpretation of the sequent
@ F ¥ is that if all the constraints in @ hold of some model, then at least one of
the constraints ¥ holds in that model. We prove (i) completeness over standard

? The elements of U are the atoms of the free Boolean algebra on generators X’ modulo
iB.



models for satisfiability of positive set constraints (if ¢ is unsatisfiable, then @
is refutable, i.e., @ F L is derivable), (ii) incompleteness over standard models
for satisfiability of mixed positive and negative set constraints (i.e., not all true
sequents @ - ¥ are derivable), and (iii) completeness over nonstandard models.

Any set constraint can be represented as an inclusion s C ¢, or an equation
u = 0, or an equation v = 1. In the following, any set expression s occurring in a
context expecting a set constraint denotes the set constraint s = 1. An inclusion
s C t can then be represented as the term ~ s U ¢, denoting the set constraint
~sUt =1, and an equation s = t as the term (~sUt) N (~tUs). A set @
denotes the conjunction or disjunction of its elements, depending on whether 1t
occurs on the left or right side of a -, respectively. A comma denotes conjunction
or disjunction, depending on whether it occurs on the left or right side of a I,
respectively. We use L for the empty disjunction on the right side of F; L can
be read as 0. The rules are:

Py

(weakening)

P, ~t;F1<i<n
B ~f(t,. . )T

(f-intro F)

D, s, tHW

@ sNtET
@ sNtET

(N-intro ) b iFT

(N-elim F)

o[t —t)t=tFW
b, t=1FW

(substitution F)

G t=1tF [t — 1], W

(- substitution)

D t=UFyYp v
For x not in @, ¢:
Qrx=1tFV
’ZSW (l‘—elim l_)
For any instance s = ¢ of the termset algebra axioms:
D, sHW PrHU, s

(termset ) (F termset)

T OF Ut

The sequents above and under a bar are referred to as the premises and conclu-
sion of the rule, respectively. @[t < '] denotes the substitution of all occurrences
of the expression ¢ in ¢ by the expression .

Derivation trees are inductively defined finite trees whose nodes are labeled
with sequents @ = . A single node labeled with any sequent @ - ¥ is a derivation
tree, and if there exist derivation trees 7i,...,7, whose roots are labeled with
sequents matching the premises of a rule, then the tree whose root is labeled
with the conclusion of that rule and has 73,...,7, as immediate subtrees is



itself a derivation tree. A sequent @ = W is derivable from a set S of sequents if
and only if there is a derivation tree all of whose leaves are labeled by sequents
in S and whose root is labeled @ - ¥. If S only contains sequents of the form
A Aor A ~ct I' (corresponding to the rules (ident) and (f-intro ) for
n = 0, respectively), then the derivation tree is called a tableau and @ F ¥ is
said to be deriwable.

FEzample 2. As an example of how the rules are used, let us consider how @, ~
t F ¥ can be derived from &, ~ f(...,¢,...) F ¥, hence it is not necessary to
postulate as an axiom the corresponding rule

B~ f(o b )T

-elim +
B~ T (f-clim £)
Assume f(... t,. ) 08 f(t1, ... tio1, 68, .. tp—1) and let 29, ..., 2,1 be dis-
tinct new variables not occurring in @, f(...,t,...),¥. A derivation (sketch)
could be:

S~ f( )W
@,Nt,’vf(...,t,...),l‘lItl,...,l‘n_lItn_l"&D
@,Nt,’vf(l‘l,...,l‘i_l,o,l‘i,...,l‘n_l),l‘l Itl,...,l‘n_lztn_ll_kp
@,Nt,l,l‘lztl,...,l‘n_lItn_ll_w
G, ~t, 1 W
G, ~INIF W
To~tF T

The rules applied—bottom-up—are (termset ), (N-intro ), (z-elim ) (several
times), (termset ) ((7) applied to 1), (substitution ) (several times, ~¢ can
be rewritten into ¢ = 0, substitute ¢ for 0, then #; for x;, efc.), and finally
(weakening).

Lemma 3. All rules are sound.

Proof. The proof is straightforward. As an example, assume we are given a
model M. Let us consider the (f-intro ) rule. Assume we have a set valuation
o (over M) which satisfies @, ~ f(t1,...,t,) and that &, ~¢; = ¥ holds for
1 < i< n. Since o(f(t1,...,tn)) = &, we conclude by M being closed and the
definition of set valuations that o(t;,) = @ for some 1 < iy < n. But then o
satisfies @, ~1;,, and by our assumptions ¢ must also satisfy a set constraint in

. Hence, @, ~ f(t1,...,tn) EV. O

The following theorem shows that the deductive system is complete over
standard models for satisfiability of positive set constraints.

Theorem4. If a finite set of positive set constraints @ is unsatisfiable in any
standard model, then @ & L is derivable.



Proof. We construct a tableau whose root is labeled @ = L in two stages. In the
first stage we show how one can obtain an equivalent finite set of set constraints
{tp = 1} U@’ from P, such that (g, &') is a positive system in normal form.
Simultaneously, we show how to derive @ - | from ¢g,®’ - L. This is essentially
a formalization of the normal form algorithm of [AKVW93] in terms of the
sequent rules.

Given @, replace all occurrences of a subexpression f(t1,...,¢,) in a set
constraint in @ by occurrences of a variable # and add the set constraints

where ¢, Y1, ..., Yy, are new variables. We refer to this as flattening. Repeat this
until all set constraints are purely Boolean or of the form (16). Let A denote the
obtained completely flattened set of set constraints. Notice that A is equivalent
to @. Using (x-elim k) and (substitution &) we can derive @ - L from AF L.
Any set constraint of the form (16) in A can be replaced by two inclusions

x (17)
~Z. (18)

f(yla"'ayn)
Nf(ylaayn)
Applying the generalized DeMorgan law (12), the inclusion (18) is equivalent to

n

U, onulJra. L~y d, ) Coa
N— — N— —

g#f i=1 . .
geD i—1 n—1t

and can be replaced by the inclusions

g(l,...,1)C~z  g#f

Fl,... 1,~yl,.. ) Crz  1<i<n. (19)
S—— S——
i—1 n—1t
Let A’ denote the current set of set constraints. Since # = f(y1,...,yn) may

be represented as the term (~z U f(y1,...,9n)) N (~ f(y1,...,yn) U ) in the
sequents, use (N-intro F) and (termset ) to obtain the inclusions (17) and (18).
Use (termset ) to replace ~(~ f(y1,...,yn))U ~z (corresponding to (18)) by

n

(() ~o(,. ., DU~2) O ()~ AL L~y 1, DU ~) (20)
741 = T TG

and use (N-intro ) to split this term into terms

10



~g(l,...,HU~x g% f

~F(, o~y DU~ 1<i<n,
f( Y )

i—1 n—1t

corresponding to the inclusions (19). This shows that A+ L can be derived from
AE L.

Let X’ denote the set of variables occurring in A’. At this point, A’ only
contains either purely Boolean set constraints or set constraints of the form

fler, ... xn) Cx (21)

where x1,...,x,, T are either positive or negative literals from X’ or the constant
1. Collect all purely Boolean set constraints and rewrite them, using the laws of
Boolean algebra, into one equivalent Boolean set constraint | J,c;; o = 1, where
U is a set of maximal conjunctions of literals from X’. Let tg denote the left
side of this set constraint. The current set of set constraints is now of the form
{tp = 1} U A" where all set constraints in A” are of the form (21). Using (N-
elim F) to collect all Boolean terms into one Boolean term and (termset ) to
replaced it by tg, we derive A’ + L from tg, A" L.

For # € X', let U(x) and U(~ ) denote the set of atoms from U in which
x occurs positively and negatively, respectively. Also, let U(1) denote Uan o.
Using the set constraint {p = 1 we can replace each set constraint of the form

(21) in {tp = 1} U A” by

U e U e U e, (22)

aeU(zy) a€U(zy) aeU(z)

which can be rewritten as separate inclusions

flag, ..., an) C U a, o €U), 1<i<n. (23)
aeU(z)

For any f € X, and aq,...,an € U, collect all inclusions of the form (23) and
rewrite them into one

IN
-
“Q

flag, .. an) (24)

where E¢(a,, . a,) i the intersection of all sets U(x) from the right sides of
the collected inclusions. The resulting set of set constraints {tp = 1} U@’ is
equivalent to @ and (tp, ¢') is a positive system in normal form.

The rewriting of inclusion of the form (21) into inclusions of the form (23)
can be done using (termset F) to rewrite z; into #; N1, 1 < ¢ < n, (substitution

11



F) to substitute ¢p for 1, and (termset ) and (N-intro F) to obtain the separate
inclusions. To obtain the inclusions corresponding to (24), use (N-elim ) to
collect the appropriate inclusions and (termset ) to rewrite them into (24).
Hence we can derive tg, A” F 1 from tg,®' F L. This completes the derivation
of ®F L fromtg,®' F L.

For the second stage we construct a tableau with root tg,® F L, which
together with the derivation of @ - | from t5,®’ F L completes the proof.

Since (tp, @') is a positive system in normal form and equivalent to @,
there must exist an inclusion in @' of the form (24) with Etar o) =D, else
the corresponding hypergraph would be closed and @ would be satisfiable in a
standard model.

If there exists such an inclusion with n = 0, then we have found the desired
tableau. Otherwise, use (f-intro ) to derive tp,~ f(af,...,al),®” F L from
tp,~al, " F L1 < i < n, where ~ f(of,...,a)),®" is &'. Each of these
sequents represents the discarding of one of the atomsin U. Consider any 1 < ¢ <
n and let U; denote the set U—{o’} and tp, denote the conjunction of all elements
in U;. Use (N-elim F) and (termset ) to derive the sequent tp,~ o}, &" F L
from the sequent tg,, ~ 4, @ L, which itself can be derived from tp,, &/ F L,
where @/ contains all inclusions of the form (24) in which o} does not occur
on the left of the inclusion and «} has been removed from the sets Efar,..an);
this can be done using (weakening), (substitution F), and (termset ). Notice
that (tp,, @) is a positive system in normal form and is unsatisfiable because
(tp, 9') is unsatisfiable.

By repeatedly applying the above procedure to all tp,,®7 - L we conclude
that there must exist a tableau deriving tg,®’ b L from sequents of the form
U ~ck L. a

Now suppose we are given a set of mixed positive and negative set constraints
G ={sy =t1,...,8n =t U{s] #£t,...,s,, #1.,}. Observe that ¢ is unsat-
isfiable if and only if {51 = 41,...,5, =t} = {s] = ¢},...,s, = ,}. The
following theorem shows that the deductive system is incomplete over standard
models for satisfiability of mixed positive and negative set constraints.

Theorem 5. The ariomatization is incomplete for systems of mized positive and
negative set constraints over standard models.

Proof. The sequent # = f(z) |E « = 0 certainly holds in all standard models.
However, © = f(x) F « = 0 cannot be derived, since the rules are sound for non-
standard models as well, and if infinite terms are allowed then # = f(z) =2 =0
is no longer valid: in any model containing an infinite term labeled f(f(f(...))),
the set of terms labeled f(f(f(...))) is a nontrivial solution to the set constraint

z = f(x). a
We continue by considering nonstandard models.

Lemma 6. A system of set constraints in normal form (tp, @, A), where A =
WUaer, @ -+ s Uaer,, @), is satisfiable if and only if there exists a set U' C U
such that
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VFE Dy Var,. . an €U Ejan, any NU' # @ | (25)
Yo eU' . 3fe X, ay,...,ap €U’ . a € Eftay,. an) » and (26)

Vi<k<m.IynU #3, (27)

where U are the atoms corresponding to tg.

Proof. For the “only if” direction, assume (tp, ¢, A) is satisfiable and let o :
X — 29 denote a satisfying set valuation over M. Then U’ = {a € U | o(a) #
&} satisfies the properties (25)-(27). To see this, notice (i) that (25) follows from
o being a satisfying set valuation, the definition of U’ and axiom (5), (ii) that
(26) follows from o(1) = o(tB) = 0(Uper @) = 0(Uyerr @) and axiom (3), and
(iii) that (27) follows from ¢ being a satisfying set valuation and the definition
of U’.

For the “if” direction, assume U’ C U satisfies (25)—(27). Since U’ induces a
closed subhypergraph in the hypergraph associated with (t5, @) there exist set
valuations over standard models—whose associated runs map terms into U'—
satisfying (tp, @). Let U"” C U’ be the set of atoms « for which there exists
such a set valuation o with o(a) # @. Let [ = |U”|, and let o; : X — 29 be
set valuations over standard models M;, 1 < i <[ satisfying (tp, @) such that
U'={aclU"|31 <i<loi(a) # @} Moreover, we may assume that the states
of the standard models My, ..., M; are all mutually disjoint. Note that there
exists a model M whose set of terms (states) contains Ui’:1 Q); and is minimal
with respect to subset-inclusion. Moreover, its functions £ and 6 restricted to @);
coincide with ¢; and é;; see the remark in §4.1. Let 6; : Q; — U"”, 1 < i < |,
be the runs corresponding to the set valuations oy, i.e., for t € @, 6;(t) is the
unique « such that t € o;(«). We define arun ¢ : @ — U"” over M, whose image
is U” as the limit of a chain of partial functions from @ to U”. Let

0;(t) , if t i 1< <,
o= {0, 100 1<

undefined, otherwise.
Given g;, define g;41 as follows. For t € @),

— if g; is defined on t, then p;41(t) is defined as g;(t)

—else, it £(t) = f € X, and é(t, i) = t; on which g; is defined, for 1 <i <n,
then pick any o € E 0i (1), 05ty N U’ and define g;41(t) = «

— otherwise, g;41 is undefined on t.

Now define ¢ as the limit of gg, 01,... It is easy to see that

o(t) € Eyiyity), oty MU’ (28)

for any t € Q, where {(t) = f € X}, and é(t,¢) = t;, for 1 < i < n. Hence, ¢
is a run in the closed subhypergraph induced by U’ and the corresponding set
valuation ¢, : X — () satisfles (tp, D).

13



If U = U’ the set valuation satisfies (tg, ¢, A). So assume U"" = U\U"
is nonempty. Pick any a;, € U"”'. We construct a finite tree structure 7;, whose
nodes are labeled by symbols from Y. The tree structure is expanded from the
root and down as long as certain conditions are met. Also, to each node of the
tree we associate an element from U’. From 7;, we obtain a new term t;, which
will be added to the terms of M. The term t;, will then be mapped to «j, by
an extension of ¢,.

By (26) there exist f € X, and ay,...,a, € U’ such that aj, € Fra,,. )
The root of the tree structure is labeled by f and «;, is the associated atom.

For all 1 < i < n such that ¢,(o;) # @, pick a t; € ¢,(a;). Such a t;
corresponds to the ™ child of the root. The atom associated with the node t;
is o(t;). The nodes t; are not expanded further and are referred to as M-nodes.

For all 1 < ¢ < nsuch that ¢,(v;) = @, add a new i*™® child n whose associated
atom is «;. If there is another node n’ on the path from n to the root whose
associated atom is «;, then label n by the symbol f € X that labels n’. The
node n is not be expanded further; n is referred to as a repeat-node and n’ as its
twin-node.

Repeat the above procedure for the leaves n which are neither M-nodes nor
repeat-nodes.

Since U’ is finite, we obtain a finite tree structure 7;,, all of whose internal
nodes are labeled by symbols in X whose arities respect the branching structure.
Moreover, any path from the root either ends at an M-node or in a repeat-node.
If there are any repeat nodes, the tree structure corresponds to an infinite regular
term.

From M we obtain a new term automaton M/ by adding new nodes to @ for
all nodes of 7;, that are not M-nodes or repeat-nodes and by defining ¢ and 6]
to be the obvious extensions of £ and ¢ obtained by 7;,, when repeat-nodes are
identified with their twin-nodes. Also, 7;, permits ¢ to be extended to a function
o) : Q) — U’ such that the inclusion (28) is still valid if ¢} is defined on the
occurring terms. Notice that this function is not a run since M} is not a model.

Applying the same procedure for the remaining atoms in U’ we obtain a
sequence of term automata M, M/, .. .,/\/l;, and a corresponding sequence of
functions g, ¢, ..., g,, where p = |U’[, each one extending the previous in the
sequence as described above (except for M and ).

Let M" be a minimal closure of M;,. We define a run da : Q" — U’ as the
limit of a chain of partial functions from Q" to U’. Let ng = g, and define 7,41
from 7; as follows. For t € Q"

— if ; is defined on ¢, then ;41 (t) is defined as n;(t)

— else, if £ (t) = f € X, and 8" (t,%) = t; on which »; is defined, for 1 < i < n,
then pick any o € Ent),mita 0 U’ and define n;41(t) = «

— otherwise, 7,41 is undefined on t.

Define 04 as the limit of no,71,... Since M" is the minimal closure of M;,
and g}, is defined on all of @}, any t € Q"\@Q;, has the property that for some
natural number k, g;, is defined on all subterms of t at depth & or more. This
ensures that 044, is defined everywhere on Q. It is easy to see that

14



O (F(6)) € Epig i)t ontan MU (29)

for any t € Q", where ¢"(t) = f € X, and §/(t,9) = ¢;, for 1 < { < n.
Hence, faqr is a run through the hypergraph associated with (tp, @) and the
set valuation oy, ,, corresponding to 0 satisfies (tg, @, A), since the image

of Oaqr is U’ and (27) holds. O

The last theorem shows that our deductive system is complete for satisfia-
bility of mixed positive and negative set constraints.

Theorem 7. If a finite set of mixed positive and negative set constraints
(5120, sn = b} ULs) £ 80, sh # 1)
1s unsatisfiable, then
s1=1%1,...,8, =1p l—sll :tll,...,sin :t;n

15 derivable.

Proof. Assume {s1 =11,...,sp =t tU{s] #t),..., s, #1,,} is not satisfiable
in any model. We show how to derive
§51=11,..,8n =ty b sy =1],...,s, =t . (30)

Notice that by repeatedly using (I termset), ( z-elim i), and (F substitution)
we can derive (30) from

S1 :tla"'asn :tna

vy = (N~ U(~sinth),....em = (s,,N~tL YU (~s,, NtL)E  (31)
r1=0,...,2;, =0,

where x1,...,x,, are new variables. Now apply the procedure from the proof of

Theorem 4 to derive (31) from

tg, Pt 21 =0,..., 2, =0, (32)
where (tp, @) is a positive system in normal form such that {tp = 1} U@ is
equivalent to s; = t1,...,8, = tp, 21 = (S{N ~HU(~sINE), ... 2 = (85,0 ~
U (~s,, Nt

Let U denote the set of atoms specified by ¢5. Applying (F substitution) and
(- termset) we derive (32) from

tg, @ |Ja=0,..., | a=0, (33)

a€ly aely,

where I; is U(z;), the set of atoms in U in which #; occurs positively. Notice
that (tg, @, {Uuer, @ Uaer,, @}) is a system in normal form. If the set

15



constraints corresponding to the left of - in (33) are not satisfiable, we can
derive

tp,®F L, (34)

using the technique from Theorem 4, and using (weakening) we can derive (33).
In fact, in the following, whenever the set constraints to the left of a - in any
sequent considered are unsatisfiable, we conclude that the sequent is derivable.
So assume the (tp, @) is satisfiable. Using (termset ), (N-elim ), and (3) we
derive (33) from

tg,®,1= | ) flor,..,an)b [ Ja=0,..., Ja=0, (35)

fex a€l; a€l,

which can be derived using (termset ), (N-intro F), (N-elim F), and (weakening)
from

tg,®,1= | UJ at | Ja=0...,Ja=0, (36)

a€ly aely,

which again can be derived from
tg. '+ | Ja=0..., ] a=0, (37)
agl; aely,

using (substitution ), (termset F), and (weakening), where U’ C U is the set

U U U e

fex ozl,...,oanUozEEf(al ))))) orn)

tg is the term |, ¢y @, @' consists of all inclusions of the form

flag, ... an) C U o,

7
YEE (o,

where f € X,,, a1,...,a, € U’, and E}(al ) = Ettar,.am NU".
Using (F termset) and (- substitution) we can derive (37) from

g, @+ | Ja=0,..., ] a=0, (38)
a€l] a€l!l,

where I} = I; 0 U’, 1 < j < m. Notice (1, ¢, {UaEI{O‘""’UaEI;n al)is a
system in normal form and is satisfiable only if (t5, @, {U,er, @ - s Uaer, @})
is.
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Ifany I; = @, 1 < j < m, (38) is easily seen to be derivable. So as-
sume this is not the case. By repeating the steps from (33) to (38) we even-
tually obtain a sequent of the form (38), where some I; = @ or all atoms
a € U’ occur in some set E}(al,...,an)' Now assume the latter is the case. Since
(thy, P, {UaeI{ Q... Uaefin a}) is unsatisfiable, we conclude by Lemma 6 that
there exist f € X and a1,...,a, € U’ such that E}(ozl,...,ozn) = &. So using
(termset ) and (f-intro ) we derive (38) from

tg, @ ~a;k | Ja=0...Ja=0,1<i<n, (39)
ael] agll,
where @ is @' without the inclusion f(ay,...,a,) € Uyep «. The

Flag,..y an)
sequents in (39) whose set constraints to the left of F are unsatisfiable can be

derived using the technique from the proof of Theorem 4. The remaining sequents
can be derived by repeating steps similar to those used in phase two in the proof
of Theorem 4 and those used to derive (37) from (38) to eliminate the atom
«;, and then repeating steps similar to those used to derived (33) from (39).
This procedure eventually terminates, since atoms are being discarded in each
iteration. ad

7 Conclusion

In this paper we have introduced and investigated a deductive system for deriving
sequents @ - ¥, where @ and ¥ are finite sets of set constraints. Using standard
and nonstandard models involving set-theoretic termset algebras as introduced in
[Koz93], we have shown that the deductive system is (i) complete for restricted
sequents of the form @ = L over standard models, (ii) incomplete for general
sequents @ F ¥ over standard models, but (iii) complete for general sequents
over nonstandard models.

Having chosen term automata as the basis for our models, we naturally get
models that allow “multiple copies” of a term ¢, 7.e. we may have ¢, = ¢, for
different states p and ¢ of the term automaton. One natural and interesting
question that remains is whether the system is complete for general sequents
over models that forbid such “multiple copies” but allow infinite terms.
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